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Classification

Data: Labeled pairs (z1,41), - .., (Tn, yn) With
> 2; € X space of predictors (often X C R%)

> y;, € {0,1} response or class label

Goal: Given an unlabeled predictor x € X, assign it to class 0 or 1

> Label may be unavailable or expensive to obtain

Idea: Use labeled examples to classify unlabeled ones
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Example: Spam Recognition

Predictor: = = vector of features extracted from text of email, e.g.,
» presence of keywords (“cheap”, “cash”, “medicine”)
» presence of key phrases (“Dear Sir/Madam”)

> use of words in all-caps (“VIAGRA”)

» point of origin of emalil

Response: y = 1 if email is spam, y = 0 otherwise

Task: Given sample (z1,y1), ..., (zn, yn) Of labeled emails, construct a
prediction rule to classify future email messages as spam or not-spam
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Measuring Errors in Prediction

Definition: A classification rule is a map ¢ : X — {0,1}. Regard ¢(z) as a
prediction of the class label associated with x

Zero-One loss: Performance of ¢ on pair (z,y) given by

1 ifg(e) #y

Uop(x),y) = Wp(x) #y) = { .
0 ifo(z)=y

Summary table: For (z,y) pair four possible outcomes

plx) =1 | ¢(x) =0
y=1 correct error
y=0 error correct
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Receiver Operating Characteristic (ROC) Curves

Idea: Diagram to assess performance of a family of classification rules,
usually parametrized by a fixed threshold.

Setting: Binary classification with two outcomes
> 1 = “positive”

» 0 = “negative”

Confusion Matrix: For rule ¢ : X — {0,1} and data (z1,y1),- .., (ZTn, yn) We
can summarize outcome of predictions as follows

p=1 $=0
y=1 | true positives | false negatives
y =0 | false positives | true negatives
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ROC Curves, cont.
Defn: Givenrule ¢ : X — {0,1} and data (z1,y1), ..., (Tn,Yn)

» True positive rate (Sensitivity)

TPR(¢) = > #(zi)y:  # true positive predictions
DY total # positives

» True negative rate (Specificity)

TNR(g) = 2uill = @@))(1 —yi) _ # true negative predictions
(@) = > (=) N total # negatives

» False positive/alarm rate

# false positive predictions
total # negatives

FPR(¢) = 1 — TNR(¢) =
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ROC Curve

Given: Ordered family F = {¢. : ¢ € T'} of classification rules, e.g.,

¢i(x) =Tz =2 t) or ¢i(x) =1((z,v) > )

Note: decreasing t increases both false and true positive rates.

Definition: ROC curve of the family F is a plot of
(FPR(¢:), TPR(¢¢)) € [0,1]* for t € T

Ideally TPR(¢) is close to one when FPR(¢) is close to zero

AUC: Quality of family F assessed by area under the ROC curve
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ROC lllustration (cmglee, from Wikipedia)
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Decision Regions and Decision Boundary

Note: Every rule ¢ : X — {0, 1} partitions X into two sets

Xo(9) {z e X: ¢(z) =0}

X1(9) {xex:o(z) =1}

Terminology
> Sets Xy(¢), X1(¢) called decision regions of ¢

> Interface between X;(¢) and X (¢) called decision boundary of ¢
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Classification Problem Revisited

Picture
» Write sample (z1,41),- - ., (zn, yn) @s points z; € X with labels y;

» Look for decision regions that (mostly) separate zeros and ones

Two Related Issues
» Tradeoff between complexity and separation

» Will selected rule perform well on future, unlabeled, samples?
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The Stochastic Setting
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Stochastic Setting

Assumptions
» Observations D,, = (X1, Y1),...,(Xn,Yn) € X x {0,1} random
> (X;,Y;) drawn independently from distribution P on X x {0, 1}

» Future observation (X, Y") drawn independently from same distribution P

Key Stochastic Quantities
1. Prior probabilitesof Y =0andY =1
2. Conditional probability of Y = 1 given X =«

3. Conditional distribution of X givenY =0andY =1
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Prior Probabilities

Given: Joint pair (X,Y) € X x {0,1}

Define: Prior probabilities mo = P(Y = 0) and 7, = P(Y = 1)

Notes
» Probability of seeing class Y = 0 or Y = 1 priorto observing X
» Ty, m represent relative abundance of class 0 and 1
» Notethatmg +m =1

» Cases in which m; >> mg or vice versa can be difficult
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Unconditional and Conditional Densities of X
Given: Joint pair (X,Y) € R* x {0,1}
Define: Unconditional and conditional densities of X

» f(x) = unconditional density of X

P(X € A) /f dv ACX

> f(x]0), f(z|1) = class-conditional densities of X

PXedly =y = [ fayds Acx

Note: Densities f(-|0) and f(-|1) tell us about separability of Os and 1s
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Conditional Distribution of Y Given X

Given: Joint pair (X,Y) € X x {0,1}

Define: Conditional probability n(z) = P(Y =1|X = x)
» Posterior probability that Y = 1 given that X = =

> NotethatP(Y =0|X ==z) =1 — n(z).

Regimes:
> n(z)~1 =Y islikely to be 1 given X =z
> n(x) =~ 0 =Y islikely to be 0 given X =z

> n(z) =~ 1/2 = value of Y uncertain given X =z
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Relations Among Distributions

1. By the law of total probability we have
f(x) = mof(x]0) + m f(z|1)

Moreover, as fo and fi are densities [ f(z|0)dz = [ f(z|1)dz =1

2. By Bayes theorem we know

mf@l) _  mfl)
f@) " wof(@l0) + mf(all)

n(x) =
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Risk of a Prediction Rule

Recall: Performance of rule ¢ on single pair (z,y) given by zero-one loss

1 ifg(e) #y

Lop(x),y) = Wp(x) #y) = { .
0 ifg(x)=y

Definition: The risk of a fixed classification rule ¢ on a random pair (X,Y) is
its expected loss

R(¢) = E[l(¢(X) #Y)] = P(o(X) #Y)

which is just the probability that ¢ misclassifies X
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Optimality and the Bayes Rule
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Bayes Rule and Bayes Risk

Definition: The Bayes classification rule ¢* for the pair (X,Y) is

¢"(x) = argmax P(Y = k| X = x)
k=0,1

> ¢*(z) is the most likely value of Y given X =z

> ¢*(z) depends on distribution of (X, Y"), usually unknown

Definition: The Bayes risk R* for (X,Y') is the risk of the Bayes rule

R = R(¢") = P(¢"(X) #Y)
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Optimality of the Bayes Rule

Note: For binary Y the Bayes rule has the equivalent forms

¢"(z) = lin(x) 2 1/2) = argmaxm, f(xly)

y=0,

Theorem: The Bayes rule ¢* for (X,Y") is optimal: for every classification
rule ¢ : X — {0,1} we have R* < R(¢).

Fact: The Bayes risk R* can be written in the form

R" = Emin{n(X), 1 —n(X)}
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Understanding the Bayes Risk

Fact: Let (X,Y) € X x {0, 1} be a jointly distributed pair
1. Bayes risk R* € [0,1/2]
2. R* =0iffn(z) € {0,1}iff Y is a function of X
3. R* =1/2iff p(x) = 1/2 which implies that Y 1L X

4. IfY 1L X then ¢*(z) is constant (1 if 71 > 7o and 0 if mo < 71)
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Fixed vs. Data Dependent Prediction Rules

Observations D,, = (X1,Y1),...,(Xn,Yn) € X x {0,1}iid ~ (X,Y)

Fixed rule ¢ : X — {0,1}
> ¢(x) predicts class label of x without regard to D,

> Risk R(¢) = P(¢(X) #Y) is a constant

Classification procedure ¢, : X x (X x {0,1})" — {0,1}
> ¢, (z) = ¢n(x : D,,) predicts class label of = based on D,,

> Risk R(¢n) = P(¢n(X) # Y | D,) is a random variable
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Classification Procedures Based on Distributional Assumptions
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Linear and Quadratic Discriminant Analysis

Idea: Assume class conditional density f(z|y) = Na(uy, 2y) fory =0,1

Fitting: Given observations D,,
1. Estimate mean /i, and variance 3,,. Let f(z|y) = Na(jiy, 3y)
2. Estimate priors 7y
3. Define ¢(z) = argmax,_ ; 7y f(zly)

1. LDA: Assume X, = %;. In this case ¢ has linear decision boundary

2. QDA: Allow = # ¥;. In this case ¢ has quadratic decision boundary
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Logistic Regression Model

Model: For some coefficient vector 8 € R*+!

o (Br)

n(z)
1 + €<B’I>

logl_n(x) = (B,z) equivalently n(z:B) =

Fitting: Given observations D,, find the coefficient vector 3 maximizing the
conditional log-likelihood (using gradient descent)
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Naive Bayes

Setting: Covariate X = (X1,..., X4)" has d components. Assume the

components are conditionally independent given Y: for y = 0,1

[, zaly) = flzaly)--- fa(zaly)

Approach: Given observations D,,
» Form estimates f;(z; | y) of conditional marginals
> Estimate class conditional f(z |y) = [T7_, fi(z; |y)

» Combine with estimates 7, #1 of priors to obtain the rule

¢(z) = argmax i, f(z|y)
7=0,1
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More General Classification Procedures
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Histogram Rules

» Observations D,, = (X1,Y1),...,(Xn,Yn) € X x{0,1}
» Partition 7 = { A1, ..., Ak} of X into disjoint sets called cells

> Let n(z) = cell A, of 7 containing «

Definition: The histogram classification rule for = is given by

¢r(x: Dy) = én(x) = maj-vote{Y; : X; € n(x)}

» Classifies x using “local” data in the same cell as z
> No assumptions about the distribution of (X,Y")

» Decision regions of rule determined by cells of =
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Nearest Neighbor Rules

Setting: Observations D,, = (X1,Y1),...,(Xn,Y,) € R? x {0,1}.

Forz € R? let X(1)(x), ..., X(n)(z) be reordering of X1,..., X, s.t.
lle = X@y@| < llz = Xy (@)|| <+ < lo = Xy (@)

Let Y(;)(x) = class label of X(;,(x) = the jth nearest neighbor of z.

Definition: For £ > 1 odd the k-nearest neighbor rule is given by

o (z) = majority-vote{Y1y(z), ..., Y ()}

29/31



Asymptotic Performance of 1-NN Rule

Note: The 1-NN rule assigns to = € R? the label of the nearest X;

Theorem (Cover and Hart) As the number of samples n tends to infinity,

ER(¢n™) = 2E[(X)(1 - n(X))] < 2R

Upshot: asymptotic probability of error of 1-NN rule is at most twice the
Bayes risk (best performance of any classification rule)!
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Other Methods

» Classification trees
» Bagging
» Boosting

» Support vector machines
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