Theoretical Statistics, STOR 655 Asymptotic Normality of MLE

Andrew Nobel

February 2023

Fisher Information

Fisher Information

Setting: Family $\mathcal{P} = \{f(x|\theta) : \theta \in \Theta\}$ of densities on $(\mathcal{X}, \mathcal{A})$ with reference measure ν . Assume

(A) Parameter space $\Theta \subseteq \mathbb{R}^p$ is open

(B) Smoothness: $f(x|\theta)$ is 2x-continuously differentiable in θ for all $x \in \mathcal{X}$

(C) Integrability: For all $\theta \in \Theta$ and $1 \le j \le p$

$$\mathbb{E}_{\theta}\left[\left(\frac{\partial \log f(X|\theta)}{\partial \theta_j}\right)^2\right] < \infty$$

Fisher Information Matrix

Of interest: Derivatives of the log-likelihood. For $x \in \mathcal{X}$ and $\theta \in \Theta$ let

$$\psi(x,\theta) = \nabla_{\theta} \log f(x|\theta) = \left(\frac{\partial \log f(x|\theta)}{\partial \theta_1}, \dots, \frac{\partial \log f(x|\theta)}{\partial \theta_p}\right)^t \in \mathbb{R}^p$$

$$\dot{\psi}(x,\theta) = \nabla_{\theta}^2 \log f(x|\theta) = \left[\frac{\partial^2 \log f(x|\theta)}{\partial \theta_j \partial \theta_k} : 1 \le j, k \le p\right] \in \mathbb{R}^{p \times p}$$

Definition: The Fisher Information (FI) matrix of \mathcal{P} at θ is

$$I(\theta) = \mathbb{E}_{\theta} \left[\psi(X, \theta) \psi(X, \theta)^{t} \right]$$

Note that $I(\theta)$ is non-negative definite

Fisher Information Matrix

Regularity conditions: Exchange of differentiation and integration

R1:
$$\frac{\partial}{\partial \theta_j} \int f(x|\theta) d\nu(x) = \int \frac{\partial}{\partial \theta_j} f(x|\theta) d\nu(x)$$
 for $1 \le j \le p$

R2:
$$\frac{\partial^2}{\partial \theta_j \partial \theta_k} \int f(x|\theta) d\nu(x) = \int \frac{\partial^2}{\partial \theta_j \partial \theta_k} f(x|\theta) d\nu(x)$$
 for $1 \le j, k \le p$

Note that $\int f(x|\theta) d\nu(x) = 1$ so

• R1 implies
$$\int \frac{\partial}{\partial \theta_j} f(x|\theta) d\nu(x) = 0$$

► R2 implies
$$\int \frac{\partial^2}{\partial \theta_j \partial \theta_k} f(x|\theta) d\nu(x) = 0$$

Alternate Expressions for the Fisher Information

Fact: Suppose that conditions (A) - (C) hold

- 1. If R1 holds then $\mathbb{E}_{\theta}\psi(X,\theta) = 0$ and $I(\theta) = \operatorname{Var}_{\theta}(\psi(X,\theta))$
- 2. If R1 and R2 hold then $I(\theta) = -\mathbb{E}_{\theta}(\dot{\psi}(X, \theta))$

Interpretation of the Fisher Information

Recall

- log-likelihood $\ell(\theta|x)$ = evidence for θ based on observation(s) x
- $\psi(x,\theta) = \nabla_{\theta} \ell(\theta|x)$ slope of log-likelihood at θ
- $\dot{\psi}(x,\theta) = \nabla^2_{\theta} \ell(\theta|x)$ curvature of log-likelihood at θ

Suppose $X \sim f(x|\theta_0)$. Under the regularity conditions above

- Expected slope of log-likelihood at θ_0 is $\mathbb{E}_{\theta_0} \{ \nabla_{\theta} \ell(\theta_0 | X) \} = 0$
- Expected curvature of log-likelihood at θ_0 is $\mathbb{E}_{\theta_0} \{ \nabla^2_{\theta} \ell(\theta_0 | X) \} = -I(\theta_0)$

Interpretation of the Fisher Information, cont.

Suppose $X \sim f(x|\theta_0)$. Taylor expansion of $\ell(\theta|x)$ around θ_0 gives

$$D(P_{\theta_0}: P_{\theta}) = \int f(x|\theta_0) \log \frac{f(x|\theta_0)}{f(x|\theta)} = \mathbb{E}_{\theta_0} \left[\ell(\theta_0|X) - \ell(\theta|X) \right]$$
$$\approx \mathbb{E}_{\theta_0} \left[(\theta - \theta_0)^t \nabla_{\theta} \ell(\theta_0|X) + \frac{1}{2} (\theta - \theta_0)^t \nabla_{\theta}^2 \ell(\theta_0|X) (\theta - \theta_0) \right]$$
$$= \frac{1}{2} (\theta - \theta_0)^t I(\theta_0) (\theta - \theta_0)$$

Upshot: When θ is close to θ_0 , KL divergence between between P_{θ_0} and P_{θ} is determined by Fisher information $I(\theta_0)$

- $I(\theta_0)$ large \Rightarrow more contrast between P_{θ} and P_{θ_0}
- ► $I(\theta_0)$ small \Rightarrow less contrast between P_{θ} and P_{θ_0}

Fisher Information Examples

Poisson model: Family of densities wrt counting measure on 0, 1, 2,

$$\mathcal{P} = \left\{ f(x|\theta) = \frac{e^{-\theta} \theta^x}{x!} : \theta > 0 \right\}$$

Fisher information of \mathcal{P} at θ is given by $I(\theta) = \theta^{-1}$

Normal model: Family of densities wrt Lebesgue measure ν on \mathbb{R}

$$\mathcal{P} = \left\{ f(x|\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} : \mu \in \mathbb{R}, \sigma > 0 \right\}$$

Fisher information of family \mathcal{P} at (μ, σ) is given by

$$I(\mu,\sigma) = \left[\begin{array}{cc} 1/\sigma^2 & 0\\ 0 & 2/\sigma^2 \end{array} \right]$$

Asymptotic Normality of the MLE

Let $X_1, X_2, \ldots \in \mathcal{X}$ be iid with $X_i \sim f(x|\theta_0) \in \{f(x|\theta) : \theta \in \Theta\}$

In searching for a maximum likelihood estimate it is natural to consider solutions $\hat{\theta}_n$ of the *likelihood equation*

$$\nabla_{\theta} \ell_n(\theta) = \sum_{i=1}^n \nabla_{\theta} \log f(X_i|\theta) = 0$$

Asymptotic Normality of MLE

Theorem: Assume $X_1, X_2, \ldots \in \mathcal{X}$ iid with $X_i \sim f(x|\theta_0) \in \mathcal{P}$ and that

1. A - C and R1 - R2 hold, and $I(\theta_0)$ is invertible (positive definite)

2. There exists $\delta_0 > 0$ and $K : \mathcal{X} \to \mathbb{R}$ such that $\mathbb{E}_{\theta_0} K(X) < \infty$ and

$$\max_{i,j} \sup_{\theta \in B(\theta_0, \delta_0)} |\dot{\psi}_{i,j}(x, \theta)| \leq K(x)$$

3.
$$P_{\theta} = P_{\theta_0}$$
 iff $\theta = \theta_0$

Then there exists a sequence $\hat{\theta}_n = \hat{\theta}_n(X_1^n)$ such that

1. $\nabla_{\theta} \ell_n(\hat{\theta}_n) = 0$ eventually almost surely

2. $\hat{\theta}_n \rightarrow \theta_0$ wp1

3.
$$n^{1/2}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}_p(0, I(\theta_0)^{-1})$$

Asymptotic Normality of MLE

Key Consequence: Under the conditions of the theorem, if there exists a sequence of measurable estimates $\hat{\theta}_1, \hat{\theta}_2, \ldots$ such that

- 1. $\dot{\ell}_n(\hat{\theta}_n) = 0$ with probability tending to one
- 2. $\hat{\theta}_n \rightarrow \theta_0$ wp1 (consistency)

then $n^{1/2}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}_p(0, I(\theta_0)^{-1}).$

In other words, any strongly consistent sequence of solutions to the likelihood equation is asymptotically normal

In general, a sequence of MLEs may *not* be consistent, even if it is a root of the likelihood equation

Non-Example: Uniform Distributions

Let $\mathcal{P} = \{P_{\theta} = U(0, \theta) : \theta > 0\}$ family of uniform distributions on the line

- $U(0,\theta)$ has density $f(x|\theta) = \theta^{-1} \mathbb{I}(0 \le x \le \theta)$
- First and second partials not well-defined or continuous
- MLE $\hat{\theta}_n(X_1^n) = \max(X_1, \dots, X_n)$

• Can show
$$n(\hat{\theta}_n - \theta) \Rightarrow \mathsf{Exp}(\theta)$$

• Thus
$$n^{1/2}(\hat{\theta}_n - \theta) \to 0$$
 in probability