Gaussian Extreme Values

Andrew Nobel

March, 2023

Expected Maxima

MGF Bound on Expected Maxima

Task: Given rv $X_{1}, \ldots, X_{n} \in \mathbb{R}$ find a bound on $\mathbb{E} \max \left(X_{1}, \ldots, X_{n}\right)$

Gaussian Case: If $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then

$$
\mathbb{E} \max \left(X_{1}, \ldots, X_{n}\right) \leq \sigma \sqrt{2 \log n}
$$

General case: If X_{1}, \ldots, X_{n} satisfy $M_{X_{i}}(s) \leq M(s)$ for each i and all $s \geq 0$ then

$$
\mathbb{E} \max \left(X_{1}, \ldots, X_{n}\right) \leq \inf _{s: M(s) \geq 1} \frac{\log n+\log M(s)}{s}
$$

Note: In both results the random variables X_{i} need not be independent

Essential Supremum

Definition: The essential supremum of a random variable $X \sim F$ is given by

$$
\|X\|_{\infty}=\inf \{u: \mathbb{P}(X \leq u)=1\}=\inf \{u: F(u)=1\}
$$

- $\|X\|_{\infty}<\infty$ if and only if X is bounded above wp1
- By definition, $\mathbb{P}\left(X \leq\|X\|_{\infty}-\epsilon\right)<1$ for all $\epsilon>0$
- By right continuity of $F, \mathbb{P}\left(X \leq\|X\|_{\infty}\right)=1$

Fact: If X_{1}, X_{2}, \ldots are iid then $\max \left(X_{1}, \ldots, X_{n}\right) \rightarrow\|X\|_{\infty}$ as n tends to infinity

More Refined Analysis: Extreme Value Theory

Setting: Let $X_{1}, X_{2}, \ldots \in \mathbb{R}$ be iid with CDF F. Interested in the limiting behavior of the maximum $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$

Question: Are there scaling and centering constants $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that

$$
\tilde{M}_{n}=a_{n}\left(M_{n}-b_{n}\right) \text { has limiting CDF } G \text { ? }
$$

Extreme Value Theorem: If (\star) holds then $G(x)=G_{0}(a x+b)$ where a, b are constants and one of the following is true
(1) $G_{0}(x)=\exp \left(-e^{-x}\right)$
(2) $G_{0}(x)=\exp \left(-x^{-\alpha}\right) \mathbb{I}(x>0)$ for some $\alpha>0$
(3) $G_{0}(x)=\exp \left(-(-x)^{\alpha}\right) \mathbb{I}(x \leq 0)+\mathbb{I}(x>0)$ for some $\alpha>0$

Preliminary Result

Fact: Let $X_{1}, X_{2}, \ldots \in \mathbb{R}$ be iid with CDF F. Let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$ and $\tau \geq 0$. For any sequence $u_{1}, u_{2}, \ldots \in \mathbb{R}$ the following are equivalent
(1) $n\left(1-F\left(u_{n}\right)\right) \rightarrow \tau$
(2) $\mathbb{P}\left(M_{n} \leq u_{n}\right) \rightarrow e^{-\tau}$

Gaussian Tail Bound

Fact: Let $Z \sim \mathcal{N}(0,1)$ with density $\phi(x)$. For each $x>0$ we have

$$
\left(\frac{1}{x}-\frac{1}{x^{3}}\right) \phi(x) \leq \mathbb{P}(Z \geq x) \leq \frac{\phi(x)}{x}
$$

- $\mathbb{P}(Z \geq x)=1-\Phi(x)$ where Φ is the CDF of Z
- Upper bound is less than $x^{-1} e^{-x^{2} / 2} \leq e^{-x^{2} / 2}$ when $x \geq 1$
- Result shows that $(1-\Phi(x))=\frac{\phi(x)}{x}\left(1+O\left(x^{-2}\right)\right)$ as $x \rightarrow \infty$
- For example $.0202 \leq \mathbb{P}(Z \geq 2) \leq .0269$ and $.0016 \leq \mathbb{P}(Z \geq 3) \leq .0022$

Maxima of Gaussian Random Variables

Basic question: Given Z_{1}, Z_{2}, \ldots iid $\sim \mathcal{N}(0,1)$, interested in the limiting behavior of

$$
M_{n}:=\max \left(Z_{1}, \ldots, Z_{n}\right)
$$

Note: MGF bound shows that $\mathbb{E} M_{n} \leq \sqrt{2 \log n}$.

First Results on Gaussian Extremes

Fact: Let $\Phi^{-1}(s)$ be the inverse CDF (percentile function) for $Z \sim \mathcal{N}(0,1)$. Then

$$
\frac{\Phi^{-1}\left(1-t^{-1}\right)}{\sqrt{2 \log t}} \rightarrow 1 \text { as } t \rightarrow \infty
$$

Example: Let $z(\alpha)=\Phi^{-1}(1-\alpha)$ be the upper α percentile of $\mathcal{N}(0,1)$. Fact shows that $z(\alpha)$ grows like $\sqrt{2 \log (1 / \alpha)}$ as $\alpha \rightarrow 0$.

Fact: If Z_{1}, Z_{2}, \ldots be iid $\sim \mathcal{N}(0,1)$ then

$$
\frac{\mathbb{E} \max \left(\left|Z_{1}\right|, \ldots,\left|Z_{n}\right|\right)}{\sqrt{2 \log n}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

Gaussian Extreme Value Theorem

Define scaling constants $\left\{a_{n}\right\}$ and centering constants $\left\{b_{n}\right\}$ as follows

$$
a_{n}=\sqrt{2 \log n} \quad b_{n}=\sqrt{2 \log n}-\frac{\log (4 \pi \log n)}{\sqrt{8 \log n}}
$$

Theorem: If Z_{1}, Z_{2}, \ldots iid $\sim \mathcal{N}(0,1)$ and $M_{n}=\max \left(Z_{1}, \ldots, Z_{n}\right)$ then for $x \in \mathbb{R}$,

$$
\mathbb{P}\left(a_{n}\left(M_{n}-b_{n}\right) \leq x\right) \rightarrow \exp \left\{-e^{-x}\right\}
$$

Note: Limiting CDF in theorem is that of $-\log U$ with $U \sim \operatorname{Exp}(1)$

Gaussian Extreme Value Theorem, cont.

First Corollaries

1. $M_{n}=b_{n}+O_{p}(1 / \sqrt{\log n})$
2. $\mathbb{P}\left(M_{n} \geq \sqrt{2 \log n}\right) \rightarrow 0$
