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Overview

Idea: Game of prediction that evolves in an ordered sequence of rounds,
denoted by ¢ > 1, with outcomes y:
Agents and actions: At each round ¢t > 1

> Panel of experts offer their predictions of next outcome .

» Forecaster predicts y; using expert advice

» Environment generates outcome .

> Forecaster and experts incur some loss based on their predictions

Goal: Strategies enabling Forecaster to perform nearly as well as best expert
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Setting of Prediction with Expert Advice

Basic components: A triple
» Qutcome space Y
» Decision space V, a convex subset of a real vector space

» Loss function £: V x Y — R such that (-, y) is convex for all y €

Predicting outcome y € Y by element v € V incurs loss £(v, y)

Idea: Prediction proceeds in a sequence of rounds. At round ¢ goal is to
predict outcome y, € Y based on expert advice and previous outcomes
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Examples

1. Squared loss: V =Y =R, loss £(v,y) = (v — y)?

2. Absolute loss: V =Y =R, loss £(v,y) = |v — y|

3. Relative entropy loss: V = Y = [0, 1], loss

1-y
1—v

Lv,y) = ylog% + (1 —y)log

4. Logloss: V=[0,1] and Y = {0,1}

1
1—wv

1
L(v,y) =1(y = 1)log . I(y = 0) log
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Experts

Informal: An expert fi is an unspecified entity generating, at each round ¢, a
prediction f . € V to which a forecaster has access

Definition: An expert f. is static if its predictions {fx,. : t > 1} C V are fixed
in advance and only depend on the round ¢

Idea: To handle general experts we establish regret bounds that hold for all
possible sequences of expert advice, i.e., all static experts

Definition: An expert panel is a collection 7 = {fi,..., fn} of experts fx,
which are not necessarily static
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Forecasting Strategy

Definition: A forecasting strategy F' leveraging a panel 7 = {f1,..., fn} of
N experts is a sequence of functions F, Fs, ... where

F: Y7 x> v

Idea: Forecast F; of strategy F' at round ¢ depends on
» Previous outcomes y1, ..., yi—1

> Previous and current predictions of experts {(fi,s,...,fns) 1 1 < s <t}
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Prediction with Expert Advice

Given: Panel of experts 7 = {f1,..., fv} and forecasting strategy F

Ateachroundt=1,2,...
> Each expert fr, makes a prediction fi,; € V of the next outcome

» Forecaster makes prediction F; € V of next outcome based on
previous outcomes and expert advice

» Environment generates next outcome y: € Y

> Forecaster incurs loss £(Fy, y.), expert fi incurs loss £( fx¢, yt)
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Regret
Given: Strategy F leveraging an expert panel 7 = {f1,..., fn}

Cumulative loss: For n > 1 define

= Zé(Ft,yt) and Lk,n = Zg(fk,tayf)
t=1 t=1

Definition: The regret of strategy F' at round n is given by

R, = L, — min Ly,
ke[N]

Thus R,, = the difference between the cumulative loss of F' and that of the
best expert at round n
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Exponential Weighted Average Forecaster (EWAF)
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Exponential Weighted Average Forecaster (n-EWAF)

Initialize: Fix n > 0. Assign weight wo (k) = 1 to each expert f;, € F

Iterate: At eachround ¢t > 1

1. Forecaster’s prediction is the average of the expert predictions fi : under
the normalized weight distribution

F o= Eﬁzl wtfl(k)fk,t
t = N
> p we—1(k)

2. When y; revealed, the weight of each expert is reduced exponentially by
its loss on that round

wi(k) = we—1(k) exp{—nl(fr,e,y:)} = exp{—nLx}
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Regret Bound for EWAF: Bounded Convex Loss

Assume that the loss function £ : V x ) — R satisfies
1. £(-,y) is convex for each y € )

2. L(v,y) € [0,1] foreachv e Vandy € V.

Theorem: Fix n > 0 and let F' be the n-EWAF. Then for all n > 1, all panels
F of N experts, and all outcome sequences y7' € "

log N
og +@

<
R_U 3

Choosing n = /(81og N)/n gives fixed horizon regret bound

R, < nlog N
"= 2
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Regret Bound for EWAS, cont.

Bound above requires knowing horizon n in advance in order to select n

We can avoid this using “doubling trick”: divide 1,2, ... into epochs

k—1 k—1
E. = {221+1,,..,Zzl+2’“}
=0 =0
Within each epoch Ej

> Reset all weights w;(k) = 1, and use EWAF with n,, = y/8log N/2F

Upshot: Using the doubling trick, for alln > 1

V2 \/nf
R, < Zlog N
< Hoqyale
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Exp-Concave Loss

Definition: A loss function £: V x ) — R is exp-concave for n > 0 if
Gy (v) := exp{—nL(v,y)} is concave forally € Y

Fact: If £ is exp-concave for some n > 0 then £(-, y) is convex foreach y €

Examples
1. If Vv =Y = [0, 1] then squared loss is exp-concave for n = 1/2
2. Absolute loss is not exp-concave for any n
3. Relative entropy loss is exp-concave forn =1

4. Log loss is exp-concave for n = 1
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Regret Vectors and Exponential Potential

Definition: Let F' be any prediction scheme leveraging a panel of N experts
F ={f1,...,fn}. The regret vector for F' at round t > 1 is given by

U = (L — Lig,..., Lt — Lny)

Definition: The exponential potential function ®,, : RY — R is given by

1 N
®,(u) = Elog (Ze””’“)
k=1
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Regret Bound for EWAF Under Exp-Concave Loss

Theorem: Assume that ¢ is exp-concave for n > 0, and let F' be n-EWAF.

1. For each n > 1, every panel F of N experts, and each sequence of
outcomes y7' € V", the regret vector of F satisfies ®,(U,) < ©,(0)

2. n-EWAF satisfies the risk bound

Note:
» Choose largest n such that ¢ is exp-concave for n

» Bound holds for some unbounded losses (relative entropy, log)
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Minimax Regret

Assume that components V, Y, ¢ of prediction problem are fixed

Definition

1. Let R, (F, F,ytr) = round n regret of a forecasting strategy F' leveraging
a panel of experts F on the outcome sequence y7'.

2. Minimax regret at round n for any strategy leveraging N experts is

VY = inf sup sup Rn(F,F,y7)
FF|F|=N ypeyn

where the inf is over all forecasting strategies, and the first sup is over all
panels of N static experts
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Lower Bound for Absolute Loss

Fact: Let Z1, Z», ... be iid N(0,1), and let (Us,:)x,:>1 be an array of iid
bounded random variables with mean 0 and variance 1. Then for N > 1

= E [ max Zk}
1<k<N

. I
nlg%o E [125?1\7 % ; Ukt <
Moreover, as N tends to infinity,

. E [maxi<r<n Zk]
im ———==an T

N—ro00 v2log N

=1
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Lower Bound for Absolute Loss

Proposition: If V = [0,1], Y = {0,1}, and £(v,y) = |v — y| then

Vi
sup sup ———— >
n>1N>1 1/(n/2)log N
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Randomized Prediction with Constant Experts
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Setting for Randomized Prediction

Basic components
» QOutcome space Y
» Decision space V = {1,2,...,N}
> Loss function £: {1,2,...,N} x Y — [0,1]

» Constant experts F = {f1,..., fn} with fr. = kforallt > 1

Example: Suppose Y =V = {1,2} and 4(k,y) = I(k # y). Foreachn > 1
there is a sequence y7' such that

L, =n and min(Lin,L2,n) < n/2

Thus worst case regret R,, > n/2 is linear in n. Solution is to randomize.
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Randomized Prediction

Given: Source of randomness Uy, Us, . .. iid ~ Unif(0, 1)
Initialize: Let yo € Y and iy € [N] be fixed

Iterate: At eachtimet > 1
1. Forecaster selects pmf p; on [N] based on past outcomes Y™
2. Nature selects outcome Y; based on past actions ;=" of forecaster

3. Forecaster chooses action I; € [N] using randomization U;: for k € [N]
L=k it Y02 pe(i) U< 5 ()

4. Forecaster incurs loss £(I:, Y:)
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Randomized Prediction, cont.

Note: Under the setting above, foreach ¢ > 1
» Decision I; is random and I; ~ p;
> Yi,...,Y; fully determined by U, ..., Ui—1
» p1,...,p fully determined by Us, ..., U;—1

» Ii,..., 1 fully determined by U, ..., Ui—1

29/28



Unconditional and Conditional Regret

Definition: Regret of randomized forecaster at round n is

R, = ;e(n,m) - kxg[iﬁl];ak,m)

Definition: Conditional regret of randomized forecaster at round n is
Ry = > UpeYe) — min 3 ((kYi)
t=1 t=n
where
_ N

Upe,Yy) = E[U(I,Y) U] = Y plk) UK, Vi)

k=1
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Randomized Prediction via EWAF

Idea: Apply n-EWAF with
» QOutcome space Y
> Decision space V = probability simplex in RY
> Loss function £(v,y) = Sn_, vib(k,y)
» Panel F = {fi,..., fn} of constant experts: fi, = kforallt > 1

Constant experts represent “pure strategies”, randomized forecaster employs
a “mixed strategy”
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Randomized Prediction via EWAF

Upshot: At round ¢ Forecaster uses probability mass function

_exp(=n Y Uk YY)
Sy exp(—n 423 AL Ys))

pi(k)

Choosing n = /8log N/n gives bound on conditional regret

Rn < /ZlogN
2
Cor: For each § € (0, 1), with probability at least 1 — §

n n 1
n < 4= J ™ oe =
R, < 2logN—i— 210g5
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Some Connections with Game Theory
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Minimax Theorem

Thm: Let f : X x Y — R be continuous. Assume that
1. X C R* is convex and compact
2. Y C R'is convex and compact
3. f(-,y) is convex foreachy € Y

4. f(z,-)is concave foreach z € X
Then

inf s ,y) = sup inf f(x,
J?xy‘égf(”’ ) yegxexf( )
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Two-Player Zero Sum Games

Ingredients: Two players and loss matrix
> Player P1 with finite action space [M] = {1,..., M}
» Player P2 with finite action space [N] = {1,..., N}

» Loss function £ : [M] x [N] — [0, 1]

One-round game
> P1 selects action ¢ € [M] and P2 selects action j € [N]

» P1incurs loss £(7, j) and P2 incurs gain —£(i, j) (zero sum)
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Two-Player Zero Sum Games, cont.

Competing goals of players
» P1: Choose action ¢ to minimize his loss £(3, j)

» P2: Choose action j to minimize her payoff —£(s, 7)

Examples: Games described by loss matrix
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Mixed Strategies

Upshot: In general, playing the pure, conservative strategies

i* = argmin max £(i,j) and ;" = argmax min £(i, j)
ie[M] JE[N] jEIN] PE€[M]

is not stable: one player may be incentivized to choose another action

Mixed strategies: Actions of players are random
> Mixed strategy for P1 is a pmf p on [M]
> Mixed strategy for P2 is a pmf ¢ on [N]

> Mixed strategy profile is product pmf p ® g on [M] x [N]
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Nash Equilibria

Definition: Given mixed strategies p on [M] and ¢ on [N] let

M N

Wpea) = 3. p)a(i) LG, j)

i=1 j=1

be the expected loss of P1 (gain of P2) under the profile p ® ¢

Definition: A profile p ® ¢ is a Nash equilibrium if for all p’ and ¢’
Up,q') < Up,q) < U9

Interpretation: If P1 plays strategy p and P2 plays strategy ¢, neither player
has an incentive to change their strategy
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Nash Equilibria, cont.

Definition: By minimax theorem applied to f(p, q) = £(p, q¢) we have

minmax £(p’,¢') = maxmin{(p’,q) = V
p/ q/ q/ p/

where V' is called the value of the game

Fact: Profile p ® q is a Nash equiliorium iff £(p, q) = V
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Repeated Two-Player Zero Sum Games

Ateachroundt > 1
» P1 chooses action I; € [M] according to p;
> P2 chooses action J; € [N] according to ¢;

» P1incurs loss ¢(1:, J:) and P2 incurs gain —£(Iy, Jy)

Exchange of Information
> Strategies p:, ¢: may depend on previous actions I' ™' and Ji~*
» Actions I; and J; are independent given p: and g:
» At the end of each round players can assess their hypothetical

losses £(i, J;) and ¢(I, ) had they taken other actions
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Regret and Hannan Consistency

Goal for P1: Minimize regret relative to best fixed action in retrospect

n

R, = ;é([t,Jt) =, bin 2 0(i, Jy)

Definition: An action strategy I, I», ... for P1 is Hannan consistent if for all
possible actions 71, j2, . .. of P2

lim sup %Zﬁ(]t,jt) — min lzai,jt) =0 wpi
t=1 t=1

00 1<i<M n

Note: Selecting I; ~ p; where p; derived from EWAF with . = \/(8log N)/t
and panel of M constant experts is Hannan consistent
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Limiting Average Loss for Hannan Consistent Play

Fact: Consider a zero-sum game with players P1 and P2 and value V/

1. If P1 plays a Hannan consistent strategy 11, I», ... then

n—oo

timsup S U1, ) <V wpt
t=1

2. If P1 and P2 play Hannan consistent strategies then

n

1
nlingoﬁge(ft,Jt) =V wpl
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Blackwell's Approachability Theorem

Setting: Two player zero sum game with vector-valued loss
> P1 has action space [M], P2 has action space [N]

» Loss ¢ :[M] x [N] = By, where B,, = {v e R™: ||v]| <1}

Question: When can P1 force his average loss to be close, asymptotically,
to a given convex subset S C B,,?
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Approachability

Definition: A set S C B,, is approachable by P1 if there is a strategy
I, I, ... such that for all actions j1, j2, ... € [N] of P2

1< ) .
d(ntXQZ(It,ﬁ),s) — 0 wpl where d(u, S) = min |lu— ]

Note: In case m = 1 with £ € [0, 1] result on Hannan consistent play shows
that the interval S = [0, s] is approachable if s > V'
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Blackwell's Approachability Theorem

Lemma: A halfspace H = {u : (a,u) < ¢} is approachable iff there is pmf p
on [M] such that

Ny <
lg;a;me,f(p,m <c

Theorem: A closed convex set S C B,, is approachable iff every halfspace
H containing S is approachable.
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