Empirical Risk Minimization and Vapnik-Chervonenkis Theory

Andrew Nobel

September, 2023

Empirical Risk Minimization

Empirical Risk Minimization (ERM)

Setting

- Set X of features/predictors
- ► Set *Y* of responses/labels
- Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Recall

- A prediction rule is a map $h : \mathcal{X} \to \mathcal{Y}$
- Loss of *h* on feature-response pair (x, y) is $\ell(h(x), y)$
- ▶ Risk of *h* on random pair (X, Y) is given by $R(h) = \mathbb{E}\ell(h(X), Y)$

Empirical Risk Minimization (ERM)

Given

- Family \mathcal{H} of prediction rules $h : \mathcal{X} \to \mathcal{Y}$ (possibly infinite)
- ▶ Jointly distributed pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$
- Observations $D_n = (X_1, Y_1), \ldots, (X_n, Y_n)$ iid copies of (X, Y)

Ideally: Find rule $h \in \mathcal{H}$ with minimum risk R(h)

ERM: Find rule in \mathcal{H} minimizing empirical risk (proxy for true risk)

$$\hat{h}_n = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}_n(h) = \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(h(X_i), Y_i)$$

Example: Ordinary Least Squares

Setting

Feature space $\mathcal{X} = \mathbb{R}^d$. Response $\mathcal{Y} = \mathbb{R}$

• Loss
$$\ell(y', y) = (y' - y)^2$$

- ▶ Risk of rule $h : \mathbb{R}^d \to \mathbb{R}$ on pair (X, Y) is $R(h) = \mathbb{E}(h(X) Y)^2$
- Let $\mathcal{H} =$ family of linear rules $h(x) = \langle x, \beta \rangle + \beta_0$

Upshot: ERM coincides with OLS

Example: Histogram Classification Rules

Setting

Feature space \mathcal{X} is general. Response $\mathcal{Y} = \{0, 1\}$

► Loss
$$\ell(y', y) = \mathbb{I}(y' \neq y)$$

- ▶ Risk of rule $h : \mathcal{X} \to \{0, 1\}$ on pair (X, Y) is $R(h) = \mathbb{P}(h(X) \neq Y)$
- Let $\mathcal{H} =$ family of rules constant on the cells of a finite partition π of \mathcal{X}

Upshot: ERM coincides with the histogram classification rule

$$\hat{h}_n(x) = \text{maj-vote}\{Y_i : X_i \in \pi(x)\}$$

Binary Classification: General Case

Note: Every rule $h : \mathcal{X} \to \{0, 1\}$ corresponds to a subset of \mathcal{X} and v.v.

▶ Let C = family of subsets of X. For $C \in C$ let $h_C(x) = \mathbb{I}(x \in C)$

▶ Define $\mathcal{H} = \{h_C : C \in \mathcal{C}\}$. Then ERM finds set $C \in \mathcal{C}$ minimizing

$$\hat{R}_n(h_C) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(h_C(X_i) \neq Y_i) = \frac{1}{n} \sum_{i=1}^n |\mathbb{I}(X_i \in C) - Y_i|$$

Examples

- C = all half-spaces in $\mathcal{X} = \mathbb{R}^d$
- C =all spheres in $\mathcal{X} = \mathbb{R}^d$

Caveat: Often, computationally efficient algorithms for ERM don't exist

Idea: ERM rule \hat{h}_n is defined by minimizing training error. Thus we expect the training error of \hat{h}_n to be optimistic

Fact: Let \hat{h}_n be ERM rule for a family \mathcal{H} based on observations D_n . Then

 $\mathbb{E}\hat{R}_n(\hat{h}_n) \leq R(\hat{h}_n)$

Assessing Performance of ERM

Ideal: For a given data generating distribution (X, Y) we would like to find the global optimal rule

$$h^* = \operatorname*{argmin}_h R(h)$$

where minimum is over all functions $h : \mathcal{X} \to \mathcal{Y}$. Note h^* depends on (X, Y)

In practice: Two issues

- \triangleright (X, Y) unknown, accessible only through observations D_n
- Optimal rule h^* for (X, Y) need not be in \mathcal{H}

Estimation and Approximation Error

Easy to see: For any (X, Y) and any procedure h_n selecting rules in \mathcal{H}

$$R(\hat{h}_n) - R(h^*) = \left[R(\hat{h}_n) - \min_{h \in \mathcal{H}} R(h) \right] + \left[\min_{h \in \mathcal{H}} R(h) - R(h^*) \right]$$

▶ [L] = *Estimation error:* risk of \hat{h}_n vs best rule in \mathcal{H} [random]

▶ [R] = Approximation error: best rule in \mathcal{H} vs optimal rule h^* [fixed]

For ERM, as we increase the size of the target family $\ensuremath{\mathcal{H}}$

- Estimation error tends to increase
- Approximation error decreases

Once the family \mathcal{H} and distribution (X, Y) are fixed, the approximation error is fixed. Focus on evaluation of the estimation error.

Fact: Let \hat{h}_n be ERM estimator for family \mathcal{H} . For every distribution (X, Y)

$$0 \le R(\hat{h}_n) - \inf_{h \in \mathcal{H}} R(h) \le 2 \sup_{h \in \mathcal{H}} |\hat{R}_n(h) - R(h)|$$

Analysis of Empirical Risk Minimization Finite Family \mathcal{H}

Analysis of ERM: Finite \mathcal{H} , Bounded Loss, Zero Error

Fact: Suppose that \mathcal{H} is finite, $\ell(y', y) \in [0, 1]$, and $\min_{h \in \mathcal{H}} R(h) = 0$. Then for every distribution (X, Y), sample size $n \ge 1$, and $t \ge 0$

$$\mathbb{P}\left(R(\hat{h}_n) > t\right) \leq |\mathcal{H}| e^{-nt}$$

Corollary: For every $\delta > 0$, with probability at least $1 - \delta$

$$R(\hat{h}_n) \leq \frac{1}{n} \log \frac{|\mathcal{H}|}{\delta}$$

and we can bound the expected risk as

$$\mathbb{E}R(\hat{h}_n) \leq \frac{(\log |\mathcal{H}| + 1)}{n}$$

Analysis of ERM: Finite \mathcal{H} , Bounded Loss

Fact: Suppose that \mathcal{H} is finite and $\ell(y', y) \in [0, 1]$. Then for every distribution (X, Y), sample size n, and $t \ge 0$

$$\mathbb{P}\left(R(\hat{h}_n) - \min_{h \in \mathcal{H}} R(h) > t\right) \leq |\mathcal{H}| e^{-nt^2/2}$$

Corollary: For every $\delta > 0$, with probability at least $1 - \delta$

$$R(\hat{h}_n) \leq \min_{h \in \mathcal{H}} R(h) + \sqrt{\frac{2}{n} \log \frac{|\mathcal{H}|}{\delta}}$$

and we can bound the expected risk as

$$\mathbb{E}R(\hat{h}_n) \leq \min_{h \in \mathcal{H}} R(h) + \sqrt{\frac{2(\log |\mathcal{H}| + 1)}{n}}$$

Analysis of Empirical Risk Minimization Infinite Family \mathcal{H}

ERM and Uniform Laws of Large Numbers

Analysis of ERM for infinite families leverages ideas from uniform laws of large numbers to bound estimation error

Fact: Upper bound on estimation error can be written as

$$\sup_{h \in \mathcal{H}} |\hat{R}_n(h) - R(h)| = \sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^n g(Z_i) - \mathbb{E}g(Z) \right|$$

where $Z_i = (X_i, Y_i)$ are iid copies of Z = (X, Y), and

$$\mathcal{G} = \{g(x, y) = \ell(h(x), y) : h \in \mathcal{H}\}$$

is the set of error functions associated with the prediction rules in ${\cal H}$

Note: If the loss function ℓ is bounded, so are the functions $g \in \mathcal{G}$

Uniform Laws of Large Numbers

Setting

• Measurable space $(\mathcal{X}, \mathcal{A})$

▶ Family \mathcal{F} of bounded, measurable functions $f : \mathcal{X} \rightarrow [a, b]$

• X_1, \ldots, X_n iid copies of $X \in \mathcal{X}$

Of interest: Worst-case difference between averages and expectations

$$\hat{\Delta}_n(\mathcal{F}) = \Delta_n(X_1^n : \mathcal{F}) = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}f(X) \right|$$

Uniform Laws of Large Numbers, cont.

Recall: For each fixed $f \in \mathcal{F}$, each $n \ge 1$, and each t > 0, Hoeffding gives

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f(X)\right| > t\right) \leq 2\exp\left\{\frac{-2nt^{2}}{(b-a)^{2}}\right\}$$

Goal: Similar bound for uniform deviations of the form

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f(X)\right|>t\right) \leq \Gamma_{n}(t,X,\mathcal{F})\exp\left\{\frac{-2nt^{2}}{(b-a)^{2}}\right\}$$

where $\Gamma_n(\cdot)$ measures the complexity of \mathcal{F} at resolution t on samples of size n drawn from the distribution of X

First Step: Concentration

Fact

- 1. Function $F(x_1^n) = \Delta_n(x_1^n : \mathcal{F})$ has difference coefficients $c_i = (b-a)/n$
- 2. By the bounded difference inequality, for all t > 0

$$\mathbb{P}(|\hat{\Delta}_n(\mathcal{F}) - \mathbb{E}\hat{\Delta}_n(\mathcal{F})| > t) \leq 2 e^{-2nt^2/(b-a)^2}$$

So, it remains to analyze $\mathbb{E}\hat{\Delta}_n(\mathcal{F})$...

Second Step: Symmetrization

Fact: For every $n \ge 1$

$$\mathbb{E}\hat{\Delta}_n(\mathcal{F}) \leq 2\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n \varepsilon_i f(X_i)\right|\right]$$

Here $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$ are iid with $\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = 1/2$, and are independent of X_1, \ldots, X_n

Note

- Random signs $\varepsilon_1, \ldots, \varepsilon_n$ referred to as Rademacher variables
- Upper bound called expected Rademacher complexity of \mathcal{F} on X_1^n
- Complexity measures ability of functions $f \in \mathcal{F}$ to track noise

Focus on Families of Sets

Restriction: Assume that $\mathcal{F} = \{\mathbb{I}_C(x) : C \in \mathcal{C}\}$ is the family of indicator functions associated with a collection \mathcal{C} of subsets of \mathcal{X}

Given $X_1, \ldots, X_n \in \mathcal{X}$ iid copies of X, define the discrepency of C by

$$\hat{\Delta}_n(\mathcal{C}) = \Delta_n(X_1^n : \mathcal{C}) = \sup_{C \in \mathcal{C}} \left| \frac{1}{n} \sum_{i=1}^n I_C(X_i) - \mathbb{P}(X \in C) \right|$$

Opportunity: Measure the complexity of C using combinatorial ideas

- Shatter coefficient
- VC-dimension

Shatter Coefficient

Idea: Let $S = \{x_1, \ldots, x_n\} \subseteq \mathcal{X}$ be finite. Every set $C \in \mathcal{C}$ induces a subset $C \cap S$ of S. Number of induced subsets reflects complexity of \mathcal{C}

Definition: The *shatter coefficient* of C on $x_1, \ldots, x_n \in \mathcal{X}$ is the number of *distinct* subsets of x_1, \ldots, x_n induced by sets in C:

$$S(x_1^n : C) = |\{C \cap \{x_1, \dots, x_n\} : C \in C\}|$$

- Note that $1 \leq S(x_1^n : \mathcal{C}) \leq 2^n$
- If S(x₁ⁿ : C) = 2ⁿ then C induces every subset of x₁,..., x_n and we say that C shatters x₁,..., x_n

Third Step: Bound on Expected Rademacher Complexity

Fact: If $\varepsilon \in \{-1, 1\}$ is Rademacher, then its MGF satisfies $M_{\varepsilon}(s) \leq e^{s^2/2}$

Fact: For every $n \ge 1$ we have

$$\mathbb{E}\left[\sup_{C \in \mathcal{C}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \mathbb{I}(X_{i} \in C) \right| \right] \leq \sqrt{\frac{2 \log \mathbb{E}S(X_{1}^{n} : \mathcal{C})}{n}}$$

Vapnik-Chervonenkis Inequality

Fact: Let C be a family of subsets of X, and let $X_1, X_2, \ldots, X \in X$ be iid. For each t > 0,

$$\mathbb{P}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}(X_{i}\in C)-\mathbb{P}(X\in C)\right| \geq t\right) \leq \mathbb{E}S(X_{1}^{n}:\mathcal{C})e^{-nt^{2}/8}$$

Better, but less attractive, upper bound is $(\mathbb{E}S(X_1^n : \mathcal{C}))^{16} e^{-2nt^2}$

Note: Complexity of C reflected in expected shatter coefficient $\mathbb{E}S(X_1^n : C)$

Application to Empirical Risk Minimization

Given class \mathcal{H} of binary decision rules $h : \mathcal{X} \to \{0, 1\}$, consider associated family \mathcal{A} of sets

$$A = (h^{-1}(1) \times \{0\}) \cup (h^{-1}(0) \times \{1\}) \subseteq \mathcal{X} \times \{0, 1\}$$

where h ranges over \mathcal{H} . Easy to see that $S((x, y)_1^n : \mathcal{A}) \leq S(x_1^n : \mathcal{H})^2$

Cor: Given observations D_n iid $\sim (X, Y)$ the ERM estimator \hat{h}_n satisfies

$$\mathbb{P}\left(R(\hat{h}_n) - \inf_{h \in \mathcal{H}} R(h) \ge t\right) \le \mathbb{E}S(X_1^n : \mathcal{C})^2 e^{-nt^2/32t}$$

The Vapnik-Chervonenkis Dimension

The VC Dimension

Recall: A family $\mathcal{C} \subseteq 2^{\mathcal{X}}$ shatters points $x_1, \ldots, x_n \in \mathcal{X}$ if $S(x_1^n : \mathcal{C}) = 2^n$

Definition: The *VC*-dimension of C, denoted dim(C), is the largest k such that C shatters *some* set of k points in \mathcal{X} .

If ${\mathcal C}$ shatters arbitrarily large finite sets, then $\dim({\mathcal C})=+\infty$

First Examples

- C =all half-lines $(-\infty, t]$ in \mathbb{R} , dim(C) = 1
- $C = \text{all discs in } \mathbb{R}^2, \dim(C) = 3$
- $C = \text{all convex sets in } \mathbb{R}^2, \dim(C) = +\infty$

Sauer's Lemma

Sauer's Lemma establishes a connection between the VC-dimension of a family ${\cal C}$ and its shatter coefficients

Lemma: If C has VC-dimension d then for all $n \ge 1$ and all $x_1, \ldots, x_n \in \mathcal{X}$

$$S(x_1^n:\mathcal{C}) \leq \sum_{k=0}^d \binom{n}{k} \leq (n+1)^d$$

Upshot: If $\dim(\mathcal{C}) = d$ then the shatter coefficient of \mathcal{C} grows at most polynomially with degree d

VC Dimension of Zero-Level Sets

Lemma: Let \mathcal{G} be a *v*-dimensional vector space of functions $g : \mathcal{X} \to \mathbb{R}$. Let \mathcal{C} be the family of sets

 $C = \{x: g(x) \ge 0\}$

where g ranges over \mathcal{G} . Then $\dim(\mathcal{C}) \leq v$

Corollary

- 1. If C =all half-spaces in \mathbb{R}^d then $\dim(C) \leq d+1$
- 2. If C =all closed balls in \mathbb{R}^d then $\dim(C) \leq d+2$
- 3. If C = all ellipsoids $\{x : x^t A x \leq 1\}$ where $A \in \mathbb{R}^{d \times d}$ and $A \geq 0$ then $\dim(C) \leq (d+1)d/2 + 1$

Lower Bounds

Canonical Problem: Identifying Direction of Bias

Idea: Given coin with P(heads) slightly above or below 1/2. How difficult is it to determine the *direction* of the bias based on m flips?

DoB Model: Fix $\epsilon \in (0, 1)$

- 1. Sign variable $\sigma \in \{-1, 1\}$ with $\mathbb{P}(\sigma = 1) = \mathbb{P}(\sigma = 1) = 1/2$
- 2. Flips $Y_1, \ldots, Y_m \mid \sigma \sim \text{iid } \text{Bern}(1/2 + \sigma \epsilon/2)$

DoB Problem: Size of bias is $\epsilon/2$, direction of bias determined by σ

- Decision rule $h: \{0,1\}^m \to \{-1,1\}$ has risk $R(h) = \mathbb{P}(h(Y_1^m) \neq \sigma)$
- Find lower bound on the risk R(h) of any decision rule

Preliminaries

Fact 1: The conditional probability $\eta(y_1^m)=\mathbb{P}(\sigma=1|Y_1^m=y_1^m)$ can be written in the form

$$\eta(y_1^m) = \frac{1}{1 + c^{m_0 - m_1}}$$

where we have

$$m_0 = \sum_{i=1}^m \mathbb{I}(y_i = 0)$$
 $m_1 = \sum_{i=1}^m \mathbb{I}(y_i = 1)$ $c = \frac{1/2 + \epsilon/2}{1/2 - \epsilon/2} > 1$

Fact 2: If $U \sim Bin(m, p)$ and $V \sim Bin(m, 1-p)$ then $U \stackrel{d}{=} m - V$. In particular,

$$|2U - m| \stackrel{d}{=} |2V - m|$$

First Step: Characterize Optimal Decision Rule

Fact: Let $\eta(y_1^m) = \mathbb{P}(\sigma = 1 | Y_1^m = y_1^m)$. The optimal decision rule h^* for the direction of bias problem is

$$h^*(y_1^m) \ = \ \left\{ \begin{array}{ll} 1 & \mbox{if} \ \eta(y_1^m) \ge 1/2 \\ \\ -1 & \mbox{if} \ \eta(y_1^m) < 1/2 \end{array} \right.$$

Equivalently, $h^*(y_1^m) = 1$ iff $m_1 \ge m_0$. The risk of h^* is

$$\mathbb{P}(h^*(Y_1^m) \neq \sigma) = \mathbb{E}\min(\eta(Y_1^m), 1 - \eta(Y_1^m))$$

Cor: Any decision rule *h* for DoB has risk $R(h) \ge \mathbb{E} \min(\eta(Y_1^m), 1 - \eta(Y_1^m))$

Lower Bound for Risk in DoB

Prop'n: For each $\epsilon \in [0, 1)$ and $m \ge 1$ the optimal risk for direction of bias

$$R^* \, \geq \, \frac{1}{2} \exp \left\{ \frac{-2\epsilon (\sqrt{m} + m\epsilon)}{1-\epsilon} \right\} \, := \, L(m:\epsilon)$$

Note that $L(\cdot : \epsilon)$ is monotone decreasing and convex

Fact: If $1 \le Z \le 1$ then for all $\gamma \in [0, 1)$

$$\mathbb{P}(Z > \gamma) \ge \frac{\mathbb{E}Z - \gamma}{1 - \gamma} > \mathbb{E}Z - \gamma$$

Lower Bound for Classification, General Case

Given: Family \mathcal{H} of binary classification rules with VC-dim d, and a procedure h_n producing rules in \mathcal{H}

Theorem: If $n \ge 4d$ there is a distribution (X, Y) such that

$$\mathbb{E}\left[R(\hat{h}_n) - \inf_{h \in \mathcal{H}} R(h)\right] \geq \frac{1}{2} \sqrt{\frac{d}{n}} e^{-8}$$

when $D_n = (X_1, Y_1), \ldots, (X_n, Y_n)$ are iid $\sim (X, Y)$

Corollary: Under the same conditions

$$\mathbb{P}\left(R(\hat{h}_n) - \inf_{h \in \mathcal{H}} R(h) \ge \frac{1}{2}\sqrt{\frac{d}{n}}\right) \ge e^{-8}$$

Theorem: Let \mathcal{H} be a family of binary classification rules with VC-dim *d*. Consider the family \mathcal{P} of joint distributions (X, Y) for which

 $\min_{h\in\mathcal{H}}R(h)=0.$

For each $n \ge 1$ there exists a distribution $P \in \mathcal{P}$ such that

$$\mathbb{E}\left[R(\hat{h}_n)\right] \geq \frac{d-1}{2en}$$

when observations $D_n = (X_1, Y_1), \dots, (X_n, Y_n)$ are drawn iid from P