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Overview

Idea: Game of prediction that evolves in an ordered sequence of rounds,
denoted by t ≥ 1, with outcomes yt

Agents and actions: At each round t ≥ 1

I Panel of experts offer their predictions of next outcome yt

I Forecaster predicts yt using expert advice

I Environment generates outcome yt

I Forecaster and experts incur some loss based on their predictions

Goal: Strategies enabling Forecaster to perform nearly as well as best expert
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Setting of Prediction with Expert Advice

Basic components: A triple

I Outcome space Y

I Decision space V, a convex subset of a real vector space

I Loss function ` : V × Y → R such that `(·, y) is convex for all y ∈ Y

Predicting outcome y ∈ Y by element v ∈ V incurs loss `(v, y)

Idea: Prediction proceeds in a sequence of rounds. At round t goal is to
predict outcome yt ∈ Y based on expert advice and previous outcomes
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Examples

1. Squared loss: V = Y = R, loss `(v, y) = (v − y)2

2. Absolute loss: V = Y = R, loss `(v, y) = |v − y|

3. Relative entropy loss: V = Y = [0, 1], loss

`(v, y) = y log
y

v
+ (1− y) log

1− y
1− v

4. Log loss: V = [0, 1] and Y = {0, 1}

`(v, y) = I(y = 1) log
1

v
+ I(y = 0) log

1

1− v
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Experts

Informal: An expert fk is an unspecified entity generating, at each round t, a
prediction fk,t ∈ V to which a forecaster has access

Definition: An expert fk is static if its predictions {fk,t : t ≥ 1} ⊆ V are fixed
in advance and only depend on the round t

Idea: To handle general experts we establish regret bounds that hold for all
possible sequences of expert advice, i.e., all static experts

Definition: An expert panel is a collection F = {f1, . . . , fN} of experts fk,
which are not necessarily static
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Forecasting Strategy

Definition: A forecasting strategy F leveraging a panel F = {f1, . . . , fN} of
N experts is a sequence of functions F1, F2, . . . where

Ft : Yt−1 × (VN )t → V

Idea: Forecast Ft of strategy F at round t depends on

I Previous outcomes y1, . . . , yt−1

I Previous and current predictions of experts {(f1,s, . . . , fN,s) : 1 ≤ s ≤ t}
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Prediction with Expert Advice

Given: Panel of experts F = {f1, . . . , fN} and forecasting strategy F

At each round t = 1, 2, . . .

I Each expert fk makes a prediction fk,t ∈ V of the next outcome

I Forecaster makes prediction Ft ∈ V of next outcome based on
previous outcomes and expert advice

I Environment generates next outcome yt ∈ Y

I Forecaster incurs loss `(Ft, yt), expert fk incurs loss `(fk,t, yt)
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Regret

Given: Strategy F leveraging an expert panel F = {f1, . . . , fN}

Cumulative loss: For n ≥ 1 define

Ln =

n∑
t=1

`(Ft, yt) and Lk,n =
n∑
t=1

`(fk,t, yt)

Definition: The regret of strategy F at round n is given by

Rn = Ln − min
k∈[N ]

Lk,n

Thus Rn = the difference between the cumulative loss of F and that of the
best expert at round n
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Exponential Weighted Average Forecaster (EWAF)
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Exponential Weighted Average Forecaster (η-EWAF)

Initialize: Fix η > 0. Assign weight w0(k) = 1 to each expert fk ∈ F

Iterate: At each round t ≥ 1

1. Forecaster’s prediction is the average of the expert predictions fk,t under
the normalized weight distribution

Ft =

∑N
k=1 wt−1(k)fk,t∑N
k=1 wt−1(k)

2. When yt revealed, the weight of each expert is reduced exponentially by
its loss on that round

wt(k) = wt−1(k) exp{−η`(fk,t, yt)} = exp{−ηLk,t}
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Regret Bound for EWAF: Bounded Convex Loss

Assume that the loss function ` : V × Y → R satisfies

1. `(·, y) is convex for each y ∈ Y

2. `(v, y) ∈ [0, 1] for each v ∈ V and y ∈ Y.

Theorem: Fix η > 0 and let F be the η-EWAF. Then for all n ≥ 1, all panels
F of N experts, and all outcome sequences yn1 ∈ Yn

Rn ≤
logN

η
+
nη

8

Choosing η =
√

(8 logN)/n gives fixed horizon regret bound

Rn ≤
√
n logN

2
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Regret Bound for EWAS, cont.

Bound above requires knowing horizon n in advance in order to select η

We can avoid this using “doubling trick”: divide 1, 2, . . . into epochs

Ek =

{
k−1∑
l=0

2l + 1, . . . ,

k−1∑
l=0

2l + 2k
}

Within each epoch Ek

I Reset all weights wt(k) = 1, and use EWAF with ηk =
√

8 logN/2k

Upshot: Using the doubling trick, for all n ≥ 1

Rn ≤
√

2√
2− 1

√
n

2
logN
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Exp-Concave Loss

Definition: A loss function ` : V × Y → R is exp-concave for η > 0 if
Gη(v) := exp{−η`(v, y)} is concave for all y ∈ Y

Fact: If ` is exp-concave for some η > 0 then `(·, y) is convex for each y ∈ Y

Examples

1. If V = Y = [0, 1] then squared loss is exp-concave for η = 1/2

2. Absolute loss is not exp-concave for any η

3. Relative entropy loss is exp-concave for η = 1

4. Log loss is exp-concave for η = 1
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Regret Vectors and Exponential Potential

Definition: Let F be any prediction scheme leveraging a panel of N experts
F = {f1, . . . , fN}. The regret vector for F at round t ≥ 1 is given by

Ut = (Lt − L1,t, . . . , Lt − LN,t)

Definition: The exponential potential function Φη : RN → R is given by

Φη(u) =
1

η
log

(
N∑
k=1

eηuk

)
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Regret Bound for EWAF Under Exp-Concave Loss

Theorem: Assume that ` is exp-concave for η > 0, and let F be η-EWAF.

1. For each n ≥ 1, every panel F of N experts, and each sequence of
outcomes yn1 ∈ Yn, the regret vector of F satisfies Φη(Un) ≤ Φη(0)

2. η-EWAF satisfies the risk bound

Rn ≤
logN

η

Note:

I Choose largest η such that ` is exp-concave for η

I Bound holds for some unbounded losses (relative entropy, log)
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Minimax Regret

Assume that components V,Y, ` of prediction problem are fixed

Definition

1. Let Rn(F,F , yn1 ) = round n regret of a forecasting strategy F leveraging
a panel of experts F on the outcome sequence yn1 .

2. Minimax regret at round n for any strategy leveraging N experts is

V Nn = inf
F

sup
F:|F|=N

sup
yn1 ∈Yn

Rn(F,F , yn1 )

where the inf is over all forecasting strategies, and the first sup is over all
panels of N static experts
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Lower Bound for Absolute Loss

Fact: Let Z1, Z2, . . . be iid N (0, 1), and let (Uk,t)k,t≥1 be an array of iid
bounded random variables with mean 0 and variance 1. Then for N ≥ 1

lim
n→∞

E

[
max

1≤k≤N

1√
n

n∑
t=1

Uk,t

]
= E

[
max

1≤k≤N
Zk

]

Moreover, as N tends to infinity,

lim
N→∞

E [max1≤k≤N Zk]√
2 logN

= 1
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Lower Bound for Absolute Loss

Proposition: If V = [0, 1], Y = {0, 1}, and `(v, y) = |v − y| then

sup
n≥1

sup
N≥1

V Nn√
(n/2) logN

≥ 1
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Randomized Prediction with Constant Experts
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Setting for Randomized Prediction

Basic components

I Outcome space Y

I Decision space V = {1, 2, . . . , N}

I Loss function ` : {1, 2, . . . , N} × Y → [0, 1]

I Constant experts F = {f1, . . . , fN} with fk,t = k for all t ≥ 1

Example: Suppose Y = V = {1, 2} and `(k, y) = I(k 6= y). For each n ≥ 1

there is a sequence yn1 such that

Ln = n and min(L1,n, L2,n) ≤ n/2

Thus worst case regret Rn ≥ n/2 is linear in n. Solution is to randomize.
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Randomized Prediction

Given: Source of randomness U1, U2, . . . iid ∼ Unif(0, 1)

Initialize: Let y0 ∈ Y and i0 ∈ [N ] be fixed

Iterate: At each time t ≥ 1

1. Forecaster selects pmf pt on [N ] based on past outcomes Y t−1
0

2. Nature selects outcome Yt based on past actions It−1
0 of forecaster

3. Forecaster chooses action It ∈ [N ] using randomization Ut: for k ∈ [N ]

It = k if
∑k−1
j=1 pt(j) ≤ Ut <

∑k
j=1 pt(j)

4. Forecaster incurs loss `(It, Yt)
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Randomized Prediction, cont.

Note: Under the setting above, for each t ≥ 1

I Decision It is random and It ∼ pt

I Y1, . . . , Yt fully determined by U1, . . . , Ut−1

I p1, . . . , pt fully determined by U1, . . . , Ut−1

I I1, . . . , It−1 fully determined by U1, . . . , Ut−1
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Unconditional and Conditional Regret

Definition: Regret of randomized forecaster at round n is

Rn =
n∑
t=1

`(It, Yt) − min
k∈[N ]

n∑
t=n

`(k, Yt)

Definition: Conditional regret of randomized forecaster at round n is

Rn =
n∑
t=1

`(pt, Yt) − min
k∈[N ]

n∑
t=n

`(k, Yt)

where

`(pt, Yt) := E
[
`(It, Yt)|U t−1

1

]
=

N∑
k=1

pt(k)`(k, Yt)
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Randomized Prediction via EWAF

Idea: Apply η-EWAF with

I Outcome space Y

I Decision space V = probability simplex in RN

I Loss function `(v, y) =
∑N
k=1 vk `(k, y)

I Panel F = {f1, . . . , fN} of constant experts: fk,t = k for all t ≥ 1

Constant experts represent “pure strategies”, randomized forecaster employs
a “mixed strategy”
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Randomized Prediction via EWAF

Upshot: At round t Forecaster uses probability mass function

pt(k) =
exp(−η

∑t−1
s=1 `(k, Ys))∑N

l=1 exp(−η
∑t−1
s=1 `(l, Ys))

Choosing η =
√

8 logN/n gives bound on conditional regret

Rn ≤
√
n

2
logN

Cor: For each δ ∈ (0, 1), with probability at least 1− δ

Rn ≤
√
n

2
logN +

√
n

2
log

1

δ
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Some Connections with Game Theory
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Minimax Theorem

Thm: Let f : X × Y → R be continuous. Assume that

1. X ⊆ Rk is convex and compact

2. Y ⊆ Rl is convex and compact

3. f(·, y) is convex for each y ∈ Y

4. f(x, ·) is concave for each x ∈ X

Then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y)
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Two-Player Zero Sum Games

Ingredients: Two players and loss matrix

I Player P1 with finite action space [M ] = {1, . . . ,M}

I Player P2 with finite action space [N ] = {1, . . . , N}

I Loss function ` : [M ]× [N ]→ [0, 1]

One-round game

I P1 selects action i ∈ [M ] and P2 selects action j ∈ [N ]

I P1 incurs loss `(i, j) and P2 incurs gain −`(i, j) (zero sum)
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Two-Player Zero Sum Games, cont.

Competing goals of players

I P1: Choose action i to minimize his loss `(i, j)

I P2: Choose action j to minimize her payoff −`(i, j)

Examples: Games described by loss matrix

1 2
1 .3 0
2 .6 .4

1 2
1 .25 .9
2 .5 0
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Mixed Strategies

Upshot: In general, playing the pure, conservative strategies

i∗ = argmin
i∈[M ]

max
j∈[N ]

`(i, j) and j∗ = argmax
j∈[N ]

min
i∈[M ]

`(i, j)

is not stable: one player may be incentivized to choose another action

Mixed strategies: Actions of players are random

I Mixed strategy for P1 is a pmf p on [M ]

I Mixed strategy for P2 is a pmf q on [N ]

I Mixed strategy profile is product pmf p⊗ q on [M ]× [N ]
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Nash Equilibria

Definition: Given mixed strategies p on [M ] and q on [N ] let

`(p, q) =

M∑
i=1

N∑
j=1

p(i)q(j)`(i, j)

be the expected loss of P1 (gain of P2) under the profile p⊗ q

Definition: A profile p⊗ q is a Nash equilibrium if for all p′ and q′

`(p, q′) ≤ `(p, q) ≤ `(p′, q)

Interpretation: If P1 plays strategy p and P2 plays strategy q, neither player
has an incentive to change their strategy
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Nash Equilibria, cont.

Definition: By minimax theorem applied to f(p, q) = `(p, q) we have

min
p′

max
q′

`(p′, q′) = max
q′

min
p′

`(p′, q′) := V

where V is called the value of the game

Fact: Profile p⊗ q is a Nash equilibrium iff `(p, q) = V
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Repeated Two-Player Zero Sum Games

At each round t ≥ 1

I P1 chooses action It ∈ [M ] according to pt

I P2 chooses action Jt ∈ [N ] according to qt

I P1 incurs loss `(It, Jt) and P2 incurs gain −`(It, Jt)

Exchange of Information

I Strategies pt, qt may depend on previous actions It−1
1 and Jt−1

1

I Actions It and Jt are independent given pt and qt

I At the end of each round players can assess their hypothetical
losses `(i, Jt) and `(It, j) had they taken other actions

33/38



Regret and Hannan Consistency

Goal for P1: Minimize regret relative to best fixed action in retrospect

Rn :=
n∑
t=1

`(It, Jt) − min
1≤i≤M

n∑
t=1

`(i, Jt)

Definition: An action strategy I1, I2, . . . for P1 is Hannan consistent if for all
possible actions j1, j2, . . . of P2

lim sup
n→∞

[
1

n

n∑
t=1

`(It, jt) − min
1≤i≤M

1

n

n∑
t=1

`(i, jt)

]
= 0 wp1

Note: Selecting It ∼ pt where pt derived from EWAF with ηt =
√

(8 logN)/t

and panel of M constant experts is Hannan consistent
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Limiting Average Loss for Hannan Consistent Play

Fact: Consider a zero-sum game with players P1 and P2 and value V

1. If P1 plays a Hannan consistent strategy I1, I2, . . . then

lim sup
n→∞

1

n

n∑
t=1

`(It, Jt) ≤ V wp1

2. If P1 and P2 play Hannan consistent strategies then

lim
n→∞

1

n

n∑
t=1

`(It, Jt) = V wp1
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Blackwell’s Approachability Theorem

Setting: Two player zero sum game with vector-valued loss

I P1 has action space [M ], P2 has action space [N ]

I Loss ` : [M ]× [N ]→ Bm where Bm = {v ∈ Rm : ||v|| ≤ 1}

Question: When can P1 force his average loss to be close, asymptotically,
to a given convex subset S ⊆ Bm?

36/38



Approachability

Definition: A set S ⊆ Bm is approachable by P1 if there is a strategy
I1, I2, . . . such that for all actions j1, j2, . . . ∈ [N ] of P2

d

(
1

n

n∑
t=1

`(It, jt), S

)
→ 0 wp1 where d(u, S) = min

v∈S
‖u− v‖

Note: In case m = 1 with ` ∈ [0, 1] result on Hannan consistent play shows
that the interval S = [0, s] is approachable if s ≥ V
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Blackwell’s Approachability Theorem

Lemma: A halfspace H = {u : 〈a, u〉 ≤ c} is approachable iff there is pmf p
on [M ] such that

max
1≤j≤N

〈a, `(p, j)〉 ≤ c

Theorem: A closed convex set S ⊆ Bm is approachable iff every halfspace
H containing S is approachable.
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