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Empirical Risk Minimization
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Empirical Risk Minimization (ERM)

Setting
» Set X of features/predictors
» Set Y of responses/labels

» Loss function/: Y xY — R

Recall
» A predictionruleisamaph: X — Y
> Loss of h on feature-response pair (x,y) is £(h(z), y)

> Risk of h on random pair (X,Y") is given by R(h) = E{(h(X),Y)
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Empirical Risk Minimization (ERM)

Given
» Family H of prediction rules h : X — Y (possibly infinite)
> Jointly distributed pair (X,Y) € X x Y

» Observations D,, = (X1, Y1),...,(Xn,Ys) iid copies of (X,Y)

Ideally: Find rule h € H with minimum risk R(h)

ERM: Find rule in H minimizing empirical risk (proxy for true risk)

hn = argmin R,(h) = argmianZ(h(Xi),Yi)
heH heH T
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Example: Ordinary Least Squares

Setting
> Feature space X = R%. Response Y = R
> Loss ((y',y) = (v —y)?
> Risk of rule b : RY — R on pair (X,Y) is R(h) = E(h(X) — Y)?

> Let #H = family of linear rules h(x) = (z, 8) + Bo

Upshot: ERM coincides with OLS
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Example: Histogram Classification Rules

Setting

> Feature space X is general. Response ) = {0,1}

> Loss {(y',y) =1(y' #y)
> Riskof rule h : X — {0,1} on pair (X,Y) is R(h) = P(h(X) #Y)

> Let H = family of rules constant on the cells of a finite partition 7 of X

Upshot: ERM coincides with the histogram classification rule

hn(z) = maj-vote{Y; : X; € n(z)}
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Binary Classification: General Case

Note: Every rule h : X — {0, 1} corresponds to a subset of X and v.v.
> Let C = family of subsets of X. For C € C let h¢(z) = I(z € C)

» Define H = {hc : C € C}. Then ERM finds set C' € C minimizing
N 1 < 1
n(h = — i i) = — i — Y
Rn(he) n;H(hc(X)aéY) “;WX €C) - Y|
Examples

> C = all half-spaces in X = R?

» C = all spheresin X = R?

Caveat: Often, computationally efficient algorithms for ERM don’t exist
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Downward Bias of ERM Training Error

Idea: ERM rule h., is defined by minimizing training error. Thus we expect
the training error of h,, to be optimistic

Fact: Let h,, be ERM rule for a family % based on observations D,,. Then

ER,(hy) < R(hy)
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Assessing Performance of ERM

Ideal: For a given data generating distribution (X, Y") we would like to find
the global optimal rule

h* = argmin R(h)
h

where minimum is over all functions h : X — ). Note h* depends on (X,Y)

In practice: Two issues
> (X,Y) unknown, accessible only through observations D,

> Optimal rule ™ for (X,Y") need not be in H

9/34



Estimation and Approximation Error

Easy to see: For any (X,Y’) and any procedure h,, selecting rules in A

R(hn) = R(") = |R(hn) fgéi%R(h)} + LmeigR(h) — R(h")

» [L] = Estimation error: tisk of h,, vs best rule in % [random]

» [R] = Approximation error: best rule in H vs optimal rule h* [fixed]

For ERM, as we increase the size of the target family H
» Estimation error tends to increase

> Approximation error decreases
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Bound on Estimation Error for ERM

Once the family H and distribution (X, Y") are fixed, the approximation error
is fixed. Focus on evaluation of the estimation error.

Fact: Let /,, be ERM estimator for family #. For every distribution (X,Y")

0 < R(hn) — inf R(h) < 2sup |Rn(h) — R(h)|
heH heEH
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Analysis of Empirical Risk Minimization

Finite Family ‘H
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Analysis of ERM: Finite #, Bounded Loss, Zero Error

Fact: Suppose that # is finite, £(y’,y) € [0, 1], and minpe R(k) = 0. Then
for every distribution (X,Y’), sample size n > 1,and ¢t > 0

P (R(ﬁn) > t) < [H|e

Corollary: For every § > 0, with probability at least 1 — ¢

. 1 |H|
hn) < —log—
R(hn) < —log —
and we can bound the expected risk as

(log |H| +1)

F Y <
ER(hy,) -
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Analysis of ERM: Finite #, Bounded Loss

Fact: Suppose that A is finite and £(y’, y) € [0, 1]. Then for every distribution
(X,Y), sample size n,and t > 0

P <R(ﬁn) — min R(h) > t) < [He

heH

Corollary: For every § > 0, with probability at least 1 — ¢

- . [H|
R(hy) < min R(h) + log 5
and we can bound the expected risk as
2(log |H| + 1)

S
ER(hyn) < {Lrél?r{lR(h) + .
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Analysis of Empirical Risk Minimization

Infinite Family H
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ERM and Uniform Laws of Large Numbers

Analysis of ERM for infinite families leverages ideas from uniform laws of
large numbers to bound estimation error

Fact: Upper bound on estimation error can be written as

sup | Ry (h) — R(h)| = sup Zg (2)

heH geg | M
where Z; = (X;,Y;) are iid copies of Z = (X,Y), and
G = {g(z,y) = l(h(z),y) : h € H}
is the set of error functions associated with the prediction rules in H

Note: If the loss function Z is bounded, so are the functions g € G
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Uniform Laws of Large Numbers

Setting
» Measurable space (X, A)
» Family F of bounded, measurable functions f : X — [a, b]

» X;,...,X, iid copiesof X ¢ X

Of interest: Worst-case difference between averages and expectations

AW(F) = Ap(XT: F) = sup Zf X)

fer
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Uniform Laws of Large Numbers, cont.
Recall: For each fixed f € F, each n > 1, and each t > 0, Hoeffding gives

p( E
n
i=1

> J(X0) ~Ef(X)

Goal: Similar bound for uniform deviations of the form

sup
fer

where I",, (-) measures the complexity of F at resolution ¢ on samples of size
n drawn from the distribution of X

> t) < I'n(t, X, F) exp{%}

_Zf X)
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First Step: Concentration

Fact
1. Function F(z7) = A, (z7 : F) has difference coefficients ¢; = (b — a)/n
2. By the bounded difference inequality, for all t > 0

P(An(F) —EAL(F)| > 1) < 22/

So, it remains to analyze EA,, (F)...
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Second Step: Symmetrization

Fact: Foreveryn > 1

n

Sy e (x)

=1

EA,(F) < 2E |sup

fer

|

Hereei,...,en € {—1,1} areiid with P(e; = 1) = P(e; = —1) = 1/2, and are
independent of X1,..., X,
Note

» Random signs 1, .. ., e, referred to as Rademacher variables

» Upper bound called expected Rademacher complexity of F on X7

» Complexity measures ability of functions f € F to track noise
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Focus on Families of Sets

Restriction: Assume that 7 = {I¢ () : C € C} is the family of indicator
functions associated with a collection C of subsets of X

Given X1,..., X, € X iid copies of X, define the discrepency of C by

n

nLoy — 1 A
AL(C) = An(XT:C) = sup n;Ic(Xz) P(X € C)

Opportunity: Measure the complexity of C using combinatorial ideas
» Shatter coefficient

» VC-dimension
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Shatter Coefficient

Idea: Let S = {z1,...,2z,} C X be finite. Every set C € C induces a subset
C N S of S. Number of induced subsets reflects complexity of C

Definition: The shatter coefficientof C on z1,...,z, € X is the number of
distinct subsets of z1, ..., z, induced by sets in C:

S(z!:C) = {Cn{x1,...,zn}: C €C}

» Notethat1 < S(zf :C) < 2"

> If S(zT : C) = 2" then C induces every subset of z1, ..., z, and we say
that C shatters z1, ...,y
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Third Step: Bound on Expected Rademacher Complexity

Fact: If ¢ € {—1,1} is Rademacher, then its MGF satisfies M. (s) < /2

Fact: For every n > 1 we have

2logES(X} : C)
n

sup <

cecC

nzgz (Xie )
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Vapnik-Chervonenkis Inequality

Fact: Let C be a family of subsets of X, and let X1, X»,..., X € X beid. For
eacht > 0,

—Z]IX eC)-P(X eC)

t) < ES(X]:C)e /8
Better, but less attractive, upper bound is (ES(XT : C))'® e~2"**

Note: Complexity of C reflected in expected shatter coefficient ES(X7 : C)
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Application to Empirical Risk Minimization

Given class H of binary decision rules h : X — {0, 1}, consider associated
family A of sets

A= (1) x {0} U (hH0) x {1}) € X x {0,1}

2

where h ranges over H. Easy to see that S((z,y)T : A) < S(zf : H)

Cor: Given observations D,, iid ~ (X,Y’) the ERM estimator 5., satisfies

P (R(ﬁn) — jnf R(h) > t> < ES(XT:C)2e /32
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The Vapnik-Chervonenkis Dimension
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The VC Dimension

Recall: A family C C 2% shatters points z1,...,z, € X if S(z} : C) = 2"
Definition: The VC-dimension of C, denoted dim(C), is the largest k such

that C shatters some set of k points in X.

If C shatters arbitrarily large finite sets, then dim(C) = +oo

First Examples
> C = all half-lines (—co, t] iINR, dim(C) =1
> C = all discs in R?, dim(C) = 3

> C = all convex sets in R?, dim(C) = 4o
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Sauer’s Lemma

Sauer’s Lemma establishes a connection between the VC-dimension of a
family C and its shatter coefficients

Lemma: If C has VC-dimension d thenforalln > 1and all z1,...,z, € X

Sl C) < Z(Z) < (n+1)

k

Upshot: If dim(C) = d then the shatter coefficient of C grows at most
polynomially with degree d
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VC Dimension of Zero-Level Sets

Lemma: Let G be a v-dimensional vector space of functions g : X — R. Let
C be the family of sets

C = {z:g(z) >0}

where g ranges over G. Then dim(C) < wv

Corollary
1. If ¢ = all half-spaces in R? then dim(C) < d + 1
2. If ¢ = all closed balls in R? then dim(C) < d + 2

3. If ¢ = all ellipsoids {z : ' Az < 1} where A € R**? and A > 0 then
dim(C) < (d+1)d/2+1
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Lower Bounds
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Canonical Problem: Identifying Direction of Bias

Idea: Given coin with P(heads) slightly above or below 1/2. How difficult is it
to determine the direction of the bias based on m flips?

DoB Model: Fix € € (0,1)
1. Sign variable 0 € {—1,1} withP(c =1) =P(c = 1) =1/2

2. Flips Y1,...,Y.w |o ~iid Bern(1/2 4 o¢/2)

DoB Problem: Size of bias is ¢/2, direction of bias determined by o
» Decisionrule h : {0,1}™ — {—1,1} has risk R(h) = P(h(Y{") # o)

» Find lower bound on the risk R(h) of any decision rule
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Preliminaries

Fact 1: The conditional probability n(yi*) = P(c = 1|Y{™ = y1") can be
written in the form
m) —

L

where we have

mo:ZH(yizo) m1:;]l(yi:1) c:%>l

Fact 2: If U ~ Bin(m, p) and V ~ Bin(m,1 — p) then U £ m — V. In
particular,

2U —m| £ |2V — m|
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First Step: Characterize Optimal Decision Rule

Fact: Let n(y1") = P(o = 1]Y{™ = y1"). The optimal decision rule »* for the
direction of bias problem is

. L i) > 172
) = { 1 i) < 12

Equivalently, h*(y1*) = 1 iff m1 > mo. The risk of A" is

P(h*(Y{") # o) = Emin(n(Y{"),1 —n(¥1"))

Cor: Any decision rule h for DoB has risk R(h) > Emin(n(¥{"),1 — n(¥Y7™))
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Lower Bound for Risk in DoB

Prop’n: For each € € [0,1) and m > 1 the optimal risk for direction of bias

R > %exp{%:m&)} = L(m: e

Note that L(- : €) is monotone decreasing and convex

Fact: If 1 < Z < 1thenforall v € [0,1)

EZ —
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Lower Bound for Classification, General Case

Given: Family H of binary classification rules with VC-dim d, and a
procedure h,, producing rules in H

Theorem: If n > 4d there is a distribution (X,Y") such that

E R(ﬁn)—hig?f{R(h)] > % d,-s

- n

when D,, = (X1,Y1),...,(Xn,Yy) areiid ~ (X,Y)

Corollary: Under the same conditions

P(R(m-}gg;mh) > d) > ¢
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Lower Bound for Classification, Zero Error Case

Theorem: Let H be a family of binary classification rules with VC-dim d.
Consider the family P of joint distributions (X, Y") for which

min R(h) = 0.
heH

For each n > 1 there exists a distribution P € P such that

2en

when observations D,, = (X1,Y1),...,(Xn, Y,) are drawn iid from P
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