Gaussian Mean Width and Effective Dimension

Andrew Nobel

April, 2023

Multivariate Normal and Uniform Distribution on the Sphere

Fact: Let $Z \sim \mathcal{N}_{n}(0, I)$, and let $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ be the unit n-sphere

1. $Z /\|Z\| \sim \operatorname{Unif}\left(S^{n-1}\right)$
2. $Z /\|Z\|$ is independent of $\|Z\|$
3. $\mathbb{E}\|Z\| \leq \sqrt{n}$
4. $\mathbb{E}\|Z\| / \sqrt{n} \rightarrow 1$ as n tends to infinity
5. $\mathbb{P}(|||Z||-\mathbb{E}\|Z\|| \mid>t) \leq 2 e^{-t^{2} / 2}$

Rule of thumb: If $Z \sim \mathcal{N}_{n}(0, I)$ then $Z \approx \sqrt{n} \operatorname{Unif}\left(S^{n-1}\right)$

Gaussian Mean Width

Width of a Set

Note: Each unit vector $\eta \in \mathbb{R}^{n}$ determines a direction, and a family of parallel hyperplanes that are each perpendicular to η

$$
H=H(\eta, a)=\{x:\langle x, \eta\rangle=a\} \quad a \in \mathbb{R}
$$

Definition: Let $K \subseteq \mathbb{R}^{n}$ be a bounded set. The width of K in direction η, denoted $w(K ; \eta)$, is the minimum w for which there exist $a \leq b$ such that

1. K lies between $H(\eta, a)$ and $H(\eta, b)$
2. the difference $b-a \leq w$

Note: Best choice of constants a, b is

$$
a=\inf _{u \in K}\langle\eta, u\rangle \quad \text { and } \quad b=\sup _{v \in K}\langle\eta, v\rangle
$$

Gaussian Mean Width of a Set

Fact: Let $K-K=\{u-v: u, v \in K\}$. Width of set K in direction η is given by

$$
w(K: \eta)=\sup _{x \in K-K}\langle\eta, x\rangle
$$

Key idea: Study the size/dimensionality of K through its average width $\mathbb{E} w(K ; \eta)$ when η is a randomly chosen direction.

Definition: The Gaussian mean width (GMW) of a bounded set $K \subseteq \mathbb{R}^{n}$ is given by

$$
w(K)=\mathbb{E} w(K: V)=\mathbb{E}\left[\sup _{x \in K-K}\langle x, Z\rangle\right] \quad \text { where } Z \sim \mathcal{N}_{n}(0, I)
$$

Aside: $w(K) \approx \sqrt{n} \mathbb{E} w(K: U)$ where $U \sim \operatorname{Unif}\left(S^{n-1}\right)$

Properties of Gaussian Mean Width

Fact: Let $K \subseteq \mathbb{R}^{n}$ be bounded. Recall $\operatorname{diam}(K)=\sup \{\|u-v\|: u, v \in K\}$

1. $w(K) \geq 0$
2. $w(K)=2 \mathbb{E} \sup _{x \in K}\langle x, Z\rangle$
3. If $K \subseteq K^{\prime}$ then $w(K) \leq w\left(K^{\prime}\right)$
4. For each $u \in \mathbb{R}^{n}, w(K)=w(K+u)$
5. If $A \in \mathbb{R}^{n \times n}$ is orthogonal, then $w(K)=w(A K)$, where $A K=\{A x: x \in K\}$
6. $w(K)=\mathbb{E}\left[\sup _{x \in K-K}|\langle x, Z\rangle|\right]$
7. $w(K)=w(\operatorname{cvx}(K))$
8. $\sqrt{2 / \pi} \operatorname{diam}(K) \leq w(K) \leq \sqrt{n} \operatorname{diam}(K)$

Concentration of Gaussian Mean Width

Note: By Gaussian concentration, for each $t>0$

$$
\mathbb{P}\left(\left|w(K)-\sup _{x \in K-K}\langle x, Z\rangle\right|>t\right) \leq 2 \exp \left\{\frac{-t^{2}}{2 \operatorname{diam}(K)^{2}}\right\}
$$

Cor: For each $s>0$, with probability at least $1-e^{-s^{2} / 2}$,

$$
\left|w(K)-\sup _{x \in K-K}\langle x, V\rangle\right| \leq s \operatorname{diam}(K)
$$

Note: Replacing K by $\operatorname{cvx}(K)$ leaves mean width unchanged, makes calculation of $\sup _{K-K}\langle x, Z\rangle$ a convex optimization problem. Use this to estimate $w(K)$.

Examples

1. $K=S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ unit sphere, $w(K)=2 \mathbb{E}\|Z\| \leq 2 \sqrt{n}$
2. $K=B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$ unit ball, $w(K)=2 \mathbb{E}\|Z\| \leq 2 \sqrt{n}$
3. If $K \subseteq B^{n} \cap E$ where E is subspace of dimension d then $w(K) \leq 2 \sqrt{d}$
4. If $K \subseteq B^{n}$ is a finite set then $w(K) \leq \sqrt{8 \log |K|}$

Interpretation of Gaussian Mean Width

Insight: Quantity $w(K)^{2}$ acts like an effective dimension of $K \subseteq B^{n}$

- effective dimension of K is bounded by ambient dimension n
- small change in K has small effect on effective dimension
- effective dimension of K equals effective dimension of $\operatorname{cvx}(K)$

Generalized ℓ_{p} norms on \mathbb{R}^{n}

Definition: Let $x \in \mathbb{R}^{n}$

1. For $1 \leq p<\infty$ let $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$
2. For $p=\infty$ let $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
3. For $0<p<1$ let $\|x\|_{p}=\sum_{i=1}^{n}\left|x_{i}\right|^{p}$
4. For $p=0$ let $\|x\|_{0}=\sum_{i=1}^{n} \mathbb{I}\left(x_{i} \neq 0\right)$, number of non-zero coordinates of x

Note

- For all p we have $\|x\|_{p}=0$ iff $x=0$
- For $0<p \leq \infty$, triangle inequality $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$ holds
- For $1 \leq p \leq \infty$ we have $\|a x\|_{p}=|a|\|x\|_{p}$
- $\|\cdot\|_{p}$ is concave for $0<p<1$ and convex for $1 \leq p \leq \infty$

Example: Sparse Signals

Sparsity: Fix $s \leq n$ (usually $s \ll n$) and define the set

$$
K=\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq 1 \text { and }\|x\|_{0} \leq s\right\} \subseteq B^{n}
$$

of n vectors with length 1 and at most s non-zero components

Proposition: With K as defined above there are constants $c_{1} \leq c_{2}$ not depending on n or s such that

$$
c_{1} \sqrt{s \log \frac{n}{s}} \leq w(K) \leq c_{2} \sqrt{s \log \frac{n}{s}}
$$

Note: Effective dimension $w(K)^{2} \approx s \log \frac{n}{s}$ is approximately linear in sparsity s, has only logarithmic dependence on ambient dimension n

