The Classification Problem and Statistical Framework

Andrew Nobel

September, 2023

Classification

Data: Labeled pairs $(x_1, y_1), \ldots, (x_n, y_n)$ with

- $x_i \in \mathcal{X}$ space of *predictors* (often $\mathcal{X} \subseteq \mathbb{R}^d$)
- ▶ $y_i \in \{0, 1\}$ response or *class label*

Goal: Given an *unlabeled* predictor $x \in \mathcal{X}$, assign it to class 0 or 1

Label may be unavailable or expensive to obtain

Idea: Use labeled examples to classify unlabeled ones

Example: Spam Recognition

Predictor: x = vector of features extracted from text of email, e.g.,

- presence of keywords ("cheap", "cash", "medicine")
- presence of key phrases ("Dear Sir/Madam")
- use of words in all-caps ("VIAGRA")
- point of origin of email

Response: y = 1 if email is spam, y = 0 otherwise

Task: Given sample $(x_1, y_1), \ldots, (x_n, y_n)$ of labeled emails, construct a prediction rule to classify future email messages as spam or not-spam

Measuring Errors in Prediction

Definition: A *classification rule* is a map $\phi : \mathcal{X} \to \{0, 1\}$. Regard $\phi(x)$ as a prediction of the class label associated with x

Zero-One loss: Performance of ϕ on pair (x, y) given by

$$\ell(\phi(x), y) = \mathbb{I}(\phi(x) \neq y) = \begin{cases} 1 & \text{if } \phi(x) \neq y \\ 0 & \text{if } \phi(x) = y \end{cases}$$

Summary table: For (x, y) pair four possible outcomes

	$\phi(x) = 1$	$\phi(x) = 0$
y = 1	correct	error
y = 0	error	correct

Receiver Operating Characteristic (ROC) Curves

Idea: Diagram to assess performance of a family of classification rules, usually parametrized by a fixed threshold.

Setting: Binary classification with two outcomes

- ▶ 1 = "positive"
- ▶ 0 = "negative"

Confusion Matrix: For rule $\phi : \mathcal{X} \to \{0, 1\}$ and data $(x_1, y_1), \dots, (x_n, y_n)$ we can summarize outcome of predictions as follows

	$\phi = 1$	$\phi = 0$
y = 1	true positives	false negatives
y = 0	false positives	true negatives

ROC Curves, cont.

Defn: Given rule $\phi : \mathcal{X} \to \{0, 1\}$ and data $(x_1, y_1), \dots, (x_n, y_n)$

True positive rate (Sensitivity)

$$\mathsf{TPR}(\phi) = \frac{\sum_{i} \phi(x_i) y_i}{\sum_{i} y_i} = \frac{\texttt{# true positive predictions}}{\texttt{total # positives}}$$

True negative rate (Specificity)

$$\mathsf{TNR}(\phi) = \frac{\sum_{i} (1 - \phi(x_i))(1 - y_i)}{\sum_{i} (1 - y_i)} = \frac{\texttt{# true negative predictions}}{\texttt{total # negatives}}$$

False positive/alarm rate

$$\mathsf{FPR}(\phi) = 1 - \mathsf{TNR}(\phi) = \frac{\# \text{ false positive predictions}}{\text{total } \# \text{ negatives}}$$

ROC Curve

Given: Ordered family $\mathcal{F} = \{\phi_t : t \in T\}$ of classification rules, e.g.,

$$\phi_t(x) = \mathbb{I}(x \ge t) \text{ or } \phi_t(x) = \mathbb{I}(\langle x, v \rangle \ge t)$$

Note: decreasing *t* increases both false and true positive rates.

Definition: ROC curve of the family \mathcal{F} is a plot of

 $(\mathsf{FPR}(\phi_t), \mathsf{TPR}(\phi_t)) \in [0, 1]^2 \text{ for } t \in T$

Ideally TPR(ϕ) is close to one when FPR(ϕ) is close to zero

AUC: Quality of family \mathcal{F} assessed by area under the ROC curve

ROC Illustration (cmglee, from Wikipedia)

Decision Regions and Decision Boundary

Note: Every rule $\phi : \mathcal{X} \to \{0, 1\}$ partitions \mathcal{X} into two sets

$$\mathcal{X}_0(\phi) = \{x \in \mathcal{X} : \phi(x) = 0\}$$

$$\mathcal{X}_1(\phi) = \{x \in \mathcal{X} : \phi(x) = 1\}$$

Terminology

- Sets $\mathcal{X}_0(\phi), \mathcal{X}_1(\phi)$ called *decision regions* of ϕ
- Interface between $\mathcal{X}_0(\phi)$ and $\mathcal{X}_1(\phi)$ called *decision boundary* of ϕ

Classification Problem Revisited

Picture

- Write sample $(x_1, y_1), \ldots, (x_n, y_n)$ as points $x_i \in \mathcal{X}$ with labels y_i
- Look for decision regions that (mostly) separate zeros and ones

Two Related Issues

- Tradeoff between complexity and separation
- Will selected rule perform well on future, unlabeled, samples?

The Stochastic Setting

Stochastic Setting

Assumptions

- Observations $D_n = (X_1, Y_1), \dots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ random
- (X_i, Y_i) drawn independently from distribution P on $\mathcal{X} \times \{0, 1\}$
- Future observation (X, Y) drawn independently from same distribution P

Key Stochastic Quantities

- 1. Prior probabilities of Y = 0 and Y = 1
- 2. Conditional probability of Y = 1 given X = x
- 3. Conditional distribution of X given Y = 0 and Y = 1

Prior Probabilities

Given: Joint pair $(X, Y) \in \mathcal{X} \times \{0, 1\}$

Define: Prior probabilities $\pi_0 = \mathbb{P}(Y = 0)$ and $\pi_1 = \mathbb{P}(Y = 1)$

Notes

- Probability of seeing class Y = 0 or Y = 1 prior to observing X
- \blacktriangleright π_0, π_1 represent relative abundance of class 0 and 1
- Note that $\pi_0 + \pi_1 = 1$
- Cases in which $\pi_1 >> \pi_0$ or vice versa can be difficult

Unconditional and Conditional Densities of X

Given: Joint pair $(X, Y) \in \mathbb{R}^d \times \{0, 1\}$

Define: Unconditional and conditional densities of X

• f(x) = unconditional density of X

$$\mathbb{P}(X \in A) = \int_A f(x) \, dx \quad A \subseteq \mathcal{X}$$

• f(x|0), f(x|1) = class-conditional densities of X

$$\mathbb{P}(X \in A \,|\, Y = y) = \int_A f(x|y) \, dx \quad A \subseteq \mathcal{X}$$

Note: Densities $f(\cdot|0)$ and $f(\cdot|1)$ tell us about separability of 0s and 1s

Conditional Distribution of Y Given X

Given: Joint pair $(X, Y) \in \mathcal{X} \times \{0, 1\}$

Define: Conditional probability $\eta(x) = \mathbb{P}(Y = 1 | X = x)$

• Posterior probability that Y = 1 given that X = x

Note that
$$\mathbb{P}(Y = 0 | X = x) = 1 - \eta(x)$$
.

Regimes:

• $\eta(x) \approx 1 \Rightarrow Y$ is likely to be 1 given X = x

•
$$\eta(x) \approx 0 \Rightarrow Y$$
 is likely to be 0 given $X = x$

•
$$\eta(x) \approx 1/2 \Rightarrow$$
 value of Y uncertain given $X = x$

Relations Among Distributions

1. By the law of total probability we have

$$f(x) = \pi_0 f(x|0) + \pi_1 f(x|1)$$

Moreover, as f_0 and f_1 are densities $\int f(x|0)dx = \int f(x|1)dx = 1$

2. By Bayes theorem we know

$$\eta(x) = \frac{\pi_1 f(x|1)}{f(x)} = \frac{\pi_1 f(x|1)}{\pi_0 f(x|0) + \pi_1 f(x|1)}$$

Risk of a Prediction Rule

Recall: Performance of rule ϕ on single pair (x, y) given by zero-one loss

$$\ell(\phi(x), y) \ = \ \mathbb{I}(\phi(x) \neq y) \ = \ \left\{ \begin{array}{cc} 1 & \text{if } \phi(x) \neq y \\ \\ 0 & \text{if } \phi(x) = y \end{array} \right.$$

Definition: The *risk* of a fixed classification rule ϕ on a random pair (X, Y) is its *expected loss*

$$R(\phi) = \mathbb{E}[\mathbb{I}(\phi(X) \neq Y)] = \mathbb{P}(\phi(X) \neq Y)$$

which is just the probability that ϕ misclassifies X

Optimality and the Bayes Rule

Bayes Rule and Bayes Risk

Definition: The *Bayes classification rule* ϕ^* for the pair (X, Y) is

$$\phi^*(x) = \underset{k=0,1}{\operatorname{argmax}} \mathbb{P}(Y = k \mid X = x)$$

• $\phi^*(x)$ is the most likely value of Y given X = x

• $\phi^*(x)$ depends on distribution of (X, Y), usually unknown

Definition: The *Bayes risk* R^* for (X, Y) is the risk of the Bayes rule

$$R^* = R(\phi^*) = \mathbb{P}(\phi^*(X) \neq Y)$$

Optimality of the Bayes Rule

Note: For binary *Y* the Bayes rule has the equivalent forms

$$\phi^*(x) = \mathbb{I}(\eta(x) \ge 1/2) = \operatorname*{argmax}_{y=0,1} \pi_y f(x|y)$$

Theorem: The Bayes rule ϕ^* for (X, Y) is optimal: for every classification rule $\phi : \mathcal{X} \to \{0, 1\}$ we have $R^* \leq R(\phi)$.

Fact: The Bayes risk R^* can be written in the form

$$R^* = \mathbb{E}\min\{\eta(X), 1 - \eta(X)\}$$

Understanding the Bayes Risk

Fact: Let $(X, Y) \in \mathcal{X} \times \{0, 1\}$ be a jointly distributed pair

1. Bayes risk $R^* \in [0, 1/2]$

2. $R^* = 0$ iff $\eta(x) \in \{0, 1\}$ iff Y is a function of X

3. $R^* = 1/2$ iff $\eta(x) \equiv 1/2$ which implies that $Y \perp \!\!\!\perp X$

4. If $Y \perp X$ then $\phi^*(x)$ is constant (1 if $\pi_1 \ge \pi_0$ and 0 if $\pi_0 < \pi_1$)

Fixed vs. Data Dependent Prediction Rules

Observations $D_n = (X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ iid $\sim (X, Y)$

Fixed rule $\phi : \mathcal{X} \to \{0, 1\}$

• $\phi(x)$ predicts class label of x without regard to D_n

• Risk
$$R(\phi) = \mathbb{P}(\phi(X) \neq Y)$$
 is a constant

Classification procedure $\phi_n : \mathcal{X} \times (\mathcal{X} \times \{0,1\})^n \to \{0,1\}$

• $\hat{\phi}_n(x) = \phi_n(x:D_n)$ predicts class label of x based on D_n

▶ Risk $R(\hat{\phi}_n) = \mathbb{P}(\hat{\phi}_n(X) \neq Y | D_n)$ is a random variable

Classification Procedures Based on Distributional Assumptions

Linear and Quadratic Discriminant Analysis

Idea: Assume class conditional density $f(x|y) = \mathcal{N}_d(\mu_y, \Sigma_y)$ for y = 0, 1

Fitting: Given observations D_n

- 1. Estimate mean $\hat{\mu}_y$ and variance $\hat{\Sigma}_y$. Let $\hat{f}(x|y) = \mathcal{N}_d(\hat{\mu}_y, \hat{\Sigma}_y)$
- 2. Estimate priors $\hat{\pi}_y$
- 3. Define $\hat{\phi}(x) = \operatorname{argmax}_{y=0,1} \hat{\pi}_y \hat{f}(x|y)$

- **1. LDA:** Assume $\Sigma_0 = \Sigma_1$. In this case $\hat{\phi}$ has linear decision boundary
- **2. QDA:** Allow $\Sigma_0 \neq \Sigma_1$. In this case $\hat{\phi}$ has quadratic decision boundary

Logistic Regression Model

Model: For some coefficient vector $\beta \in \mathbb{R}^{d+1}$

$$\log \frac{\eta(x)}{1 - \eta(x)} = \langle \beta, x \rangle \quad \text{equivalently} \quad \eta(x : \beta) = \frac{e^{\langle \beta, x \rangle}}{1 + e^{\langle \beta, x \rangle}}$$

Fitting: Given observations D_n find the coefficient vector $\hat{\beta}$ maximizing the *conditional log-likelihood* (using gradient descent)

$$\ell(\beta) = \log \prod_{i=1}^{n} \eta(x_i : \beta)^{y_i} (1 - \eta(x_i : \beta))^{1-y_i}$$

Define rule $\hat{\phi}(x) = \mathbb{I}(\eta(x:\hat{\beta}) \geq 1/2)$

Naive Bayes

Setting: Covariate $X = (X_1, ..., X_d)^t$ has *d* components. Assume the components are conditionally independent given *Y*: for y = 0, 1

$$f(x_1, \ldots, x_d | y) = f_1(x_1 | y) \cdots f_d(x_d | y)$$

Approach: Given observations D_n

- Form estimates $\hat{f}_j(x_j | y)$ of conditional marginals
- Estimate class conditional $\hat{f}(x | y) = \prod_{j=1}^{d} \hat{f}_j(x_j | y)$
- Combine with estimates $\hat{\pi}_0, \hat{\pi}_1$ of priors to obtain the rule

$$\hat{\phi}(x) = \operatorname*{argmax}_{j=0,1} \hat{\pi}_y \, \hat{f}(x \,|\, y)$$

More General Classification Procedures

Histogram Rules

- Observations $D_n = (X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$
- Partition $\pi = \{A_1, \ldots, A_K\}$ of \mathcal{X} into disjoint sets called cells
- Let $\pi(x) = \operatorname{cell} A_k$ of π containing x

Definition: The histogram classification rule for π is given by

$$\phi_n^{\pi}(x:D_n) = \hat{\phi}_n^{\pi}(x) = \operatorname{maj-vote}\{Y_i: X_i \in \pi(x)\}$$

- Classifies x using "local" data in the same cell as x
- No assumptions about the distribution of (X, Y)
- Decision regions of rule determined by cells of \u03c0

Nearest Neighbor Rules

Setting: Observations $D_n = (X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^d \times \{0, 1\}.$

For $x \in \mathbb{R}^d$ let $X_{(1)}(x), \ldots, X_{(n)}(x)$ be reordering of X_1, \ldots, X_n s.t.

$$||x - X_{(1)}(x)|| \le ||x - X_{(2)}(x)|| \le \dots \le ||x - X_{(n)}(x)||$$

Let $Y_{(j)}(x) =$ class label of $X_{(j)}(x) =$ the *j*th nearest neighbor of *x*.

Definition: For $k \ge 1$ odd the *k*-nearest neighbor rule is given by

$$\phi_n^{k\text{-NN}}(x) = \text{majority-vote}\{Y_{(1)}(x), \dots, Y_{(k)}(x)\}$$

Asymptotic Performance of 1-NN Rule

Note: The 1-NN rule assigns to $x \in \mathbb{R}^d$ the label of the nearest X_i

Theorem (Cover and Hart) As the number of samples *n* tends to infinity,

$$\mathbb{E}R(\hat{\phi}_n^{1\text{-NN}}) \rightarrow 2\mathbb{E}[\eta(X)(1-\eta(X))] \leq 2R^*$$

Upshot: asymptotic probability of error of 1-NN rule is *at most* twice the Bayes risk (best performance of any classification rule)!

Other Methods

Classification trees

Bagging

Boosting

Support vector machines