Gaussian Mean Width and Effective Dimension

Andrew Nobel

April, 2023

Multivariate Normal and Uniform Distribution on the Sphere

Fact: Let $Z \sim \mathcal{N}_n(0, I)$, and let $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the unit *n*-sphere

- 1. $Z / ||Z|| \sim \text{Unif}(S^{n-1})$
- 2. Z / ||Z|| is independent of ||Z||
- 3. $\mathbb{E}||Z|| \leq \sqrt{n}$
- 4. $\mathbb{E}||Z||/\sqrt{n} \rightarrow 1$ as n tends to infinity
- 5. $\mathbb{P}(|||Z|| \mathbb{E}||Z||| > t) \le 2e^{-t^2/2}$

Rule of thumb: If $Z \sim \mathcal{N}_n(0, I)$ then $Z \approx \sqrt{n} \operatorname{Unif}(S^{n-1})$

Gaussian Mean Width

Width of a Set

Note: Each unit vector $\eta \in \mathbb{R}^n$ determines a direction, and a family of parallel hyperplanes that are each perpendicular to η

$$H = H(\eta, a) = \{x : \langle x, \eta \rangle = a\} \quad a \in \mathbb{R}$$

Definition: Let $K \subseteq \mathbb{R}^n$ be a bounded set. The width of K in direction η , denoted $w(K; \eta)$, is the minimum w for which there exist $a \leq b$ such that

- 1. *K* lies between $H(\eta, a)$ and $H(\eta, b)$
- 2. the difference $b a \leq w$

Note: Best choice of constants a, b is

$$a = \inf_{u \in K} \langle \eta, u \rangle$$
 and $b = \sup_{v \in K} \langle \eta, v \rangle$

Gaussian Mean Width of a Set

Fact: Let $K - K = \{u - v : u, v \in K\}$. Width of set K in direction η is given by

$$w(K:\eta) = \sup_{x \in K-K} \langle \eta, x \rangle$$

Key idea: Study the size/dimensionality of *K* through its average width $\mathbb{E}w(K; \eta)$ when η is a randomly chosen direction.

Definition: The *Gaussian mean width* (GMW) of a bounded set $K \subseteq \mathbb{R}^n$ is given by

$$w(K) = \mathbb{E}w(K:V) = \mathbb{E}\left[\sup_{x \in K-K} \langle x, Z \rangle\right] \text{ where } Z \sim \mathcal{N}_n(0, I)$$

Aside: $w(K) \approx \sqrt{n} \mathbb{E}w(K:U)$ where $U \sim \text{Unif}(S^{n-1})$

Properties of Gaussian Mean Width

Fact: Let $K \subseteq \mathbb{R}^n$ be bounded. Recall diam $(K) = \sup\{||u - v|| : u, v \in K\}$

- 1. $w(K) \ge 0$
- $2. \ w(K) = 2 \mathbb{E} \sup_{x \in K} \langle x, Z \rangle$
- **3**. If $K \subseteq K'$ then $w(K) \leq w(K')$
- 4. For each $u \in \mathbb{R}^n$, w(K) = w(K+u)
- 5. If $A \in \mathbb{R}^{n \times n}$ is orthogonal, then w(K) = w(AK), where $AK = \{Ax : x \in K\}$
- 6. $w(K) = \mathbb{E}\left[\sup_{x \in K-K} |\langle x, Z \rangle|\right]$
- 7. $w(K) = w(\operatorname{cvx}(K))$
- 8. $\sqrt{2/\pi} \operatorname{diam}(K) \le w(K) \le \sqrt{n} \operatorname{diam}(K)$

Concentration of Gaussian Mean Width

Note: By Gaussian concentration, for each t > 0

$$\mathbb{P}\left(\left| w(K) - \sup_{x \in K-K} \langle x, Z \rangle \right| > t \right) \ \le \ 2 \ \exp\left\{ \frac{-t^2}{2 \operatorname{diam}(K)^2} \right\}$$

Cor: For each s > 0, with probability at least $1 - e^{-s^2/2}$,

ī.

$$\left| w(K) - \sup_{x \in K-K} \langle x, V \rangle \right| \leq s \operatorname{diam}(K)$$

1

Note: Replacing K by cvx(K) leaves mean width unchanged, makes calculation of $\sup_{K-K} \langle x, Z \rangle$ a convex optimization problem. Use this to estimate w(K).

Examples

1. $K = S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ unit sphere, $w(K) = 2\mathbb{E}||Z|| \le 2\sqrt{n}$

2.
$$K = B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$$
 unit ball, $w(K) = 2\mathbb{E}||Z|| \le 2\sqrt{n}$

3. If $K \subseteq B^n \cap E$ where E is subspace of dimension d then $w(K) \leq 2\sqrt{d}$

4. If $K \subseteq B^n$ is a finite set then $w(K) \leq \sqrt{8 \log |K|}$

Insight: Quantity $w(K)^2$ acts like an effective dimension of $K \subseteq B^n$

effective dimension of K is bounded by ambient dimension n

- small change in K has small effect on effective dimension
- effective dimension of K equals effective dimension of cvx(K)

Generalized ℓ_p norms on \mathbb{R}^n

Definition: Let $x \in \mathbb{R}^n$

1. For $1 \le p < \infty$ let $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$

2. For
$$p = \infty$$
 let $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

- 3. For $0 let <math>||x||_p = \sum_{i=1}^n |x_i|^p$
- 4. For p = 0 let $||x||_0 = \sum_{i=1}^n \mathbb{I}(x_i \neq 0)$, number of non-zero coordinates of x

Note

- For all p we have $||x||_p = 0$ iff x = 0
- For $0 , triangle inequality <math>||x + y||_p \le ||x||_p + ||y||_p$ holds

For
$$1 \le p \le \infty$$
 we have $||ax||_p = |a| ||x||_p$

▶ $|| \cdot ||_p$ is concave for $0 and convex for <math>1 \le p \le \infty$

Example: Sparse Signals

Sparsity: Fix $s \le n$ (usually $s \ll n$) and define the set

$$K = \{x \in \mathbb{R}^n : ||x||_2 \le 1 \text{ and } ||x||_0 \le s\} \subseteq B^n$$

of n vectors with length 1 and at most s non-zero components

Proposition: With K as defined above there are constants $c_1 \le c_2$ not depending on n or s such that

$$c_1\sqrt{s\log\frac{n}{s}} \le w(K) \le c_2\sqrt{s\log\frac{n}{s}}$$

Note: Effective dimension $w(K)^2 \approx s \log \frac{n}{s}$ is approximately linear in sparsity *s*, has only logarithmic dependence on ambient dimension *n*