Empirical Risk Minimization and
 Vapnik-Chervonenkis Theory

Andrew Nobel

September, 2023

Empirical Risk Minimization

Empirical Risk Minimization (ERM)

Setting

- Set \mathcal{X} of features/predictors
- Set \mathcal{Y} of responses/labels
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$

Recall

- A prediction rule is a map $h: \mathcal{X} \rightarrow \mathcal{Y}$
- Loss of h on feature-response pair (x, y) is $\ell(h(x), y)$
- Risk of h on random pair (X, Y) is given by $R(h)=\mathbb{E} \ell(h(X), Y)$

Empirical Risk Minimization (ERM)

Given

- Family \mathcal{H} of prediction rules $h: \mathcal{X} \rightarrow \mathcal{Y}$ (possibly infinite)
- Jointly distributed pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$
- Observations $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ iid copies of (X, Y)

Ideally: Find rule $h \in \mathcal{H}$ with minimum risk $R(h)$

ERM: Find rule in \mathcal{H} minimizing empirical risk (proxy for true risk)

$$
\hat{h}_{n}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_{n}(h)=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(X_{i}\right), Y_{i}\right)
$$

Example: Ordinary Least Squares

Setting

- Feature space $\mathcal{X}=\mathbb{R}^{d}$. Response $\mathcal{Y}=\mathbb{R}$
- Loss $\ell\left(y^{\prime}, y\right)=\left(y^{\prime}-y\right)^{2}$
- Risk of rule $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ on pair (X, Y) is $R(h)=\mathbb{E}(h(X)-Y)^{2}$
- Let $\mathcal{H}=$ family of linear rules $h(x)=\langle x, \beta\rangle+\beta_{0}$

Upshot: ERM coincides with OLS

Example: Histogram Classification Rules

Setting

- Feature space \mathcal{X} is general. Response $\mathcal{Y}=\{0,1\}$
- Loss $\ell\left(y^{\prime}, y\right)=\mathbb{I}\left(y^{\prime} \neq y\right)$
- Risk of rule $h: \mathcal{X} \rightarrow\{0,1\}$ on pair (X, Y) is $R(h)=\mathbb{P}(h(X) \neq Y)$
- Let $\mathcal{H}=$ family of rules constant on the cells of a finite partition π of \mathcal{X}

Upshot: ERM coincides with the histogram classification rule

$$
\hat{h}_{n}(x)=\operatorname{maj}-\operatorname{vote}\left\{Y_{i}: X_{i} \in \pi(x)\right\}
$$

Binary Classification: General Case

Note: Every rule $h: \mathcal{X} \rightarrow\{0,1\}$ corresponds to a subset of \mathcal{X} and v.v.

- Let $\mathcal{C}=$ family of subsets of \mathcal{X}. For $C \in \mathcal{C}$ let $h_{C}(x)=\mathbb{I}(x \in C)$
- Define $\mathcal{H}=\left\{h_{C}: C \in \mathcal{C}\right\}$. Then ERM finds set $C \in \mathcal{C}$ minimizing

$$
\hat{R}_{n}\left(h_{C}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(h_{C}\left(X_{i}\right) \neq Y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n}\left|\mathbb{I}\left(X_{i} \in C\right)-Y_{i}\right|
$$

Examples

- $\mathcal{C}=$ all half-spaces in $\mathcal{X}=\mathbb{R}^{d}$
- $\mathcal{C}=$ all spheres in $\mathcal{X}=\mathbb{R}^{d}$

Caveat: Often, computationally efficient algorithms for ERM don't exist

Downward Bias of ERM Training Error

Idea: ERM rule \hat{h}_{n} is defined by minimizing training error. Thus we expect the training error of \hat{h}_{n} to be optimistic

Fact: Let \hat{h}_{n} be ERM rule for a family \mathcal{H} based on observations D_{n}. Then

$$
\mathbb{E} \hat{R}_{n}\left(\hat{h}_{n}\right) \leq R\left(\hat{h}_{n}\right)
$$

Assessing Performance of ERM

Ideal: For a given data generating distribution (X, Y) we would like to find the global optimal rule

$$
h^{*}=\underset{h}{\operatorname{argmin}} R(h)
$$

where minimum is over all functions $h: \mathcal{X} \rightarrow \mathcal{Y}$. Note h^{*} depends on (X, Y)

In practice: Two issues

- (X, Y) unknown, accessible only through observations D_{n}
- Optimal rule h^{*} for (X, Y) need not be in \mathcal{H}

Estimation and Approximation Error

Easy to see: For any (X, Y) and any procedure h_{n} selecting rules in \mathcal{H}

$$
R\left(\hat{h}_{n}\right)-R\left(h^{*}\right)=\left[R\left(\hat{h}_{n}\right)-\min _{h \in \mathcal{H}} R(h)\right]+\left[\min _{h \in \mathcal{H}} R(h)-R\left(h^{*}\right)\right]
$$

- [L] = Estimation error: risk of \hat{h}_{n} vs best rule in \mathcal{H} [random]
- $[\mathrm{R}]=$ Approximation error: best rule in \mathcal{H} vs optimal rule h^{*} [fixed]

For ERM, as we increase the size of the target family \mathcal{H}

- Estimation error tends to increase
- Approximation error decreases

Bound on Estimation Error for ERM

Once the family \mathcal{H} and distribution (X, Y) are fixed, the approximation error is fixed. Focus on evaluation of the estimation error.

Fact: Let \hat{h}_{n} be ERM estimator for family \mathcal{H}. For every distribution (X, Y)

$$
0 \leq R\left(\hat{h}_{n}\right)-\inf _{h \in \mathcal{H}} R(h) \leq 2 \sup _{h \in \mathcal{H}}\left|\hat{R}_{n}(h)-R(h)\right|
$$

Analysis of Empirical Risk Minimization
 Finite Family \mathcal{H}

Analysis of ERM: Finite \mathcal{H}, Bounded Loss, Zero Error

Fact: Suppose that \mathcal{H} is finite, $\ell\left(y^{\prime}, y\right) \in[0,1]$, and $\min _{h \in \mathcal{H}} R(h)=0$. Then for every distribution (X, Y), sample size $n \geq 1$, and $t \geq 0$

$$
\mathbb{P}\left(R\left(\hat{h}_{n}\right)>t\right) \leq|\mathcal{H}| e^{-n t}
$$

Corollary: For every $\delta>0$, with probability at least $1-\delta$

$$
R\left(\hat{h}_{n}\right) \leq \frac{1}{n} \log \frac{|\mathcal{H}|}{\delta}
$$

and we can bound the expected risk as

$$
\mathbb{E} R\left(\hat{h}_{n}\right) \leq \frac{(\log |\mathcal{H}|+1)}{n}
$$

Analysis of ERM: Finite \mathcal{H}, Bounded Loss

Fact: Suppose that \mathcal{H} is finite and $\ell\left(y^{\prime}, y\right) \in[0,1]$. Then for every distribution (X, Y), sample size n, and $t \geq 0$

$$
\mathbb{P}\left(R\left(\hat{h}_{n}\right)-\min _{h \in \mathcal{H}} R(h)>t\right) \leq|\mathcal{H}| e^{-n t^{2} / 2}
$$

Corollary: For every $\delta>0$, with probability at least $1-\delta$

$$
R\left(\hat{h}_{n}\right) \leq \min _{h \in \mathcal{H}} R(h)+\sqrt{\frac{2}{n} \log \frac{|\mathcal{H}|}{\delta}}
$$

and we can bound the expected risk as

$$
\mathbb{E} R\left(\hat{h}_{n}\right) \leq \min _{h \in \mathcal{H}} R(h)+\sqrt{\frac{2(\log |\mathcal{H}|+1)}{n}}
$$

Analysis of Empirical Risk Minimization Infinite Family \mathcal{H}

ERM and Uniform Laws of Large Numbers

Analysis of ERM for infinite families leverages ideas from uniform laws of large numbers to bound estimation error

Fact: Upper bound on estimation error can be written as

$$
\sup _{h \in \mathcal{H}}\left|\hat{R}_{n}(h)-R(h)\right|=\sup _{g \in \mathcal{G}}\left|\frac{1}{n} \sum_{i=1}^{n} g\left(Z_{i}\right)-\mathbb{E} g(Z)\right|
$$

where $Z_{i}=\left(X_{i}, Y_{i}\right)$ are iid copies of $Z=(X, Y)$, and

$$
\mathcal{G}=\{g(x, y)=\ell(h(x), y): h \in \mathcal{H}\}
$$

is the set of error functions associated with the prediction rules in \mathcal{H}

Note: If the loss function ℓ is bounded, so are the functions $g \in \mathcal{G}$

Uniform Laws of Large Numbers

Setting

- Measurable space $(\mathcal{X}, \mathcal{A})$
- Family \mathcal{F} of bounded, measurable functions $f: \mathcal{X} \rightarrow[a, b]$
- X_{1}, \ldots, X_{n} iid copies of $X \in \mathcal{X}$

Of interest: Worst-case difference between averages and expectations

$$
\hat{\Delta}_{n}(\mathcal{F})=\Delta_{n}\left(X_{1}^{n}: \mathcal{F}\right)=\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E} f(X)\right|
$$

Uniform Laws of Large Numbers, cont.

Recall: For each fixed $f \in \mathcal{F}$, each $n \geq 1$, and each $t>0$, Hoeffding gives

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E} f(X)\right|>t\right) \leq 2 \exp \left\{\frac{-2 n t^{2}}{(b-a)^{2}}\right\}
$$

Goal: Similar bound for uniform deviations of the form

$$
\mathbb{P}\left(\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E} f(X)\right|>t\right) \leq \Gamma_{n}(t, X, \mathcal{F}) \exp \left\{\frac{-2 n t^{2}}{(b-a)^{2}}\right\}
$$

where $\Gamma_{n}(\cdot)$ measures the complexity of \mathcal{F} at resolution t on samples of size n drawn from the distribution of X

First Step: Concentration

Fact

1. Function $F\left(x_{1}^{n}\right)=\Delta_{n}\left(x_{1}^{n}: \mathcal{F}\right)$ has difference coefficients $c_{i}=(b-a) / n$
2. By the bounded difference inequality, for all $t>0$

$$
\mathbb{P}\left(\left|\hat{\Delta}_{n}(\mathcal{F})-\mathbb{E} \hat{\Delta}_{n}(\mathcal{F})\right|>t\right) \leq 2 e^{-2 n t^{2} /(b-a)^{2}}
$$

So, it remains to analyze $\mathbb{E} \hat{\Delta}_{n}(\mathcal{F}) \ldots$

Second Step: Symmetrization

Fact: For every $n \geq 1$

$$
\mathbb{E} \hat{\Delta}_{n}(\mathcal{F}) \leq 2 \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(X_{i}\right)\right|\right]
$$

Here $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,1\}$ are iid with $\mathbb{P}\left(\varepsilon_{i}=1\right)=\mathbb{P}\left(\varepsilon_{i}=-1\right)=1 / 2$, and are independent of X_{1}, \ldots, X_{n}

Note

- Random signs $\varepsilon_{1}, \ldots, \varepsilon_{n}$ referred to as Rademacher variables
- Upper bound called expected Rademacher complexity of \mathcal{F} on X_{1}^{n}
- Complexity measures ability of functions $f \in \mathcal{F}$ to track noise

Focus on Families of Sets

Restriction: Assume that $\mathcal{F}=\left\{\mathbb{I}_{C}(x): C \in \mathcal{C}\right\}$ is the family of indicator functions associated with a collection \mathcal{C} of subsets of \mathcal{X}

Given $X_{1}, \ldots, X_{n} \in \mathcal{X}$ iid copies of X, define the discrepency of \mathcal{C} by

$$
\hat{\Delta}_{n}(\mathcal{C})=\Delta_{n}\left(X_{1}^{n}: \mathcal{C}\right)=\sup _{C \in \mathcal{C}}\left|\frac{1}{n} \sum_{i=1}^{n} I_{C}\left(X_{i}\right)-\mathbb{P}(X \in C)\right|
$$

Opportunity: Measure the complexity of \mathcal{C} using combinatorial ideas

- Shatter coefficient
- VC-dimension

Shatter Coefficient

Idea: Let $S=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X}$ be finite. Every set $C \in \mathcal{C}$ induces a subset $C \cap S$ of S. Number of induced subsets reflects complexity of \mathcal{C}

Definition: The shatter coefficient of \mathcal{C} on $x_{1}, \ldots, x_{n} \in \mathcal{X}$ is the number of distinct subsets of x_{1}, \ldots, x_{n} induced by sets in \mathcal{C} :

$$
S\left(x_{1}^{n}: \mathcal{C}\right)=\left|\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\}\right|
$$

- Note that $1 \leq S\left(x_{1}^{n}: \mathcal{C}\right) \leq 2^{n}$
- If $S\left(x_{1}^{n}: \mathcal{C}\right)=2^{n}$ then \mathcal{C} induces every subset of x_{1}, \ldots, x_{n} and we say that \mathcal{C} shatters x_{1}, \ldots, x_{n}

Third Step: Bound on Expected Rademacher Complexity

Fact: If $\varepsilon \in\{-1,1\}$ is Rademacher, then its MGF satisfies $M_{\varepsilon}(s) \leq e^{s^{2} / 2}$

Fact: For every $n \geq 1$ we have

$$
\mathbb{E}\left[\sup _{C \in \mathcal{C}}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \mathbb{I}\left(X_{i} \in C\right)\right|\right] \leq \sqrt{\frac{2 \log \mathbb{E} S\left(X_{1}^{n}: \mathcal{C}\right)}{n}}
$$

Vapnik-Chervonenkis Inequality

Fact: Let \mathcal{C} be a family of subsets of \mathcal{X}, and let $X_{1}, X_{2}, \ldots, X \in \mathcal{X}$ be iid. For each $t>0$,

$$
\mathbb{P}\left(\sup _{C \in \mathcal{C}}\left|\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(X_{i} \in C\right)-\mathbb{P}(X \in C)\right| \geq t\right) \leq \mathbb{E} S\left(X_{1}^{n}: \mathcal{C}\right) e^{-n t^{2} / 8}
$$

Better, but less attractive, upper bound is $\left(\mathbb{E} S\left(X_{1}^{n}: \mathcal{C}\right)\right)^{16} e^{-2 n t}{ }^{2}$

Note: Complexity of \mathcal{C} reflected in expected shatter coefficient $\mathbb{E} S\left(X_{1}^{n}: \mathcal{C}\right)$

Application to Empirical Risk Minimization

Given class \mathcal{H} of binary decision rules $h: \mathcal{X} \rightarrow\{0,1\}$, consider associated family \mathcal{A} of sets

$$
A=\left(h^{-1}(1) \times\{0\}\right) \cup\left(h^{-1}(0) \times\{1\}\right) \subseteq \mathcal{X} \times\{0,1\}
$$

where h ranges over \mathcal{H}. Easy to see that $S\left((x, y)_{1}^{n}: \mathcal{A}\right) \leq S\left(x_{1}^{n}: \mathcal{H}\right)^{2}$

Cor: Given observations D_{n} iid $\sim(X, Y)$ the ERM estimator \hat{h}_{n} satisfies

$$
\mathbb{P}\left(R\left(\hat{h}_{n}\right)-\inf _{h \in \mathcal{H}} R(h) \geq t\right) \leq \mathbb{E} S\left(X_{1}^{n}: \mathcal{C}\right)^{2} e^{-n t^{2} / 32}
$$

The Vapnik-Chervonenkis Dimension

The VC Dimension

Recall: A family $\mathcal{C} \subseteq 2^{\mathcal{X}}$ shatters points $x_{1}, \ldots, x_{n} \in \mathcal{X}$ if $S\left(x_{1}^{n}: \mathcal{C}\right)=2^{n}$

Definition: The $V C$-dimension of \mathcal{C}, denoted $\operatorname{dim}(\mathcal{C})$, is the largest k such that \mathcal{C} shatters some set of k points in \mathcal{X}.

If \mathcal{C} shatters arbitrarily large finite sets, then $\operatorname{dim}(\mathcal{C})=+\infty$

First Examples

- $\mathcal{C}=$ all half-lines $(-\infty, t]$ in $\mathbb{R}, \operatorname{dim}(\mathcal{C})=1$
- $\mathcal{C}=$ all discs in $\mathbb{R}^{2}, \operatorname{dim}(\mathcal{C})=3$
- $\mathcal{C}=$ all convex sets in $\mathbb{R}^{2}, \operatorname{dim}(\mathcal{C})=+\infty$

Sauer's Lemma

Sauer's Lemma establishes a connection between the VC-dimension of a family \mathcal{C} and its shatter coefficients

Lemma: If \mathcal{C} has VC-dimension d then for all $n \geq 1$ and all $x_{1}, \ldots, x_{n} \in \mathcal{X}$

$$
S\left(x_{1}^{n}: \mathcal{C}\right) \leq \sum_{k=0}^{d}\binom{n}{k} \leq(n+1)^{d}
$$

Upshot: If $\operatorname{dim}(\mathcal{C})=d$ then the shatter coefficient of \mathcal{C} grows at most polynomially with degree d

VC Dimension of Zero-Level Sets

Lemma: Let \mathcal{G} be a v-dimensional vector space of functions $g: \mathcal{X} \rightarrow \mathbb{R}$. Let \mathcal{C} be the family of sets

$$
C=\{x: g(x) \geq 0\}
$$

where g ranges over \mathcal{G}. Then $\operatorname{dim}(\mathcal{C}) \leq v$

Corollary

1. If $\mathcal{C}=$ all half-spaces in \mathbb{R}^{d} then $\operatorname{dim}(\mathcal{C}) \leq d+1$
2. If $\mathcal{C}=$ all closed balls in \mathbb{R}^{d} then $\operatorname{dim}(\mathcal{C}) \leq d+2$
3. If $\mathcal{C}=$ all ellipsoids $\left\{x: x^{t} A x \leq 1\right\}$ where $A \in \mathbb{R}^{d \times d}$ and $A \geq 0$ then $\operatorname{dim}(\mathcal{C}) \leq(d+1) d / 2+1$

Lower Bounds

Canonical Problem: Identifying Direction of Bias

Idea: Given coin with P (heads) slightly above or below $1 / 2$. How difficult is it to determine the direction of the bias based on m flips?

DoB Model: Fix $\epsilon \in(0,1)$

1. Sign variable $\sigma \in\{-1,1\}$ with $\mathbb{P}(\sigma=1)=\mathbb{P}(\sigma=1)=1 / 2$
2. Flips $Y_{1}, \ldots, Y_{m} \mid \sigma \sim$ iid $\operatorname{Bern}(1 / 2+\sigma \epsilon / 2)$

DoB Problem: Size of bias is $\epsilon / 2$, direction of bias determined by σ

- Decision rule $h:\{0,1\}^{m} \rightarrow\{-1,1\}$ has risk $R(h)=\mathbb{P}\left(h\left(Y_{1}^{m}\right) \neq \sigma\right)$
- Find lower bound on the risk $R(h)$ of any decision rule

Preliminaries

Fact 1: The conditional probability $\eta\left(y_{1}^{m}\right)=\mathbb{P}\left(\sigma=1 \mid Y_{1}^{m}=y_{1}^{m}\right)$ can be written in the form

$$
\eta\left(y_{1}^{m}\right)=\frac{1}{1+c^{m_{0}-m_{1}}}
$$

where we have

$$
m_{0}=\sum_{i=1}^{m} \mathbb{I}\left(y_{i}=0\right) \quad m_{1}=\sum_{i=1}^{m} \mathbb{I}\left(y_{i}=1\right) \quad c=\frac{1 / 2+\epsilon / 2}{1 / 2-\epsilon / 2}>1
$$

Fact 2: If $U \sim \operatorname{Bin}(m, p)$ and $V \sim \operatorname{Bin}(m, 1-p)$ then $U \stackrel{d}{=} m-V$. In particular,

$$
|2 U-m| \stackrel{d}{=}|2 V-m|
$$

First Step: Characterize Optimal Decision Rule

Fact: Let $\eta\left(y_{1}^{m}\right)=\mathbb{P}\left(\sigma=1 \mid Y_{1}^{m}=y_{1}^{m}\right)$. The optimal decision rule h^{*} for the direction of bias problem is

$$
h^{*}\left(y_{1}^{m}\right)= \begin{cases}1 & \text { if } \eta\left(y_{1}^{m}\right) \geq 1 / 2 \\ -1 & \text { if } \eta\left(y_{1}^{m}\right)<1 / 2\end{cases}
$$

Equivalently, $h^{*}\left(y_{1}^{m}\right)=1$ iff $m_{1} \geq m_{0}$. The risk of h^{*} is

$$
\mathbb{P}\left(h^{*}\left(Y_{1}^{m}\right) \neq \sigma\right)=\mathbb{E} \min \left(\eta\left(Y_{1}^{m}\right), 1-\eta\left(Y_{1}^{m}\right)\right)
$$

Cor: Any decision rule h for DoB has risk $R(h) \geq \mathbb{E} \min \left(\eta\left(Y_{1}^{m}\right), 1-\eta\left(Y_{1}^{m}\right)\right)$

Lower Bound for Risk in DoB

Prop'n: For each $\epsilon \in[0,1)$ and $m \geq 1$ the optimal risk for direction of bias

$$
R^{*} \geq \frac{1}{2} \exp \left\{\frac{-2 \epsilon(\sqrt{m}+m \epsilon)}{1-\epsilon}\right\}:=L(m: \epsilon)
$$

Note that $L(\cdot: \epsilon)$ is monotone decreasing and convex

Fact: If $1 \leq Z \leq 1$ then for all $\gamma \in[0,1)$

$$
\mathbb{P}(Z>\gamma) \geq \frac{\mathbb{E} Z-\gamma}{1-\gamma}>\mathbb{E} Z-\gamma
$$

Lower Bound for Classification, General Case

Given: Family \mathcal{H} of binary classification rules with VC-dim d, and a procedure h_{n} producing rules in \mathcal{H}

Theorem: If $n \geq 4 d$ there is a distribution (X, Y) such that

$$
\mathbb{E}\left[R\left(\hat{h}_{n}\right)-\inf _{h \in \mathcal{H}} R(h)\right] \geq \frac{1}{2} \sqrt{\frac{d}{n}} e^{-8}
$$

when $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are iid $\sim(X, Y)$

Corollary: Under the same conditions

$$
\mathbb{P}\left(R\left(\hat{h}_{n}\right)-\inf _{h \in \mathcal{H}} R(h) \geq \frac{1}{2} \sqrt{\frac{d}{n}}\right) \geq e^{-8}
$$

Lower Bound for Classification, Zero Error Case

Theorem: Let \mathcal{H} be a family of binary classification rules with VC-dim d. Consider the family \mathcal{P} of joint distributions (X, Y) for which

$$
\min _{h \in \mathcal{H}} R(h)=0 .
$$

For each $n \geq 1$ there exists a distribution $P \in \mathcal{P}$ such that

$$
\mathbb{E}\left[R\left(\hat{h}_{n}\right)\right] \geq \frac{d-1}{2 e n}
$$

when observations $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are drawn iid from P

