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Concentration Inequalities

Recall: For a random variable X
> EX tells us about the center of its distribution

> Var(X) tells us about the spread of its distribution
Concentration Inequalities: Bounds on the probability that a random variable is far
from its expectation

P(X >EX +1t) P(X <EX —t) P(|X — EX| > t)

» Often X = Uy + --- + U, sum of independent random variables
> More generally, X = function of independent random variables

> Many applications in statistics, machine learning, probability



Markov and Chebyshev



Markov’s and Chebyshev’s Inequalities

Markov’s inequality: If X > 0 and ¢ > 0 then

EX
P(X >¢t) < e

Chebyshev’s Inequality: If EX?2 < oo then for each ¢ > 0

Var(X)
$2

P(X —EX|>1¢) <

» Upper bound may be larger than 1 (not useful)

» Upper bound is less than 1 if ¢ > SD(X)



Extending Chebyshev

Applying same proof idea we can show that for each ¢ > 0,

E|X —-EX|*
P(|X —EX|>t) < minQ
s>0 ts

Upshot: smaller central moments yield better upper bounds



Application: Weak Law of Large Numbers

WLLN: Let Uy, Us, ..., U be iid with Var(U) finite. Then for each ¢ > 0,

2t>—>0

Proof: Apply Chebyshev’s inequality to X =n~1 3" | U;

1 n
P(nzm — E(U)

i=1




Order of Magnitude

Note: If X1, X», ... are iid with EX; = g and 0 < Var(X;) = ¢ < oo then by CLT

i1 Xi —np

on ~ N(0,1)

Corollaries
1. The centered sum >_7" | X; — nu is of order o/n

2. The centered average n=1 Y- | X; — pnis of order o/\/n

Upshot: Probability P(3"7" ; X; —nu > t) canbe smallonly if ¢ 2 o/n



MGFs and Chernoff Bound



Moment Generating Functions

Recall: The moment generating function (MGF) of a rv X is defined by
Mx(s) =E [esx} fors € R

Note that M x (s) > 0, and that Mx (s) may be +oo.

Fact: if X1,..., X, are independent and MGFs M, (s) are finite in a neighborhood
of 0 then S,, = X1 + --- + X, has MGF

Mg, (s) = [ Mx,(s)
i=1

MGFs are a useful tool in the study of sums of independent random variables



MGF Examples

1. Normal: If X ~ N(0,02) then Mx (s) = es?o?/2
2. Poisson: If X ~ Poiss()) then Mx (s) = e*(¢*~1)
3. Chi-squared: If X ~ x? then Mx (s) = (1 —2s)~ /2 for s < 1/2

4. Sign: If X = 1, —1 with probability 1/2 then Mx (s) = (e +e~%)/2



Chernoff’s Bound

Chernoff Bound: For any random variable X and ¢t € R

P(X >t) < mine ** Ee®® = mine % M
( _)_gge e min e x(8)

Corollary: If MGF of (X — EX) is bounded by M (s) for s > 0, then for ¢t > 0

P(X >EX +t) < inf e 5 M(s)
s>0
> Inequalities for left tail P(X < EX — t) established in same way

> Bound on P(|X — EX| > ¢) can be obtained by adding L/R tail bounds



Bound for Chi-squared Distribution

Fact: Let X ~ x?. Then

1. X £3°F | 22 where z; are iid ~ N(0, 1)
2. EX = k and Var(X) = 2k

3. Mx(s)=(1—2s)"%/2fors < 1/2

Fact: Forz >0, 1 4 = < exp{z — (2? — 23)/2}

Proposition: If X ~ x? thenfor0 <e <1
1. P(X > (1 +e)k) < exp{—Fk(eZ2 —¢3)/4}

2. P(X < (1—e)k) < exp{—k(e? —¢3)/4}



Application: Low Dimensional Euclidean Embeddings



Basic Embedding Problem

Question: Can we embed given vectors z1, ..., z, € R? in a lower dimensional
space while preserving their pairwise distances?

Definition: Let ¢ € (0,1). A function f : R? — R¥ is an e-embedding
ofxy,...,zpifforalll1 <:,5<n

A=) llzi —z5l1* < |1f () = fl@)? < A +e)llwi —

Upshot
> Establish existence of linear embeddings using probabilistic arguments

> Existence requires k > logn/e?, independent of dimension d



Random Projections via Gaussian Random Matrices

GRM: Let W be a k x d matrix with iid AV(0, 1) entries

Fact: Fix u € R¢ and define the random vector V = (V1,..., Vi)t = k= 1/2 Wy
1. Vi,..., Vy areiid N(0, ||u||2/k)
2. lf k> 8(e2 — €3)~1logn then

1 1
P([VI[* < (1= )llul?) < — and P(IVII? > 1+ o)llull?) < o



Johnson-Lindenstrauss Lemma

Recall: Function f : R* — R* is an e-embedding of 1, ..., 2, € R%iffor1 <i,j <n

(1= e —z5l1? < NIf (@) = FEDIP < A+ o) [les — 251

Theorem: Let IV be a k x d matrix with iid A/(0, 1) entries. Define fyr : R — R” by
fw(@) =2 Wz
If & > 8(e? — €3)~! log n then for each fixed sequence z1, . .., z, € R?

P(fw is an e-embedding of z1,...,zn) > 1/n

Upshot: An e-embedding of z1, ..., z, exists. In practice, we can generate GRMs W
until we find one that works



Hoeffding’s Inequality



Hoeffding’s MGF Bound and Hoeffding’s Inequality

MGF bound: If X € [a, b] then for every s > 0

Fes(X—EX) ~ 632(b—a)2/8
Hoeffding’s Inequality: Let X, ..., X,, be independent with a; < X; < b; and let
Sn=X1+4+---+ X,. Forevery ¢t >0,

—2t2
P(Sp —ESp > 1) < eXp{ni}
i (b — a;)?

Also P(S,, — ES,, < —t) < RHS and P(|S,, — ES,| > t) < 2 RHS

Note: Hoeffding bound does not use information about the variance of the X;s



Example: Bernoulli Random Variables

Let X1,..., X, beiid Bern(p). Note that E(3"7"_; X;) = np

Chebyshev: Uses Var(X;) = p(1 — p). Foreacht > 0
- np(l—p) n
P X,—np>t] < /— 2 <
(o) < 22052 < 2
Hoeffding: Uses 0 < X; < 1. Foreacht >0

" —2¢2
P X,—np>t]| <
(S <o)

Note: Bounds meaningful only when ¢ > /n. Hoeffding bound independent of p!




Bernoulli Example, cont.

Compare bounds of Chebyshev and Hoeffding when n = 100 and p = 1/2

t  Chebyshev  Hoeffding

5 1 .607
10 .250 135
12 173 .0561
14 128 .0198
16 .0977 .0060
20 .0625 .000335

Upshot: Once bounds kick in, Hoeffding is better



Bernoulli Example, cont.

Bounds for sums can be converted into bounds for averages, and vice versa

Chebyshev: Foreach ¢ > 0

1 & p(1 —p) 1
Pl — X,—p>t] < <
<n; iTh= > - nt?2 T 4nt?

Hoeffding: Foreach ¢t > 0

17L
Pl=S X,—p>t] < —2nt?
(E0ret) 2 owicanes

Note: Upper bounds useful only whent > 1/4/n



Other Examples of Hoeffding’s Inequality

Ex: Let X1,..., X, € X beiid with distribution P and let A C X. For¢ > 0,

P (‘iiH(Xi € A)— P(A)

=1

> t> < 2exp {—2nt?}

Ex: Let X1,..., X, iid ~ U(—6,0). Note that EX = 0. Fort > 0,

P X;>t)] <
; - - exp{2n92}




Bennett and Bernstein Inequalities



Bennett and Bernstein Inequalities

MGF bound: If EX = 0, Var(X) = o2, and | X| < cthen

Mx (s) < exp{c™202(e%¢ — 1 — sc)}

Bennett’s Inequality: If X1, ..., X, are independent with EX = 0, Var(X;) = o2,
and | X;| < ¢, then for every ¢t > 0,

2
P(Sn > 1) < exp{ o h(%)}
C no

where 02 =n=1 3" | o2 and h(u) = (1 + u)log(l +u) — u.

Bernstein’s Inequality: Under the same conditions, for every ¢t > 0,

—2
P(S, >1t) < _—
(Sn2t) < eXp{2n02+2ct/3}



Bernstein vs. Hoeffding

Let X1,...,Xn be independent withEX =0 and |X;| <ec. lft > n=1 3" | Var(X;)
then Bernstein’s inequality yields

1< —nt
Pl — X;>t)] < _—
<nZ; i ) = eXp{2+2c/3}
while Hoeffding’s inequality yields
1 & —nt?
P(n;Xi>t> §exp{ oY) }
Note: If X1,..., X, are Bern(p) with p > 1/2, Bernstein’s inequality shows for ¢ > 0

1< —3nt?
Pl — Xi—p2>t Sexp{i}
<n; ‘ > 8p(1 —p)

which is (up to constants) what one expects from the CLT




Bounds on Expectations

Idea: Bounds on tail probabilities yield bounds on expectations

Fact: Let X be a random variable, a > 1,and b > 0

1. fP(|X|>1t) <ae bt fort >0thenE|X| < (14 loga)/b

2. fP(|X| > t) < ae b fort > 0then E|X| < /(1 +loga)/b



General Concentration Inequalities

Hoeffding, Bennett, and Bernstein inequalities show that a sum }_ , X; of bounded,
independent random variables is close to its mean

Goal: Inequalities for functions f(X1, ..., X,) of independent random variables
» Chernoff inequality and upper bounds on the MGF of f(X1,...,Xy)
> Martingale differences and Gaussian smart-path argument

> Key assumption: the value of f(z1,...,zy,) does not change too much if we make
a small changes to any single argument z;



Azuma-Hoeffding Inequality



Martingale Differences

Setting: Random variables X1, ..., X, defined on a common probability space
(92, F,P) and nested sigma fields {#,Q}=Fo C F1 C---C F, CF

Definition: X1, ..., X, is a martingale difference with respect to Fo, ..., Fy if
1. X, is measurable F;
2. E|X;| < >
3. E(Xi|Fi—1) =0

In many cases F; is the sigma field o(X{) generated by X1,..., X;



Martingale Differences

Fact: If X1,..., X,, is a martingale difference with respect to Fy, ..., F, then
1. EX; =0fori=1,...,n
2. E(X;X;)=0ifi#j

3. Var(39, X;) = >0, Var(X;)

Fact: Let X be a random variable and G C F a sigma field such that
1. E(X|G) =0
2. There exists G-measurable U and ¢ > 0 such that U < X < U + ¢ wp1

Then E(exp(sX)|G) < exp(s2c?/8)



Azuma-Hoeffding Inequality

Fact: Let X1, ..., X,, be a martingale difference with respect to Fo, ..., . Suppose
that for each 1 < 7 < n thereis arv U;_; measurable 7, _1 and c¢;_; > 0 such that

Ui-1 < X; < Ui—1+ci—1

with probability one. Then for each ¢ > 0

P(ZX 2t>

IN

—2t2
€X] —_— 5
P 1 C?

Note: The same upper bound holds for P (-7 ; X; < —t)



Bounded Difference Inequality



Bounded Difference Inequality

Setting: Let X be a set, possibly finite
> Function f : X™ — R

> Xi,...,Xn € X independent, not necessarily identically distributed

Of interest: bounds on the probability that the random variable
Z:f(Xlw--an)

is far from its mean EZ



Bounded Difference Inequality

Definition: The ith difference coefficient c; of f is the maximum possible change in the
value of f if we change the value of the ith coordinate,

¢ = sup|f(e}) — f(ei ' 2}, 2l

where the supremum is over all sequences z1,...,z;, 2}, Zi11,...,Zn € X

Theorem (McDiarmid): If X;,..., X,, € X are independent, then for every t > 0

" —2t2
PASCT) ~ B 2 ) < 2o { 2
i=1"q

Moreover Var(f(X7')) < >, c2/4



Examples

Bin Packing: Fix n > 1. The bin-packing function f : [0, 1]™ — N is defined by

fn(z?) = min # size 1 bins needed to hold objects of size 27

Uniform LLN: Let X, ..., X,, € X be iid and let G be a family of functions
g: X — [—¢,c]. Define f: X™ — R by

ny 1< N
fn(z]) = sup n;g(m) Eg(X)



Gaussian Concentration Inequality



Gaussian Concentration Inequality

Definition: A function F' : R™ — R is Lipschitz continuous with Lipschitz constant L if
for every z,y € R™

[F(z) = F(y)| < Lz —yll
Theorem: Let X1, ..., X, beiid ~ A(0,1). If F: R™ — R is Lipschitz continuous with
constant L then for every ¢t > 0
212

_ 42
PIPXT) - BF(XD) 2 0) < e {35}

The same bound holds for P (F(X7") — EF(X}') < —t)



Examples

Ex: maximum of multinormal: Let Y ~ N,;(0, X). Find concentration inequality for

U = max(Y1,...,Yy)

Ex: ¢,-norm of multinormal: Let Y ~ A/;(0, ). Find concentration inequality for

d 1/p
U = Y1, <zmp>
=1



Association Inequalities for Expectations

Definition: A function f : R — R is
» non-decreasing if x < y implies f(z) < f(y)
» non-increasing if x < y implies f(x) > f(y)
Theorem: Let X be a random variable and let f, g : R — R. Assuming all expectations
are well-defined,
(@) f, g non-decreasing implies E(f(X) g(X)) > Ef(X)Eg(X)
(b) f, g non-increasing implies E(f(X) g(X)) > Ef(X)Eg(X)

(c) f non-decreasing and g non-increasing implies E(f(X) g(X)) < Ef(X)Eg(X)



Association Inequality Examples

1. E(X4) > E(X)E(X3)
2. E(Xe X)) < E(X)E(e=¥X).

3.EXI(X > a)] 2 E(X)P(X > a)



