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Stochastic Multi-Armed Bandits

Setting: Casino with K slot machines (one-armed bandits)

I Reward for playing machine/arm k is random with distribution Pk, and
expected value αk (both unknown)

I Successive plays of same or different arms are independent

Notation: Let α∗ = maxk αk and k∗ ∈ argmaxk αk

Goal: Maximize expected return over multiple rounds of play

I Optimal strategy plays best arm(s) k∗ at each round

I Can we find an adaptive strategy that does almost as well?
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Background, Exploration-Exploitation

Multi-armed bandit problem is an example of sequential decision making,
simple case of reinforcement learning

I Result of playing arm k gives information only about arm k

I To identify optimal arm(s) a strategy must repeatedly sample every arm

At each round t a good strategy needs to balance

I Exploitation: play arm with largest average reward (greedy action)

I Exploration: play other arms to better estimate their expected rewards
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Reinforcement vs Supervised Learning (from Sutton and Barto)

The most important feature distinguishing reinforcement learning
from other types of learning is that it uses training information that
evaluates the actions taken rather than instructs by giving correct
actions. This is what creates the need for active exploration, for an
explicit search for good behavior. Purely evaluative feedback indi-
cates how good the action taken was, but not whether it was the
best or the worst action possible. Purely instructive feedback, on the
other hand, indicates the correct action to take, independently of the
action actually taken. This kind of [instructive] feedback is the basis
of supervised learning, which includes large parts of pattern classi-
fication, artificial neural networks, and system identification. In their
pure forms, these two kinds of feedback are quite distinct: evaluative
feedback depends entirely on the action taken, whereas instructive
feedback is independent of the action taken.
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Stochastic Multi-armed Bandit Problem

Preliminaries

I Let Xk,1, Xk,2, . . . ∈ [0, 1] iid ∼ Pk be the reward sequence for arm k

I Assume reward sequences for different arms are independent

At each round t ≥ 1

I Forecasting strategy f selects arm f(t) ∈ [K] based on rewards
received in rounds 1, . . . , t− 1

I Forecaster receives reward Xf(t),t independent of previous rewards
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Pseudo-Regret

Definition: The pseudo-regret of a forecasting strategy f at time n is

Rn = nα∗ − E

(
n∑
t=1

αf(t)

)

Note: Rn is the difference between the expected reward of the optimal
strategy and the expected reward of the strategy f
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Counts and Mean Estimates

Definition: For t ≥ 1 and k ∈ [K] let the count

Tk(t) =
t∑

s=1

I(f(s) = k)

be the number of times arm k is played by strategy f in rounds 1, . . . , t

Note: Natural estimate of αk after t rounds of play is the average

α̂k,t =
1

Tk(t)

∑
s≥1

Xk,s I(f(s) = k ∧ Tk(s) ≤ t)

of all rewards f receives when playing arm k
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Suboptimality and Pseudo-Regret

Definition: Suboptimality parameter of arm k is ∆k = α∗ − αk

Fact: For each n ≥ 1 the pseudo-regret may be written as

Rn =
K∑
k=1

∆kETk(n)
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Upper Confidence Bound (UCB)

Confidence bound: Fix γ > 2. For each round t ≥ 1 and arm k define

Ûk,t = α̂k,Tk(t−1) +

√
γ log t

2Tk(t− 1)

I α̂k,Tk(t−1) is an estimate of αk with sample size Tk(t− 1)

I Ûk,t = estimate of αk plus uncertainty, depending on sample size

I By Hoeffding P(αk ≥ Ûk,t) ≤ t−γ

I Ûk,t is a (1− t−γ)-UCB for αk
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UCB Strategy

γ-UCB stategy: For each round t ≥ 1 select arm

f(t) ∈ argmax
k∈[K]

Ûk,t

I γ-UCB treats Ûk,t as an optimistic estimate of αk

I γ-UCB uses value and uncertainty of mean estimates to trade off
exploration and exploitation

I If Tk(t− 1) = 0 then Ûk,t =∞

I In first K rounds each arm selected once
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Upper Bound on Pseudo-Regret of γ-UCB

Theorem: Assume all rewards take values in [0, 1] and γ > 2. For each
n ≥ 1 the γ-UCB strategy f satisfies

Rn ≤
∑

k:∆k>0

(
2γ

∆k
logn+

γ

γ − 2

)
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Kullback-Liebler (KL) Divergence

Recall: The KL-divergence between distributions P,Q on a countable set X

D(P,Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
= EP

[
log

P (X)

Q(X)

]

I D(P,Q) ≥ 0 with equality iff P = Q. Possible that D(P,Q) = +∞

I D(P,Q) is not a metric: in general D(P,Q) 6= D(Q,P )

I Tensorization: D(⊗ni=1Pi,⊗ni=1Qi) =
∑n
i=1 D(Pi, Qi)

I D(P,Q) is jointly convex in its first and second arguments

I Pinsker’s Inequality:
∑
x∈X |P (x)−Q(x)| ≤

√
D(P,Q)/2
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Preliminaries

Bernoulli case: When P = Bern(p) and Q = Bern(q) write D(P,Q) as

D(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

If 0 ≤ p, q ≤ 1 then we have upper and lower bounds

2(p− q)2 ≤ D(p, q) ≤ (p− q)2

q(1− q)

First inequality follows from Pinsker, second from log(x) ≤ x− 1

Fact: If X1, X2, . . . , X ∈ R are iid with E|X| <∞ and EX > 0 then

lim
n→∞

1

n
max

1≤t≤n

t∑
i=1

Xi = EX
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Lower Bound on Pseudo-Regret of γ-UCB

Suppose Pk = Bern(αk) for k ∈ [K]. Let f be a selection strategy such that

lim
n→∞

ETk(n)

nc
= 0

for every every c > 0 and any arm k with ∆k > 0

Theorem: For each n ≥ 1 the strategy f satisfies

lim inf
n→∞

Rn
logn

≥
∑

k:∆k>0

∆k

D(αk, α∗)
≥

∑
k:∆k>0

α∗(1− α∗)
∆k

15/15


