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Concentration Inequalities

Recall: For a random variable X

I EX tells us about the center of its distribution

I Var(X) tells us about the spread of its distribution

Concentration Inequalities: Bounds on the probability that a random variable is far
from its expectation

P(X ≥ EX + t) P(X ≤ EX − t) P(|X − EX| ≥ t)

I Often X = U1 + · · ·+ Un sum of independent random variables

I More generally, X = function of independent random variables

I Many applications in statistics, machine learning, probability



Markov and Chebyshev



Markov’s and Chebyshev’s Inequalities

Markov’s inequality: If X ≥ 0 and t > 0 then

P(X ≥ t) ≤
EX
t

Chebyshev’s Inequality: If EX2 <∞ then for each t > 0

P(|X − EX| ≥ t) ≤
Var(X)

t2

I Upper bound may be larger than 1 (not useful)

I Upper bound is less than 1 if t > SD(X)



Extending Chebyshev

Applying same proof idea we can show that for each t > 0,

P(|X − EX| ≥ t) ≤ min
s>0

E|X − EX|s

ts

Upshot: smaller central moments yield better upper bounds



Application: Weak Law of Large Numbers

WLLN: Let U1, U2, . . . , U be iid with Var(U) finite. Then for each t > 0,

P

(∣∣∣∣∣ 1

n

n∑
i=1

Ui − E(U)

∣∣∣∣∣ ≥ t
)
→ 0

Proof: Apply Chebyshev’s inequality to X = n−1
∑n
i=1 Ui



Order of Magnitude

Note: If X1, X2, . . . are iid with EXi = µ and 0 < Var(Xi) = σ2 <∞ then by CLT∑n
i=1Xi − nµ
σ
√
n

≈ N (0, 1)

Corollaries

1. The centered sum
∑n
i=1Xi − nµ is of order σ

√
n

2. The centered average n−1
∑n
i=1Xi − µ is of order σ/

√
n

Upshot: Probability P(
∑n
i=1Xi − nµ ≥ t) can be small only if t & σ

√
n



MGFs and Chernoff Bound



Moment Generating Functions

Recall: The moment generating function (MGF) of a rv X is defined by

MX(s) = E
[
esX

]
for s ∈ R

Note that MX(s) ≥ 0, and that MX(s) may be +∞.

Fact: if X1, . . . , Xn are independent and MGFs MXi
(s) are finite in a neighborhood

of 0 then Sn = X1 + · · ·+Xn has MGF

MSn (s) =
n∏
i=1

MXi
(s)

MGFs are a useful tool in the study of sums of independent random variables



MGF Examples

1. Normal: If X ∼ N (0, σ2) then MX(s) = es
2σ2/2

2. Poisson: If X ∼ Poiss(λ) then MX(s) = eλ(e
s−1)

3. Chi-squared: If X ∼ χ2
k then MX(s) = (1− 2s)−k/2 for s < 1/2

4. Sign: If X = 1,−1 with probability 1/2 then MX(s) = (es + e−s)/2



Chernoff’s Bound

Chernoff Bound: For any random variable X and t ∈ R

P(X ≥ t) ≤ min
s>0

e−st EesX = min
s>0

e−stMX(s)

Corollary: If MGF of (X − EX) is bounded by M(s) for s ≥ 0, then for t > 0

P(X ≥ EX + t) ≤ inf
s>0

e−stM(s)

I Inequalities for left tail P(X ≤ EX − t) established in same way

I Bound on P(|X − EX| ≥ t) can be obtained by adding L/R tail bounds



Bound for Chi-squared Distribution

Fact: Let X ∼ χ2
k. Then

1. X d
=
∑k
i=1 Z

2
i where Zi are iid ∼ N (0, 1)

2. EX = k and Var(X) = 2k

3. MX(s) = (1− 2s)−k/2 for s < 1/2

Fact: For x ≥ 0, 1 + x ≤ exp{x− (x2 − x3)/2}

Proposition: If X ∼ χ2
k then for 0 ≤ ε ≤ 1

1. P(X ≥ (1 + ε)k) ≤ exp{−k(ε2 − ε3)/4}

2. P(X ≤ (1− ε)k) ≤ exp{−k(ε2 − ε3)/4}



Application: Low Dimensional Euclidean Embeddings



Basic Embedding Problem

Question: Can we embed given vectors x1, . . . , xn ∈ Rd in a lower dimensional
space while preserving their pairwise distances?

Definition: Let ε ∈ (0, 1). A function f : Rd → Rk is an ε-embedding
of x1, . . . , xn if for all 1 ≤ i, j ≤ n

(1− ε) ||xi − xj ||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε) ||xi − xj ||2

Upshot

I Establish existence of linear embeddings using probabilistic arguments

I Existence requires k & logn/ε2, independent of dimension d



Random Projections via Gaussian Random Matrices

GRM: Let W be a k × d matrix with iid N (0, 1) entries

Fact: Fix u ∈ Rd and define the random vector V = (V1, . . . , Vk)t = k−1/2Wu

1. V1, . . . , Vk are iid N (0, ||u||2/k)

2. If k ≥ 8(ε2 − ε3)−1 logn then

P(||V ||2 ≤ (1− ε)||u||2) ≤
1

n2
and P(||V ||2 ≥ (1 + ε)||u||2) ≤

1

n2



Johnson-Lindenstrauss Lemma

Recall: Function f : Rd → Rk is an ε-embedding of x1, . . . , xn ∈ Rd if for 1 ≤ i, j ≤ n

(1− ε) ||xi − xj ||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε) ||xi − xj ||2

Theorem: Let W be a k × d matrix with iid N (0, 1) entries. Define fW : Rd → Rk by

fW (x) = k−1/2Wx

If k ≥ 8(ε2 − ε3)−1 logn then for each fixed sequence x1, . . . , xn ∈ Rd

P
(
fW is an ε-embedding of x1, . . . , xn

)
≥ 1/n

Upshot: An ε-embedding of x1, . . . , xn exists. In practice, we can generate GRMs W
until we find one that works



Hoeffding’s Inequality



Hoeffding’s MGF Bound and Hoeffding’s Inequality

MGF bound: If X ∈ [a, b] then for every s ≥ 0

Ees(X−EX) ≤ es
2(b−a)2/8

Hoeffding’s Inequality: Let X1, . . . , Xn be independent with ai ≤ Xi ≤ bi and let
Sn = X1 + · · ·+Xn. For every t ≥ 0,

P(Sn − ESn ≥ t) ≤ exp

{
−2t2∑n

i=1(bi − ai)2

}

Also P(Sn − ESn ≤ −t) ≤ RHS and P(|Sn − ESn| ≥ t) ≤ 2 RHS

Note: Hoeffding bound does not use information about the variance of the Xis



Example: Bernoulli Random Variables

Let X1, . . . , Xn be iid Bern(p). Note that E(
∑n
i=1Xi) = np

Chebyshev: Uses Var(Xi) = p(1− p). For each t ≥ 0

P

(
n∑
i=1

Xi − np ≥ t
)
≤

n p(1− p)
t2

≤
n

4t2

Hoeffding: Uses 0 ≤ Xi ≤ 1. For each t ≥ 0

P

(
n∑
i=1

Xi − np ≥ t
)
≤ exp

{
−2t2

n

}

Note: Bounds meaningful only when t &
√
n. Hoeffding bound independent of p!



Bernoulli Example, cont.

Compare bounds of Chebyshev and Hoeffding when n = 100 and p = 1/2

t Chebyshev Hoeffding

5 1 .607

10 .250 .135

12 .173 .0561

14 .128 .0198

16 .0977 .0060

20 .0625 .000335

Upshot: Once bounds kick in, Hoeffding is better



Bernoulli Example, cont.

Bounds for sums can be converted into bounds for averages, and vice versa

Chebyshev: For each t ≥ 0

P

(
1

n

n∑
i=1

Xi − p ≥ t
)
≤

p(1− p)
n t2

≤
1

4n t2

Hoeffding: For each t ≥ 0

P

(
1

n

n∑
i=1

Xi − p ≥ t
)
≤ exp

{
−2n t2

}

Note: Upper bounds useful only when t & 1/
√
n



Other Examples of Hoeffding’s Inequality

Ex: Let X1, . . . , Xn ∈ X be iid with distribution P and let A ⊆ X . For t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P (A)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
−2nt2

}

Ex: Let X1, . . . , Xn iid ∼ U(−θ, θ). Note that EX = 0. For t ≥ 0,

P

(
n∑
i=1

Xi ≥ t
)
≤ exp

{
−t2

2nθ2

}



Bennett and Bernstein Inequalities



Bennett and Bernstein Inequalities

MGF bound: If EX = 0, Var(X) = σ2, and |X| ≤ c then

MX(s) ≤ exp{c−2σ2(esc − 1− sc)}

Bennett’s Inequality: If X1, . . . , Xn are independent with EX = 0, Var(Xi) = σ2
i ,

and |Xi| ≤ c, then for every t ≥ 0,

P(Sn ≥ t) ≤ exp

{
−nσ2

c2
· h
(

ct

nσ2

)}

where σ2 = n−1
∑n
i=1 σ

2
i and h(u) = (1 + u) log(1 + u)− u.

Bernstein’s Inequality: Under the same conditions, for every t ≥ 0,

P(Sn ≥ t) ≤ exp

{
−t2

2nσ2 + 2ct/3

}



Bernstein vs. Hoeffding

Let X1, . . . , Xn be independent with EX = 0 and |Xi| ≤ c. If t ≥ n−1
∑n
i=1 Var(Xi)

then Bernstein’s inequality yields

P

(
1

n

n∑
i=1

Xi ≥ t
)
≤ exp

{
−nt

2 + 2c/3

}

while Hoeffding’s inequality yields

P

(
1

n

n∑
i=1

Xi ≥ t
)
≤ exp

{
−nt2

2c2

}

Note: If X1, . . . , Xn are Bern(p) with p ≥ 1/2, Bernstein’s inequality shows for t ≥ 0

P

(
1

n

n∑
i=1

Xi − p ≥ t
)
≤ exp

{
−3nt2

8p(1− p)

}

which is (up to constants) what one expects from the CLT



Bounds on Expectations

Idea: Bounds on tail probabilities yield bounds on expectations

Fact: Let X be a random variable, a ≥ 1, and b > 0

1. If P(|X| ≥ t) ≤ a e−bt for t ≥ 0 then E|X| ≤ (1 + log a)/b

2. If P(|X| ≥ t) ≤ a e−bt2 for t ≥ 0 then E|X| ≤
√

(1 + log a)/b



General Concentration Inequalities

Hoeffding, Bennett, and Bernstein inequalities show that a sum
∑n
i=1Xi of bounded,

independent random variables is close to its mean

Goal: Inequalities for functions f(X1, . . . , Xn) of independent random variables

I Chernoff inequality and upper bounds on the MGF of f(X1, . . . , Xn)

I Martingale differences and Gaussian smart-path argument

I Key assumption: the value of f(x1, . . . , xn) does not change too much if we make
a small changes to any single argument xi



Azuma-Hoeffding Inequality



Martingale Differences

Setting: Random variables X1, . . . , Xn defined on a common probability space
(Ω,F ,P) and nested sigma fields {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ F

Definition: X1, . . . , Xn is a martingale difference with respect to F0, . . . ,Fn if

1. Xi is measurable Fi

2. E|Xi| <∞

3. E(Xi |Fi−1) = 0

In many cases Fi is the sigma field σ(Xi
1) generated by X1, . . . , Xi



Martingale Differences

Fact: If X1, . . . , Xn is a martingale difference with respect to F0, . . . ,Fn then

1. EXi = 0 for i = 1, . . . , n

2. E(XiXj) = 0 if i 6= j

3. Var(
∑n
i=1Xi) =

∑n
i=1 Var(Xi)

Fact: Let X be a random variable and G ⊆ F a sigma field such that

1. E(X |G) = 0

2. There exists G-measurable U and c ≥ 0 such that U ≤ X ≤ U + c wp1

Then E(exp(sX) |G) ≤ exp(s2c2/8)



Azuma-Hoeffding Inequality

Fact: Let X1, . . . , Xn be a martingale difference with respect to F0, . . . ,Fn. Suppose
that for each 1 ≤ i ≤ n there is a rv Ui−1 measurable Fi−1 and ci−1 ≥ 0 such that

Ui−1 ≤ Xi ≤ Ui−1 + ci−1

with probability one. Then for each t > 0

P

(
n∑
i=1

Xi ≥ t
)
≤ exp

{
−2t2∑n
i=1 c

2
i

}

Note: The same upper bound holds for P
(∑n

i=1Xi ≤ −t
)



Bounded Difference Inequality



Bounded Difference Inequality

Setting: Let X be a set, possibly finite

I Function f : Xn → R

I X1, . . . , Xn ∈ X independent, not necessarily identically distributed

Of interest: bounds on the probability that the random variable

Z = f(X1, . . . , Xn)

is far from its mean EZ



Bounded Difference Inequality

Definition: The ith difference coefficient ci of f is the maximum possible change in the
value of f if we change the value of the ith coordinate,

ci = sup |f(xn1 )− f(xi−1
1 , x′i, x

n
i+1)|

where the supremum is over all sequences x1, . . . , xi, x′i, xi+1, . . . , xn ∈ X

Theorem (McDiarmid): If X1, . . . , Xn ∈ X are independent, then for every t ≥ 0

P (|f(Xn
1 )− Ef(Xn

1 )| ≥ t) ≤ 2 exp

{
−2t2∑n
i=1 c

2
i

}

Moreover Var(f(Xn
1 )) ≤

∑n
i=1 c

2
i /4



Examples

Bin Packing: Fix n ≥ 1. The bin-packing function f : [0, 1]n → N is defined by

fn(xn1 ) = min # size 1 bins needed to hold objects of size xn1

Uniform LLN: Let X1, . . . , Xn ∈ X be iid and let G be a family of functions
g : X → [−c, c]. Define f : Xn → R by

fn(xn1 ) = sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− Eg(X)

∣∣∣∣∣



Gaussian Concentration Inequality



Gaussian Concentration Inequality

Definition: A function F : Rn → R is Lipschitz continuous with Lipschitz constant L if
for every x, y ∈ Rn

|F (x)− F (y)| ≤ L ||x− y||

Theorem: Let X1, . . . , Xn be iid ∼ N (0, 1). If F : Rn → R is Lipschitz continuous with
constant L then for every t > 0

P (F (Xn
1 )− EF (Xn

1 ) ≥ t) ≤ exp

{
−t2

2L2

}

The same bound holds for P
(
F (Xn

1 )− EF (Xn
1 ) ≤ −t

)



Examples

Ex: maximum of multinormal: Let Y ∼ Nd(0,Σ). Find concentration inequality for

U = max(Y1, . . . , Yd)

Ex: `p-norm of multinormal: Let Y ∼ Nd(0,Σ). Find concentration inequality for

U = ||Y ||`p =

(
d∑
i=1

|Yi|p
)1/p



Association Inequalities for Expectations

Definition: A function f : R→ R is

I non-decreasing if x ≤ y implies f(x) ≤ f(y)

I non-increasing if x ≤ y implies f(x) ≥ f(y)

Theorem: Let X be a random variable and let f, g : R→ R. Assuming all expectations
are well-defined,

(a) f, g non-decreasing implies E(f(X) g(X)) ≥ Ef(X)Eg(X)

(b) f, g non-increasing implies E(f(X) g(X)) ≥ Ef(X)Eg(X)

(c) f non-decreasing and g non-increasing implies E(f(X) g(X)) ≤ Ef(X)Eg(X)



Association Inequality Examples

1. E(X4) ≥ E(X)E(X3)

2. E(Xe−X) ≤ E(X)E(e−X).

3. E[X I(X ≥ a)] ≥ E(X)P(X ≥ a)


