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Fisher Information



Fisher Information

Setting: Family P = {f(z]0) : 6 € ©} of densities on (X, A) with reference
measure v. Assume

(A) Parameter space © C R” is open

(B) Smoothness: f(z|0) is 2x-continuously differentiable in 6 for all z € X

(C) Integrability: Foralld e ©and1 < j <p

5, |:(8log8];gX|9)>2:| .



Fisher Information Matrix

Of interest: Derivatives of the log-likelihood. For z € X and 6 € © let

dlog f(z]0) 310gf(13|9))t c R?

0(w,0) = Volog flale) = (ZEID. . O8]
p

2
Loogflld) v <jin gp] 3
J

¥(x,0) = Vjlog f(x|0) = [
Definition: The Fisher Information (FI) matrix of P at 0 is

1(6) = Eo [¥(X,0)¥(X,0)"]

Note that I(6) is non-negative definite



Fisher Information Matrix

Regularity conditions: Exchange of differentiation and integration

R1: 8%)_ [ f(z|0)dv(z) = %f(:ﬂﬁ)dv(m) fort<j;<p

R2: 54,007 60 [ f(z|0)dv(z fae 0 f(z]®)dv(z)for1 < 4,k <p

Note that [ f(z|0)dv(z) = 1 so

> R1 implies f%f(z\@)du(m) =0

> R2 impliesfagfi(;%f(x\@)du(x) =0



Alternate Expressions for the Fisher Information

Fact: Suppose that conditions (A) - (C) hold
1. If R1 holds then Eg¢(X,0) = 0 and 1(0) = Varg(¢(X,0))

2. If R1 and R2 hold then 1(6) = —Ey(/(X, 0))



Interpretation of the Fisher Information

Recall
> log-likelihood ¢(6|x) = evidence for 6 based on observation(s) z
> (x,0) = Vel(0|z) slope of log-likelihood at &

> o(x,0) = V24(0)z) curvature of log-likelihood at 6

Suppose X ~ f(x|6o). Under the regularity conditions above
> Expected slope of log-likelihood at 0y is Eg,{Vo£(00|X)} =0

> Expected curvature of log-likelihood at 6 is Eq, {V2£(00|X)} = —1(60)



Interpretation of the Fisher Information, cont.

Suppose X ~ f(x|6o). Taylor expansion of £(0|x) around 6, gives

ZL‘|90)

f(al6o) _ _
Fog = Eoo [6001X) — 001X)]

D(Poy: Py) = / £(2]60) log

Q

Eo, {(9 —00)"' Vo l(6o|X) + %(9 —60)"' V5£(60|X) (6 — 6o)

1
= 5O~ 60)"1(60)(6 — o)
Upshot: When 6 is close to 6y, KL divergence between between Py, and P,
is determined by Fisher information I(6o)
> I(6y) large = more contrast between P, and Py,

> I(6y) small = less contrast between P, and Py,



Fisher Information Examples

Poisson model: Family of densities wrt counting measure on 0, 1,2, .. ..

—0 px
P:{f(x\a):%;bo}

—1

Fisher information of P at 6 is given by I1(6) = 0

Normal model: Family of densities wrt Lebesgue measure v on R

1 N2 2
?e (@=)"/20 Z/LER,O’>O}
o

P={ rtelu.) =
Fisher information of family P at (i, o) is given by

L o) = [ 1/0(72 2/?;2 ]



Asymptotic Normality of the MLE



The Likelihood Equation

Let X1, X2, ... € X be iid with X; ~ f(z|60) € {f(z]0) : 6 € O}

In searching for a maximum likelihood estimate it is natural to consider
solutions 6,, of the likelihood equation

Voln(0) =Y Volog f(Xi[0) = 0
i=1



Asymptotic Normality of MLE

Theorem: Assume X1, Xo,... € X iid with X; ~ f(z|6y) € P and that
1. A-Cand R1 - R2 hold, and I(6,) is invertible (positive definite)

2. There exists o > 0 and K : X — R such that E¢, K (X) < oo and

max sup | (z,0)] < K(x)
7 0€B(0p,60)

3. Py = Py, iff 0 = 6
Then there exists a sequence 6, = 6,,(X}) such that
1. Vgln(0,) = 0 eventually almost surely
2. 0, — 6o wpl

3. n'/2(0,, — 60) = N,p(0,1(60)~")



Asymptotic Normality of MLE

Key Consequence: Under the conditions of the theorem, if there exists a
sequence of measurable estimates 61, 6., . .. such that

1. 4,(0,) = 0 with probability tending to one
2. 0, — 6o wp1 (consistency)

then n'/2(0,, — 00) = N, (0, 1(60) ).

In other words, any strongly consistent sequence of solutions to the likelihood
equation is asymptotically normal

In general, a sequence of MLEs may not be consistent, even if it is a root of
the likelihood equation



Non-Example: Uniform Distributions

Let P ={Py =U(0,0) : > 0} family of uniform distributions on the line
> U(0,0) has density f(z|0) = 071(0 < = < 0)
> First and second partials not well-defined or continuous
» MLE 6,,(X7) = max(X1,...,X,)
» Can show n(6,, — 0) = Exp(0)

» Thus n'/%(6,, — 6) — 0 in probability



