Some Basic Concentration Inequalities

Andrew Nobel

March, 2023

Concentration Inequalities

Recall: For a random variable X

- $\mathbb{E} X$ tells us about the center of its distribution
- $\operatorname{Var}(X)$ tells us about the spread of its distribution

Concentration Inequalities: Bounds on the probability that a random variable is far from its expectation

$$
\mathbb{P}(X \geq \mathbb{E} X+t) \quad \mathbb{P}(X \leq \mathbb{E} X-t) \quad \mathbb{P}(|X-\mathbb{E} X| \geq t)
$$

- Often $X=U_{1}+\cdots+U_{n}$ sum of independent random variables
- More generally, $X=$ function of independent random variables
- Many applications in statistics, machine learning, probability

Markov and Chebyshev

Markov's and Chebyshev's Inequalities

Markov's inequality: If $X \geq 0$ and $t>0$ then

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E} X}{t}
$$

Chebyshev's Inequality: If $\mathbb{E} X^{2}<\infty$ then for each $t>0$

$$
\mathbb{P}(|X-\mathbb{E} X| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

- Upper bound may be larger than 1 (not useful)
- Upper bound is less than 1 if $t>\operatorname{SD}(X)$

Extending Chebyshev

Applying same proof idea we can show that for each $t>0$,

$$
\mathbb{P}(|X-\mathbb{E} X| \geq t) \leq \min _{s>0} \frac{\mathbb{E}|X-\mathbb{E} X|^{s}}{t^{s}}
$$

Upshot: smaller central moments yield better upper bounds

Application: Weak Law of Large Numbers

WLLN: Let U_{1}, U_{2}, \ldots, U be iid with $\operatorname{Var}(U)$ finite. Then for each $t>0$,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} U_{i}-\mathbb{E}(U)\right| \geq t\right) \rightarrow 0
$$

Proof: Apply Chebyshev's inequality to $X=n^{-1} \sum_{i=1}^{n} U_{i}$

Order of Magnitude

Note: If X_{1}, X_{2}, \ldots are iid with $\mathbb{E} X_{i}=\mu$ and $0<\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$ then by CLT

$$
\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sigma \sqrt{n}} \approx \mathcal{N}(0,1)
$$

Corollaries

1. The centered sum $\sum_{i=1}^{n} X_{i}-n \mu$ is of order $\sigma \sqrt{n}$
2. The centered average $n^{-1} \sum_{i=1}^{n} X_{i}-\mu$ is of order σ / \sqrt{n}

Upshot: Probability $\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-n \mu \geq t\right)$ can be small only if $t \gtrsim \sigma \sqrt{n}$

MGFs and Chernoff Bound

Moment Generating Functions

Recall: The moment generating function (MGF) of a rv X is defined by

$$
M_{X}(s)=\mathbb{E}\left[e^{s X}\right] \quad \text { for } s \in \mathbb{R}
$$

Note that $M_{X}(s) \geq 0$, and that $M_{X}(s)$ may be $+\infty$.

Fact: if X_{1}, \ldots, X_{n} are independent and MGFs $M_{X_{i}}(s)$ are finite in a neighborhood of 0 then $S_{n}=X_{1}+\cdots+X_{n}$ has MGF

$$
M_{S_{n}}(s)=\prod_{i=1}^{n} M_{X_{i}}(s)
$$

MGFs are a useful tool in the study of sums of independent random variables

MGF Examples

1. Normal: If $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then $M_{X}(s)=e^{s^{2} \sigma^{2} / 2}$
2. Poisson: If $X \sim \operatorname{Poiss}(\lambda)$ then $M_{X}(s)=e^{\lambda\left(e^{s}-1\right)}$
3. Chi-squared: If $X \sim \chi_{k}^{2}$ then $M_{X}(s)=(1-2 s)^{-k / 2}$ for $s<1 / 2$
4. Sign: If $X=1,-1$ with probability $1 / 2$ then $M_{X}(s)=\left(e^{s}+e^{-s}\right) / 2$

Chernoff's Bound

Chernoff Bound: For any random variable X and $t \in \mathbb{R}$

$$
\mathbb{P}(X \geq t) \leq \min _{s>0} e^{-s t} \mathbb{E} e^{s X}=\min _{s>0} e^{-s t} M_{X}(s)
$$

Corollary: If MGF of $(X-\mathbb{E} X)$ is bounded by $M(s)$ for $s \geq 0$, then for $t>0$

$$
\mathbb{P}(X \geq \mathbb{E} X+t) \leq \inf _{s>0} e^{-s t} M(s)
$$

- Inequalities for left tail $\mathbb{P}(X \leq \mathbb{E} X-t)$ established in same way
- Bound on $\mathbb{P}(|X-\mathbb{E} X| \geq t)$ can be obtained by adding L/R tail bounds

Bound for Chi-squared Distribution

Fact: Let $X \sim \chi_{k}^{2}$. Then

1. $X \stackrel{d}{=} \sum_{i=1}^{k} Z_{i}^{2}$ where Z_{i} are iid $\sim \mathcal{N}(0,1)$
2. $\mathbb{E} X=k$ and $\operatorname{Var}(X)=2 k$
3. $M_{X}(s)=(1-2 s)^{-k / 2}$ for $s<1 / 2$

Fact: For $x \geq 0,1+x \leq \exp \left\{x-\left(x^{2}-x^{3}\right) / 2\right\}$

Proposition: If $X \sim \chi_{k}^{2}$ then for $0 \leq \epsilon \leq 1$

1. $\mathbb{P}(X \geq(1+\epsilon) k) \leq \exp \left\{-k\left(\epsilon^{2}-\epsilon^{3}\right) / 4\right\}$
2. $\mathbb{P}(X \leq(1-\epsilon) k) \leq \exp \left\{-k\left(\epsilon^{2}-\epsilon^{3}\right) / 4\right\}$

Application: Low Dimensional Euclidean Embeddings

Basic Embedding Problem

Question: Can we embed given vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ in a lower dimensional space while preserving their pairwise distances?

Definition: Let $\epsilon \in(0,1)$. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is an ϵ-embedding of x_{1}, \ldots, x_{n} if for all $1 \leq i, j \leq n$

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

Upshot

- Establish existence of linear embeddings using probabilistic arguments
- Existence requires $k \gtrsim \log n / \epsilon^{2}$, independent of dimension d

Random Projections via Gaussian Random Matrices

GRM: Let W be a $k \times d$ matrix with iid $\mathcal{N}(0,1)$ entries

Fact: Fix $u \in \mathbb{R}^{d}$ and define the random vector $V=\left(V_{1}, \ldots, V_{k}\right)^{t}=k^{-1 / 2} W u$

1. V_{1}, \ldots, V_{k} are iid $\mathcal{N}\left(0,\|u\|^{2} / k\right)$
2. If $k \geq 8\left(\epsilon^{2}-\epsilon^{3}\right)^{-1} \log n$ then

$$
\mathbb{P}\left(\|V\|^{2} \leq(1-\epsilon)\|u\|^{2}\right) \leq \frac{1}{n^{2}} \quad \text { and } \quad \mathbb{P}\left(\|V\|^{2} \geq(1+\epsilon)\|u\|^{2}\right) \leq \frac{1}{n^{2}}
$$

Johnson-Lindenstrauss Lemma

Recall: Function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is an ϵ-embedding of $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ if for $1 \leq i, j \leq n$

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

Theorem: Let W be a $k \times d$ matrix with iid $\mathcal{N}(0,1)$ entries. Define $f_{W}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ by

$$
f_{W}(x)=k^{-1 / 2} W x
$$

If $k \geq 8\left(\epsilon^{2}-\epsilon^{3}\right)^{-1} \log n$ then for each fixed sequence $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$

$$
\mathbb{P}\left(f_{W} \text { is an } \epsilon \text {-embedding of } x_{1}, \ldots, x_{n}\right) \geq 1 / n
$$

Upshot: An ϵ-embedding of x_{1}, \ldots, x_{n} exists. In practice, we can generate GRMs W until we find one that works

Hoeffding's Inequality

Hoeffding's MGF Bound and Hoeffding's Inequality

MGF bound: If $X \in[a, b]$ then for every $s \geq 0$

$$
\mathbb{E} e^{s(X-\mathbb{E} X)} \leq e^{s^{2}(b-a)^{2} / 8}
$$

Hoeffding's Inequality: Let X_{1}, \ldots, X_{n} be independent with $a_{i} \leq X_{i} \leq b_{i}$ and let $S_{n}=X_{1}+\cdots+X_{n}$. For every $t \geq 0$,

$$
\mathbb{P}\left(S_{n}-\mathbb{E} S_{n} \geq t\right) \leq \exp \left\{\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right\}
$$

Also $\mathbb{P}\left(S_{n}-\mathbb{E} S_{n} \leq-t\right) \leq$ RHS and $\mathbb{P}\left(\left|S_{n}-\mathbb{E} S_{n}\right| \geq t\right) \leq 2$ RHS

Note: Hoeffding bound does not use information about the variance of the $X_{i} \mathrm{~s}$

Example: Bernoulli Random Variables

Let X_{1}, \ldots, X_{n} be iid $\operatorname{Bern}(p)$. Note that $\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)=n p$

Chebyshev: Uses $\operatorname{Var}\left(X_{i}\right)=p(1-p)$. For each $t \geq 0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-n p \geq t\right) \leq \frac{n p(1-p)}{t^{2}} \leq \frac{n}{4 t^{2}}
$$

Hoeffding: Uses $0 \leq X_{i} \leq 1$. For each $t \geq 0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-n p \geq t\right) \leq \exp \left\{\frac{-2 t^{2}}{n}\right\}
$$

Note: Bounds meaningful only when $t \gtrsim \sqrt{n}$. Hoeffding bound independent of p !

Bernoulli Example, cont.

Compare bounds of Chebyshev and Hoeffding when $n=100$ and $p=1 / 2$

t	Chebyshev	Hoeffding
5	1	.607
10	.250	.135
12	.173	.0561
14	.128	.0198
16	.0977	.0060
20	.0625	.000335

Upshot: Once bounds kick in, Hoeffding is better

Bernoulli Example, cont.

Bounds for sums can be converted into bounds for averages, and vice versa

Chebyshev: For each $t \geq 0$

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-p \geq t\right) \leq \frac{p(1-p)}{n t^{2}} \leq \frac{1}{4 n t^{2}}
$$

Hoeffding: For each $t \geq 0$

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-p \geq t\right) \leq \exp \left\{-2 n t^{2}\right\}
$$

Note: Upper bounds useful only when $t \gtrsim 1 / \sqrt{n}$

Other Examples of Hoeffding's Inequality

Ex: Let $X_{1}, \ldots, X_{n} \in \mathcal{X}$ be iid with distribution P and let $A \subseteq \mathcal{X}$. For $t \geq 0$,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(X_{i} \in A\right)-P(A)\right| \geq t\right) \leq 2 \exp \left\{-2 n t^{2}\right\}
$$

Ex: Let X_{1}, \ldots, X_{n} iid $\sim \mathrm{U}(-\theta, \theta)$. Note that $\mathbb{E} X=0$. For $t \geq 0$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left\{\frac{-t^{2}}{2 n \theta^{2}}\right\}
$$

Bennett and Bernstein Inequalities

Bennett and Bernstein Inequalities

MGF bound: If $\mathbb{E} X=0, \operatorname{Var}(X)=\sigma^{2}$, and $|X| \leq c$ then

$$
M_{X}(s) \leq \exp \left\{c^{-2} \sigma^{2}\left(e^{s c}-1-s c\right)\right\}
$$

Bennett's Inequality: If X_{1}, \ldots, X_{n} are independent with $\mathbb{E} X=0, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$, and $\left|X_{i}\right| \leq c$, then for every $t \geq 0$,

$$
\mathbb{P}\left(S_{n} \geq t\right) \leq \exp \left\{\frac{-n \sigma^{2}}{c^{2}} \cdot h\left(\frac{c t}{n \sigma^{2}}\right)\right\}
$$

where $\sigma^{2}=n^{-1} \sum_{i=1}^{n} \sigma_{i}^{2}$ and $h(u)=(1+u) \log (1+u)-u$.

Bernstein's Inequality: Under the same conditions, for every $t \geq 0$,

$$
\mathbb{P}\left(S_{n} \geq t\right) \leq \exp \left\{\frac{-t^{2}}{2 n \sigma^{2}+2 c t / 3}\right\}
$$

Bernstein vs. Hoeffding

Let X_{1}, \ldots, X_{n} be independent with $\mathbb{E} X=0$ and $\left|X_{i}\right| \leq c$. If $t \geq n^{-1} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$ then Bernstein's inequality yields

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left\{\frac{-n t}{2+2 c / 3}\right\}
$$

while Hoeffding's inequality yields

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left\{\frac{-n t^{2}}{2 c^{2}}\right\}
$$

Note: If X_{1}, \ldots, X_{n} are $\operatorname{Bern}(p)$ with $p \geq 1 / 2$, Bernstein's inequality shows for $t \geq 0$

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-p \geq t\right) \leq \exp \left\{\frac{-3 n t^{2}}{8 p(1-p)}\right\}
$$

which is (up to constants) what one expects from the CLT

Bounds on Expectations

Idea: Bounds on tail probabilities yield bounds on expectations

Fact: Let X be a random variable, $a \geq 1$, and $b>0$

1. If $\mathbb{P}(|X| \geq t) \leq a e^{-b t}$ for $t \geq 0$ then $\mathbb{E}|X| \leq(1+\log a) / b$
2. If $\mathbb{P}(|X| \geq t) \leq a e^{-b t^{2}}$ for $t \geq 0$ then $\mathbb{E}|X| \leq \sqrt{(1+\log a) / b}$

General Concentration Inequalities

Hoeffding, Bennett, and Bernstein inequalities show that a sum $\sum_{i=1}^{n} X_{i}$ of bounded, independent random variables is close to its mean

Goal: Inequalities for functions $f\left(X_{1}, \ldots, X_{n}\right)$ of independent random variables

- Chernoff inequality and upper bounds on the MGF of $f\left(X_{1}, \ldots, X_{n}\right)$
- Martingale differences and Gaussian smart-path argument
- Key assumption: the value of $f\left(x_{1}, \ldots, x_{n}\right)$ does not change too much if we make a small changes to any single argument x_{i}

Azuma-Hoeffding Inequality

Martingale Differences

Setting: Random variables X_{1}, \ldots, X_{n} defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and nested sigma fields $\{\emptyset, \Omega\}=\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{n} \subseteq \mathcal{F}$

Definition: X_{1}, \ldots, X_{n} is a martingale difference with respect to $\mathcal{F}_{0}, \ldots, \mathcal{F}_{n}$ if

1. X_{i} is measurable \mathcal{F}_{i}
2. $\mathbb{E}\left|X_{i}\right|<\infty$
3. $\mathbb{E}\left(X_{i} \mid \mathcal{F}_{i-1}\right)=0$

In many cases \mathcal{F}_{i} is the sigma field $\sigma\left(X_{1}^{i}\right)$ generated by X_{1}, \ldots, X_{i}

Martingale Differences

Fact: If X_{1}, \ldots, X_{n} is a martingale difference with respect to $\mathcal{F}_{0}, \ldots, \mathcal{F}_{n}$ then

1. $\mathbb{E} X_{i}=0$ for $i=1, \ldots, n$
2. $\mathbb{E}\left(X_{i} X_{j}\right)=0$ if $i \neq j$
3. $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$

Fact: Let X be a random variable and $\mathcal{G} \subseteq \mathcal{F}$ a sigma field such that

1. $\mathbb{E}(X \mid \mathcal{G})=0$
2. There exists \mathcal{G}-measurable U and $c \geq 0$ such that $U \leq X \leq U+c$ wp1

Then $\mathbb{E}(\exp (s X) \mid \mathcal{G}) \leq \exp \left(s^{2} c^{2} / 8\right)$

Azuma-Hoeffding Inequality

Fact: Let X_{1}, \ldots, X_{n} be a martingale difference with respect to $\mathcal{F}_{0}, \ldots, \mathcal{F}_{n}$. Suppose that for each $1 \leq i \leq n$ there is a $\operatorname{rv} U_{i-1}$ measurable \mathcal{F}_{i-1} and $c_{i-1} \geq 0$ such that

$$
U_{i-1} \leq X_{i} \leq U_{i-1}+c_{i-1}
$$

with probability one. Then for each $t>0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left\{\frac{-2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}
$$

Note: The same upper bound holds for $\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq-t\right)$

Bounded Difference Inequality

Bounded Difference Inequality

Setting: Let \mathcal{X} be a set, possibly finite

- Function $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$
- $X_{1}, \ldots, X_{n} \in \mathcal{X}$ independent, not necessarily identically distributed

Of interest: bounds on the probability that the random variable

$$
Z=f\left(X_{1}, \ldots, X_{n}\right)
$$

is far from its mean $\mathbb{E} Z$

Bounded Difference Inequality

Definition: The i th difference coefficient c_{i} of f is the maximum possible change in the value of f if we change the value of the i th coordinate,

$$
c_{i}=\sup \left|f\left(x_{1}^{n}\right)-f\left(x_{1}^{i-1}, x_{i}^{\prime}, x_{i+1}^{n}\right)\right|
$$

where the supremum is over all sequences $x_{1}, \ldots, x_{i}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n} \in \mathcal{X}$

Theorem (McDiarmid): If $X_{1}, \ldots, X_{n} \in \mathcal{X}$ are independent, then for every $t \geq 0$

$$
\mathbb{P}\left(\left|f\left(X_{1}^{n}\right)-\mathbb{E} f\left(X_{1}^{n}\right)\right| \geq t\right) \leq 2 \exp \left\{\frac{-2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}
$$

Moreover $\operatorname{Var}\left(f\left(X_{1}^{n}\right)\right) \leq \sum_{i=1}^{n} c_{i}^{2} / 4$

Examples

Bin Packing: Fix $n \geq 1$. The bin-packing function $f:[0,1]^{n} \rightarrow \mathbb{N}$ is defined by

$$
f_{n}\left(x_{1}^{n}\right)=\min \# \text { size } 1 \text { bins needed to hold objects of size } x_{1}^{n}
$$

Uniform LLN: Let $X_{1}, \ldots, X_{n} \in \mathcal{X}$ be iid and let \mathcal{G} be a family of functions $g: \mathcal{X} \rightarrow[-c, c]$. Define $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ by

$$
f_{n}\left(x_{1}^{n}\right)=\sup _{g \in \mathcal{G}}\left|\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right)-\mathbb{E} g(X)\right|
$$

Gaussian Concentration Inequality

Gaussian Concentration Inequality

Definition: A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lipschitz continuous with Lipschitz constant L if for every $x, y \in \mathbb{R}^{n}$

$$
|F(x)-F(y)| \leq L\|x-y\|
$$

Theorem: Let X_{1}, \ldots, X_{n} be iid $\sim \mathcal{N}(0,1)$. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lipschitz continuous with constant L then for every $t>0$

$$
\mathbb{P}\left(F\left(X_{1}^{n}\right)-\mathbb{E} F\left(X_{1}^{n}\right) \geq t\right) \leq \exp \left\{\frac{-t^{2}}{2 L^{2}}\right\}
$$

The same bound holds for $\mathbb{P}\left(F\left(X_{1}^{n}\right)-\mathbb{E} F\left(X_{1}^{n}\right) \leq-t\right)$

Examples

Ex: maximum of multinormal: Let $Y \sim \mathcal{N}_{d}(0, \Sigma)$. Find concentration inequality for

$$
U=\max \left(Y_{1}, \ldots, Y_{d}\right)
$$

Ex: ℓ_{p}-norm of multinormal: Let $Y \sim \mathcal{N}_{d}(0, \Sigma)$. Find concentration inequality for

$$
U=\|Y\|_{\ell_{p}}=\left(\sum_{i=1}^{d}\left|Y_{i}\right|^{p}\right)^{1 / p}
$$

Association Inequalities for Expectations

Definition: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is

- non-decreasing if $x \leq y$ implies $f(x) \leq f(y)$
- non-increasing if $x \leq y$ implies $f(x) \geq f(y)$

Theorem: Let X be a random variable and let $f, g: \mathbb{R} \rightarrow \mathbb{R}$. Assuming all expectations are well-defined,
(a) f, g non-decreasing implies $\mathbb{E}(f(X) g(X)) \geq \mathbb{E} f(X) \mathbb{E} g(X)$
(b) f, g non-increasing implies $\mathbb{E}(f(X) g(X)) \geq \mathbb{E} f(X) \mathbb{E} g(X)$
(c) f non-decreasing and g non-increasing implies $\mathbb{E}(f(X) g(X)) \leq \mathbb{E} f(X) \mathbb{E} g(X)$

Association Inequality Examples

1. $\mathbb{E}\left(X^{4}\right) \geq \mathbb{E}(X) \mathbb{E}\left(X^{3}\right)$
2. $\mathbb{E}\left(X e^{-X}\right) \leq \mathbb{E}(X) \mathbb{E}\left(e^{-X}\right)$.
3. $\mathbb{E}[X \mathbb{I}(X \geq a)] \geq \mathbb{E}(X) \mathbb{P}(X \geq a)$
