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Empirical Risk Minimization (ERM)

Setting

I Set X of features/predictors

I Set Y of responses/labels

I Loss function ` : Y × Y → R

Recall

I A prediction rule is a map h : X → Y

I Loss of h on feature-response pair (x, y) is `(h(x), y)

I Risk of h on random pair (X,Y ) is given by R(h) = E`(h(X), Y )
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Empirical Risk Minimization (ERM)

Given

I Family H of prediction rules h : X → Y (possibly infinite)

I Jointly distributed pair (X,Y ) ∈ X × Y

I Observations Dn = (X1, Y1), . . . , (Xn, Yn) iid copies of (X,Y )

Ideally: Find rule h ∈ H with minimum risk R(h)

ERM: Find rule in H minimizing empirical risk (proxy for true risk)

ĥn = argmin
h∈H

R̂n(h) = argmin
h∈H

1

n

n∑
i=1

`(h(Xi), Yi)
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Example: Ordinary Least Squares

Setting

I Feature space X = Rd. Response Y = R

I Loss `(y′, y) = (y′ − y)2

I Risk of rule h : Rd → R on pair (X,Y ) is R(h) = E(h(X)− Y )2

I Let H = family of linear rules h(x) = 〈x, β〉+ β0

Upshot: ERM coincides with OLS
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Example: Histogram Classification Rules

Setting

I Feature space X is general. Response Y = {0, 1}

I Loss `(y′, y) = I(y′ 6= y)

I Risk of rule h : X → {0, 1} on pair (X,Y ) is R(h) = P(h(X) 6= Y )

I Let H = family of rules constant on the cells of a finite partition π of X

Upshot: ERM coincides with the histogram classification rule

ĥn(x) = maj-vote{Yi : Xi ∈ π(x)}
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Binary Classification: General Case

Note: Every rule h : X → {0, 1} corresponds to a subset of X and v.v.

I Let C = family of subsets of X . For C ∈ C let hC(x) = I(x ∈ C)

I Define H = {hC : C ∈ C}. Then ERM finds set C ∈ C minimizing

R̂n(hC) =
1

n

n∑
i=1

I(hC(Xi) 6= Yi) =
1

n

n∑
i=1

|I(Xi ∈ C)− Yi|

Examples

I C = all half-spaces in X = Rd

I C = all spheres in X = Rd

Caveat: Often, computationally efficient algorithms for ERM don’t exist
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Downward Bias of ERM Training Error

Idea: ERM rule ĥn is defined by minimizing training error. Thus we expect
the training error of ĥn to be optimistic

Fact: Let ĥn be ERM rule for a family H based on observations Dn. Then

ER̂n(ĥn) ≤ R(ĥn)
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Assessing Performance of ERM

Ideal: For a given data generating distribution (X,Y ) we would like to find
the global optimal rule

h∗ = argmin
h

R(h)

where minimum is over all functions h : X → Y. Note h∗ depends on (X,Y )

In practice: Two issues

I (X,Y ) unknown, accessible only through observations Dn

I Optimal rule h∗ for (X,Y ) need not be in H
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Estimation and Approximation Error

Easy to see: For any (X,Y ) and any procedure hn selecting rules in H

R(ĥn)−R(h∗) =

[
R(ĥn)−min

h∈H
R(h)

]
+

[
min
h∈H

R(h)−R(h∗)

]

I [L] = Estimation error: risk of ĥn vs best rule in H [random]

I [R] = Approximation error: best rule in H vs optimal rule h∗ [fixed]

For ERM, as we increase the size of the target family H

I Estimation error tends to increase

I Approximation error decreases
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Bound on Estimation Error for ERM

Once the family H and distribution (X,Y ) are fixed, the approximation error
is fixed. Focus on evaluation of the estimation error.

Fact: Let ĥn be ERM estimator for family H. For every distribution (X,Y )

0 ≤ R(ĥn)− inf
h∈H

R(h) ≤ 2 sup
h∈H
|R̂n(h)−R(h)|
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Analysis of Empirical Risk Minimization

Finite Family H
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Analysis of ERM: Finite H, Bounded Loss, Zero Error

Fact: Suppose that H is finite, `(y′, y) ∈ [0, 1], and minh∈HR(h) = 0. Then
for every distribution (X,Y ), sample size n ≥ 1, and t ≥ 0

P
(
R(ĥn) > t

)
≤ |H| e−nt

Corollary: For every δ > 0, with probability at least 1− δ

R(ĥn) ≤ 1

n
log
|H|
δ

and we can bound the expected risk as

ER(ĥn) ≤ (log |H|+ 1)

n
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Analysis of ERM: Finite H, Bounded Loss

Fact: Suppose that H is finite and `(y′, y) ∈ [0, 1]. Then for every distribution
(X,Y ), sample size n, and t ≥ 0

P
(
R(ĥn)−min

h∈H
R(h) > t

)
≤ |H| e−nt2/2

Corollary: For every δ > 0, with probability at least 1− δ

R(ĥn) ≤ min
h∈H

R(h) +

√
2

n
log
|H|
δ

and we can bound the expected risk as

ER(ĥn) ≤ min
h∈H

R(h) +

√
2(log |H|+ 1)

n
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Analysis of Empirical Risk Minimization

Infinite Family H
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ERM and Uniform Laws of Large Numbers

Analysis of ERM for infinite families leverages ideas from uniform laws of
large numbers to bound estimation error

Fact: Upper bound on estimation error can be written as

sup
h∈H
|R̂n(h)−R(h)| = sup

g∈G

∣∣∣∣∣ 1n
n∑

i=1

g(Zi)− Eg(Z)

∣∣∣∣∣
where Zi = (Xi, Yi) are iid copies of Z = (X,Y ), and

G = {g(x, y) = `(h(x), y) : h ∈ H}

is the set of error functions associated with the prediction rules in H

Note: If the loss function ` is bounded, so are the functions g ∈ G
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Uniform Laws of Large Numbers

Setting

I Measurable space (X ,A)

I Family F of bounded, measurable functions f : X → [a, b]

I X1, . . . , Xn iid copies of X ∈ X

Of interest: Worst-case difference between averages and expectations

∆̂n(F) = ∆n(Xn
1 : F) = sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− Ef(X)

∣∣∣∣∣
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Uniform Laws of Large Numbers, cont.

Recall: For each fixed f ∈ F , each n ≥ 1, and each t > 0, Hoeffding gives

P

(∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− Ef(X)

∣∣∣∣∣ > t

)
≤ 2 exp

{
−2nt2

(b− a)2

}

Goal: Similar bound for uniform deviations of the form

P

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− Ef(X)

∣∣∣∣∣ > t

)
≤ Γn(t,X,F) exp

{
−2nt2

(b− a)2

}

where Γn(·) measures the complexity of F at resolution t on samples of size
n drawn from the distribution of X
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First Step: Concentration

Fact

1. Function F (xn1 ) = ∆n(xn1 : F) has difference coefficients ci = (b− a)/n

2. By the bounded difference inequality, for all t > 0

P(|∆̂n(F)− E∆̂n(F)| > t) ≤ 2 e−2nt2/(b−a)2

So, it remains to analyze E∆̂n(F)...
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Second Step: Symmetrization

Fact: For every n ≥ 1

E∆̂n(F) ≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣∣
]

Here ε1, . . . , εn ∈ {−1, 1} are iid with P(εi = 1) = P(εi = −1) = 1/2, and are
independent of X1, . . . , Xn

Note

I Random signs ε1, . . . , εn referred to as Rademacher variables

I Upper bound called expected Rademacher complexity of F on Xn
1

I Complexity measures ability of functions f ∈ F to track noise
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Focus on Families of Sets

Restriction: Assume that F = {IC(x) : C ∈ C} is the family of indicator
functions associated with a collection C of subsets of X

Given X1, . . . , Xn ∈ X iid copies of X, define the discrepency of C by

∆̂n(C) = ∆n(Xn
1 : C) = sup

C∈C

∣∣∣∣∣ 1n
n∑

i=1

IC(Xi)− P(X ∈ C)

∣∣∣∣∣

Opportunity: Measure the complexity of C using combinatorial ideas

I Shatter coefficient

I VC-dimension
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Shatter Coefficient

Idea: Let S = {x1, . . . , xn} ⊆ X be finite. Every set C ∈ C induces a subset
C ∩ S of S. Number of induced subsets reflects complexity of C

Definition: The shatter coefficient of C on x1, . . . , xn ∈ X is the number of
distinct subsets of x1, . . . , xn induced by sets in C:

S(xn1 : C) = |{C ∩ {x1, . . . , xn} : C ∈ C}|

I Note that 1 ≤ S(xn1 : C) ≤ 2n

I If S(xn1 : C) = 2n then C induces every subset of x1, . . . , xn and we say
that C shatters x1, . . . , xn
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Third Step: Bound on Expected Rademacher Complexity

Fact: If ε ∈ {−1, 1} is Rademacher, then its MGF satisfies Mε(s) ≤ es
2/2

Fact: For every n ≥ 1 we have

E

[
sup
C∈C

∣∣∣∣∣ 1n
n∑

i=1

εiI(Xi ∈ C)

∣∣∣∣∣
]
≤
√

2 logES(Xn
1 : C)

n
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Vapnik-Chervonenkis Inequality

Fact: Let C be a family of subsets of X , and let X1, X2, . . . , X ∈ X be iid. For
each t > 0,

P

(
sup
C∈C

∣∣∣∣∣ 1n
n∑

i=1

I(Xi ∈ C)− P(X ∈ C)

∣∣∣∣∣ ≥ t

)
≤ ES(Xn

1 : C)e−nt2/8

Better, but less attractive, upper bound is (ES(Xn
1 : C))16 e−2nt2

Note: Complexity of C reflected in expected shatter coefficient ES(Xn
1 : C)
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Application to Empirical Risk Minimization

Given class H of binary decision rules h : X → {0, 1}, consider associated
family A of sets

A = (h−1(1)× {0}) ∪ (h−1(0)× {1}) ⊆ X × {0, 1}

where h ranges over H. Easy to see that S((x, y)n1 : A) ≤ S(xn1 : H)2

Cor: Given observations Dn iid ∼ (X,Y ) the ERM estimator ĥn satisfies

P
(
R(ĥn)− inf

h∈H
R(h) ≥ t

)
≤ ES(Xn

1 : C)2 e−nt2/32
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The Vapnik-Chervonenkis Dimension
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The VC Dimension

Recall: A family C ⊆ 2X shatters points x1, . . . , xn ∈ X if S(xn1 : C) = 2n

Definition: The VC-dimension of C, denoted dim(C), is the largest k such
that C shatters some set of k points in X .

If C shatters arbitrarily large finite sets, then dim(C) = +∞

First Examples

I C = all half-lines (−∞, t] in R, dim(C) = 1

I C = all discs in R2, dim(C) = 3

I C = all convex sets in R2, dim(C) = +∞
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Sauer’s Lemma

Sauer’s Lemma establishes a connection between the VC-dimension of a
family C and its shatter coefficients

Lemma: If C has VC-dimension d then for all n ≥ 1 and all x1, . . . , xn ∈ X

S(xn1 : C) ≤
d∑

k=0

(
n

k

)
≤ (n+ 1)d

Upshot: If dim(C) = d then the shatter coefficient of C grows at most
polynomially with degree d
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VC Dimension of Zero-Level Sets

Lemma: Let G be a v-dimensional vector space of functions g : X → R. Let
C be the family of sets

C = {x : g(x) ≥ 0}

where g ranges over G. Then dim(C) ≤ v

Corollary

1. If C = all half-spaces in Rd then dim(C) ≤ d+ 1

2. If C = all closed balls in Rd then dim(C) ≤ d+ 2

3. If C = all ellipsoids {x : xtAx ≤ 1} where A ∈ Rd×d and A ≥ 0 then
dim(C) ≤ (d+ 1)d/2 + 1
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Lower Bounds
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Canonical Problem: Identifying Direction of Bias

Idea: Given coin with P (heads) slightly above or below 1/2. How difficult is it
to determine the direction of the bias based on m flips?

DoB Model: Fix ε ∈ (0, 1)

1. Sign variable σ ∈ {−1, 1} with P(σ = 1) = P(σ = 1) = 1/2

2. Flips Y1, . . . , Ym |σ ∼ iid Bern(1/2 + σε/2)

DoB Problem: Size of bias is ε/2, direction of bias determined by σ

I Decision rule h : {0, 1}m → {−1, 1} has risk R(h) = P(h(Y m
1 ) 6= σ)

I Find lower bound on the risk R(h) of any decision rule
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Preliminaries

Fact 1: The conditional probability η(ym1 ) = P(σ = 1|Y m
1 = ym1 ) can be

written in the form

η(ym1 ) =
1

1 + cm0−m1

where we have

m0 =
m∑
i=1

I(yi = 0) m1 =

m∑
i=1

I(yi = 1) c =
1/2 + ε/2

1/2− ε/2 > 1

Fact 2: If U ∼ Bin(m, p) and V ∼ Bin(m, 1− p) then U d
= m− V . In

particular,

|2U −m| d
= |2V −m|
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First Step: Characterize Optimal Decision Rule

Fact: Let η(ym1 ) = P(σ = 1|Y m
1 = ym1 ). The optimal decision rule h∗ for the

direction of bias problem is

h∗(ym1 ) =

{
1 if η(ym1 ) ≥ 1/2

−1 if η(ym1 ) < 1/2

Equivalently, h∗(ym1 ) = 1 iff m1 ≥ m0. The risk of h∗ is

P(h∗(Y m
1 ) 6= σ) = Emin(η(Y m

1 ), 1− η(Y m
1 ))

Cor: Any decision rule h for DoB has risk R(h) ≥ Emin(η(Y m
1 ), 1− η(Y m

1 ))
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Lower Bound for Risk in DoB

Prop’n: For each ε ∈ [0, 1) and m ≥ 1 the optimal risk for direction of bias

R∗ ≥ 1

2
exp

{
−2ε(

√
m+mε)

1− ε

}
:= L(m : ε)

Note that L(· : ε) is monotone decreasing and convex

Fact: If 1 ≤ Z ≤ 1 then for all γ ∈ [0, 1)

P(Z > γ) ≥ EZ − γ
1− γ > EZ − γ
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Lower Bound for Classification, General Case

Given: Family H of binary classification rules with VC-dim d, and a
procedure hn producing rules in H

Theorem: If n ≥ 4d there is a distribution (X,Y ) such that

E
[
R(ĥn)− inf

h∈H
R(h)

]
≥ 1

2

√
d

n
e−8

when Dn = (X1, Y1), . . . , (Xn, Yn) are iid ∼ (X,Y )

Corollary: Under the same conditions

P

(
R(ĥn)− inf

h∈H
R(h) ≥ 1

2

√
d

n

)
≥ e−8
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Lower Bound for Classification, Zero Error Case

Theorem: Let H be a family of binary classification rules with VC-dim d.
Consider the family P of joint distributions (X,Y ) for which

min
h∈H

R(h) = 0.

For each n ≥ 1 there exists a distribution P ∈ P such that

E
[
R(ĥn)

]
≥ d− 1

2en

when observations Dn = (X1, Y1), . . . , (Xn, Yn) are drawn iid from P

36/36


