Gaussian Extreme Values

Andrew Nobel

March, 2023

Expected Maxima

MGF Bound on Expected Maxima

Task: Given rv $X_1, \ldots, X_n \in \mathbb{R}$ find a bound on $\mathbb{E} \max(X_1, \ldots, X_n)$

Gaussian Case: If $X_1, \ldots, X_n \sim \mathcal{N}(0, \sigma^2)$ then

 $\mathbb{E}\max(X_1,\ldots,X_n) \le \sigma\sqrt{2\log n}$

General case: If X_1, \ldots, X_n satisfy $M_{X_i}(s) \leq M(s)$ for each *i* and all $s \geq 0$ then

$$\mathbb{E}\max(X_1,\ldots,X_n) \leq \inf_{\substack{s:M(s)\geq 1}} \frac{\log n + \log M(s)}{s}$$

Note: In both results the random variables X_i need not be independent

Essential Supremum

Definition: The essential supremum of a random variable $X \sim F$ is given by

$$||X||_{\infty} = \inf\{u : \mathbb{P}(X \le u) = 1\} = \inf\{u : F(u) = 1\}$$

▶ $||X||_{\infty} < \infty$ if and only if X is bounded above wp1

• By definition, $\mathbb{P}(X \leq ||X||_{\infty} - \epsilon) < 1$ for all $\epsilon > 0$

• By right continuity of
$$F$$
, $\mathbb{P}(X \le ||X||_{\infty}) = 1$

Fact: If X_1, X_2, \ldots are iid then $\max(X_1, \ldots, X_n) \rightarrow ||X||_{\infty}$ as *n* tends to infinity

More Refined Analysis: Extreme Value Theory

Setting: Let $X_1, X_2, \ldots \in \mathbb{R}$ be iid with CDF *F*. Interested in the limiting behavior of the maximum $M_n = \max(X_1, \ldots, X_n)$

Question: Are there scaling and centering constants $\{a_n\}$ and $\{b_n\}$ such that

$$\tilde{M}_n = a_n(M_n - b_n)$$
 has limiting CDF G? (*)

Extreme Value Theorem: If (*) holds then $G(x) = G_0(ax + b)$ where a, b are constants and one of the following is true

(1)
$$G_0(x) = \exp(-e^{-x})$$

(2) $G_0(x) = \exp(-x^{-\alpha}) \mathbb{I}(x > 0)$ for some $\alpha > 0$

(3)
$$G_0(x) = \exp(-(-x)^{\alpha}) \mathbb{I}(x \le 0) + \mathbb{I}(x > 0)$$
 for some $\alpha > 0$

Fact: Let $X_1, X_2, \ldots \in \mathbb{R}$ be iid with CDF *F*. Let $M_n = \max(X_1, \ldots, X_n)$ and $\tau \ge 0$. For any sequence $u_1, u_2, \ldots \in \mathbb{R}$ the following are equivalent

(1)
$$n(1-F(u_n)) \rightarrow \tau$$

(2)
$$\mathbb{P}(M_n \leq u_n) \rightarrow e^{-\tau}$$

Gaussian Tail Bound

Fact: Let $Z \sim \mathcal{N}(0, 1)$ with density $\phi(x)$. For each x > 0 we have

$$\left(\frac{1}{x} - \frac{1}{x^3}\right) \, \phi(x) \; \leq \; \mathbb{P}(Z \geq x) \; \leq \; \frac{\phi(x)}{x}$$

• $\mathbb{P}(Z \ge x) = 1 - \Phi(x)$ where Φ is the CDF of Z

- Upper bound is less than $x^{-1}e^{-x^2/2} \le e^{-x^2/2}$ when $x \ge 1$
- ► Result shows that $(1 \Phi(x)) = \frac{\phi(x)}{x}(1 + O(x^{-2}))$ as $x \to \infty$

For example $.0202 \le \mathbb{P}(Z \ge 2) \le .0269$ and $.0016 \le \mathbb{P}(Z \ge 3) \le .0022$

Maxima of Gaussian Random Variables

Basic question: Given Z_1, Z_2, \ldots iid $\sim \mathcal{N}(0, 1)$, interested in the limiting behavior of

 $M_n := \max(Z_1, \ldots, Z_n)$

Note: MGF bound shows that $\mathbb{E}M_n \leq \sqrt{2\log n}$.

First Results on Gaussian Extremes

Fact: Let $\Phi^{-1}(s)$ be the inverse CDF (percentile function) for $Z \sim \mathcal{N}(0, 1)$. Then

$$\frac{\Phi^{-1}(1-t^{-1})}{\sqrt{2\log t}} \to 1 \text{ as } t \to \infty$$

Example: Let $z(\alpha) = \Phi^{-1}(1-\alpha)$ be the upper α percentile of $\mathcal{N}(0,1)$. Fact shows that $z(\alpha)$ grows like $\sqrt{2\log(1/\alpha)}$ as $\alpha \to 0$.

Fact: If Z_1, Z_2, \ldots be iid $\sim \mathcal{N}(0, 1)$ then

$$\frac{\mathbb{E}\max(|Z_1|,\ldots,|Z_n|)}{\sqrt{2\log n}} \to 1 \text{ as } n \to \infty$$

Gaussian Extreme Value Theorem

Define *scaling* constants $\{a_n\}$ and *centering* constants $\{b_n\}$ as follows

$$a_n = \sqrt{2\log n}$$
 $b_n = \sqrt{2\log n} - \frac{\log(4\pi\log n)}{\sqrt{8\log n}}$

Theorem: If Z_1, Z_2, \ldots iid $\sim \mathcal{N}(0, 1)$ and $M_n = \max(Z_1, \ldots, Z_n)$ then for $x \in \mathbb{R}$,

$$\mathbb{P}(a_n(M_n - b_n) \le x) \to \exp\{-e^{-x}\}\$$

Note: Limiting CDF in theorem is that of $-\log U$ with $U \sim \text{Exp}(1)$

Gaussian Extreme Value Theorem, cont.

First Corollaries

- 1. $M_n = b_n + O_p(1/\sqrt{\log n})$
- **2**. $\mathbb{P}(M_n \ge \sqrt{2\log n}) \to 0$