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Classification

Data: Labeled pairs (x1, y1), . . . , (xn, yn) with

I xi ∈ X space of predictors (often X ⊆ Rd)

I yi ∈ {0, 1} response or class label

Goal: Given an unlabeled predictor x ∈ X , assign it to class 0 or 1

I Label may be unavailable or expensive to obtain

Idea: Use labeled examples to classify unlabeled ones
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Example: Spam Recognition

Predictor: x = vector of features extracted from text of email, e.g.,

I presence of keywords (“cheap”, “cash”, “medicine”)

I presence of key phrases (“Dear Sir/Madam”)

I use of words in all-caps (“VIAGRA”)

I point of origin of email

Response: y = 1 if email is spam, y = 0 otherwise

Task: Given sample (x1, y1), . . . , (xn, yn) of labeled emails, construct a
prediction rule to classify future email messages as spam or not-spam
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Measuring Errors in Prediction

Definition: A classification rule is a map φ : X → {0, 1}. Regard φ(x) as a
prediction of the class label associated with x

Zero-One loss: Performance of φ on pair (x, y) given by

`(φ(x), y) = I(φ(x) 6= y) =

{
1 if φ(x) 6= y

0 if φ(x) = y

Summary table: For (x, y) pair four possible outcomes

φ(x) = 1 φ(x) = 0

y = 1 correct error
y = 0 error correct
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Receiver Operating Characteristic (ROC) Curves

Idea: Diagram to assess performance of a family of classification rules,
usually parametrized by a fixed threshold.

Setting: Binary classification with two outcomes

I 1 = “positive”

I 0 = “negative”

Confusion Matrix: For rule φ : X → {0, 1} and data (x1, y1), . . . , (xn, yn) we
can summarize outcome of predictions as follows

φ = 1 φ = 0

y = 1 true positives false negatives
y = 0 false positives true negatives
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ROC Curves, cont.

Defn: Given rule φ : X → {0, 1} and data (x1, y1), . . . , (xn, yn)

I True positive rate (Sensitivity)

TPR(φ) =

∑
i φ(xi)yi∑

i yi
=

# true positive predictions
total # positives

I True negative rate (Specificity)

TNR(φ) =

∑
i(1− φ(xi))(1− yi)∑

i(1− yi)
=

# true negative predictions
total # negatives

I False positive/alarm rate

FPR(φ) = 1− TNR(φ) =
# false positive predictions

total # negatives
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ROC Curve

Given: Ordered family F = {φt : t ∈ T} of classification rules, e.g.,

φt(x) = I(x ≥ t) or φt(x) = I(〈x, v〉 ≥ t)

Note: decreasing t increases both false and true positive rates.

Definition: ROC curve of the family F is a plot of

(FPR(φt),TPR(φt)) ∈ [0, 1]2 for t ∈ T

Ideally TPR(φ) is close to one when FPR(φ) is close to zero

AUC: Quality of family F assessed by area under the ROC curve
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ROC Illustration (cmglee, from Wikipedia)
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Decision Regions and Decision Boundary

Note: Every rule φ : X → {0, 1} partitions X into two sets

X0(φ) = {x ∈ X : φ(x) = 0}

X1(φ) = {x ∈ X : φ(x) = 1}

Terminology

I Sets X0(φ),X1(φ) called decision regions of φ

I Interface between X0(φ) and X1(φ) called decision boundary of φ
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Classification Problem Revisited

Picture

I Write sample (x1, y1), . . . , (xn, yn) as points xi ∈ X with labels yi

I Look for decision regions that (mostly) separate zeros and ones

Two Related Issues

I Tradeoff between complexity and separation

I Will selected rule perform well on future, unlabeled, samples?
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The Stochastic Setting
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Stochastic Setting

Assumptions

I Observations Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1} random

I (Xi, Yi) drawn independently from distribution P on X × {0, 1}

I Future observation (X,Y ) drawn independently from same distribution P

Key Stochastic Quantities

1. Prior probabilities of Y = 0 and Y = 1

2. Conditional probability of Y = 1 given X = x

3. Conditional distribution of X given Y = 0 and Y = 1
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Prior Probabilities

Given: Joint pair (X,Y ) ∈ X × {0, 1}

Define: Prior probabilities π0 = P(Y = 0) and π1 = P(Y = 1)

Notes

I Probability of seeing class Y = 0 or Y = 1 prior to observing X

I π0, π1 represent relative abundance of class 0 and 1

I Note that π0 + π1 = 1

I Cases in which π1 >> π0 or vice versa can be difficult
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Unconditional and Conditional Densities of X

Given: Joint pair (X,Y ) ∈ Rd × {0, 1}

Define: Unconditional and conditional densities of X

I f(x) = unconditional density of X

P(X ∈ A) =

∫
A

f(x) dx A ⊆ X

I f(x|0), f(x|1) = class-conditional densities of X

P(X ∈ A |Y = y) =

∫
A

f(x|y) dx A ⊆ X

Note: Densities f(·|0) and f(·|1) tell us about separability of 0s and 1s
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Conditional Distribution of Y Given X

Given: Joint pair (X,Y ) ∈ X × {0, 1}

Define: Conditional probability η(x) = P(Y = 1 |X = x)

I Posterior probability that Y = 1 given that X = x

I Note that P(Y = 0 |X = x) = 1− η(x).

Regimes:

I η(x) ≈ 1 ⇒ Y is likely to be 1 given X = x

I η(x) ≈ 0 ⇒ Y is likely to be 0 given X = x

I η(x) ≈ 1/2 ⇒ value of Y uncertain given X = x
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Relations Among Distributions

1. By the law of total probability we have

f(x) = π0f(x|0) + π1f(x|1)

Moreover, as f0 and f1 are densities
∫
f(x|0)dx =

∫
f(x|1)dx = 1

2. By Bayes theorem we know

η(x) =
π1f(x|1)

f(x)
=

π1f(x|1)

π0f(x|0) + π1f(x|1)
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Risk of a Prediction Rule

Recall: Performance of rule φ on single pair (x, y) given by zero-one loss

`(φ(x), y) = I(φ(x) 6= y) =

{
1 if φ(x) 6= y

0 if φ(x) = y

Definition: The risk of a fixed classification rule φ on a random pair (X,Y ) is
its expected loss

R(φ) = E[I(φ(X) 6= Y )] = P(φ(X) 6= Y )

which is just the probability that φ misclassifies X
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Optimality and the Bayes Rule
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Bayes Rule and Bayes Risk

Definition: The Bayes classification rule φ∗ for the pair (X,Y ) is

φ∗(x) = argmax
k=0,1

P(Y = k |X = x)

I φ∗(x) is the most likely value of Y given X = x

I φ∗(x) depends on distribution of (X,Y ), usually unknown

Definition: The Bayes risk R∗ for (X,Y ) is the risk of the Bayes rule

R∗ = R(φ∗) = P(φ∗(X) 6= Y )
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Optimality of the Bayes Rule

Note: For binary Y the Bayes rule has the equivalent forms

φ∗(x) = I(η(x) ≥ 1/2) = argmax
y=0,1

πyf(x|y)

Theorem: The Bayes rule φ∗ for (X,Y ) is optimal: for every classification
rule φ : X → {0, 1} we have R∗ ≤ R(φ).

Fact: The Bayes risk R∗ can be written in the form

R∗ = Emin{η(X), 1− η(X)}
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Understanding the Bayes Risk

Fact: Let (X,Y ) ∈ X × {0, 1} be a jointly distributed pair

1. Bayes risk R∗ ∈ [0, 1/2]

2. R∗ = 0 iff η(x) ∈ {0, 1} iff Y is a function of X

3. R∗ = 1/2 iff η(x) ≡ 1/2 which implies that Y ⊥⊥ X

4. If Y ⊥⊥ X then φ∗(x) is constant (1 if π1 ≥ π0 and 0 if π0 < π1)
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Fixed vs. Data Dependent Prediction Rules

Observations Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1} iid ∼ (X,Y )

Fixed rule φ : X → {0, 1}

I φ(x) predicts class label of x without regard to Dn

I Risk R(φ) = P(φ(X) 6= Y ) is a constant

Classification procedure φn : X × (X × {0, 1})n → {0, 1}

I φ̂n(x) = φn(x : Dn) predicts class label of x based on Dn

I Risk R(φ̂n) = P(φ̂n(X) 6= Y |Dn) is a random variable
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Classification Procedures Based on Distributional Assumptions
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Linear and Quadratic Discriminant Analysis

Idea: Assume class conditional density f(x|y) = Nd(µy,Σy) for y = 0, 1

Fitting: Given observations Dn

1. Estimate mean µ̂y and variance Σ̂y. Let f̂(x|y) = Nd(µ̂y, Σ̂y)

2. Estimate priors π̂y

3. Define φ̂(x) = argmaxy=0,1 π̂y f̂(x|y)

1. LDA: Assume Σ0 = Σ1. In this case φ̂ has linear decision boundary

2. QDA: Allow Σ0 6= Σ1. In this case φ̂ has quadratic decision boundary
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Logistic Regression Model

Model: For some coefficient vector β ∈ Rd+1

log
η(x)

1− η(x)
= 〈β, x〉 equivalently η(x : β) =

e〈β,x〉

1 + e〈β,x〉

Fitting: Given observations Dn find the coefficient vector β̂ maximizing the
conditional log-likelihood (using gradient descent)

`(β) = log
n∏
i=1

η(xi : β)yi (1− η(xi : β))1−yi

Define rule φ̂(x) = I(η(x : β̂) ≥ 1/2)
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Naive Bayes

Setting: Covariate X = (X1, . . . , Xd)
t has d components. Assume the

components are conditionally independent given Y : for y = 0, 1

f(x1, . . . , xd | y) = f1(x1 | y) · · · fd(xd | y)

Approach: Given observations Dn

I Form estimates f̂j(xj | y) of conditional marginals

I Estimate class conditional f̂(x | y) =
∏d
j=1 f̂j(xj | y)

I Combine with estimates π̂0, π̂1 of priors to obtain the rule

φ̂(x) = argmax
j=0,1

π̂y f̂(x | y)
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More General Classification Procedures
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Histogram Rules

I Observations Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1}

I Partition π = {A1, . . . , AK} of X into disjoint sets called cells

I Let π(x) = cell Ak of π containing x

Definition: The histogram classification rule for π is given by

φπn(x : Dn) = φ̂πn(x) = maj-vote{Yi : Xi ∈ π(x)}

I Classifies x using “local” data in the same cell as x

I No assumptions about the distribution of (X,Y )

I Decision regions of rule determined by cells of π
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Nearest Neighbor Rules

Setting: Observations Dn = (X1, Y1), . . . , (Xn, Yn) ∈ Rd × {0, 1}.

For x ∈ Rd let X(1)(x), . . . , X(n)(x) be reordering of X1, . . . , Xn s.t.

||x−X(1)(x)|| ≤ ||x−X(2)(x)|| ≤ · · · ≤ ||x−X(n)(x)||

Let Y(j)(x) = class label of X(j)(x) = the jth nearest neighbor of x.

Definition: For k ≥ 1 odd the k-nearest neighbor rule is given by

φk-NN
n (x) = majority-vote{Y(1)(x), . . . , Y(k)(x)}
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Asymptotic Performance of 1-NN Rule

Note: The 1-NN rule assigns to x ∈ Rd the label of the nearest Xi

Theorem (Cover and Hart) As the number of samples n tends to infinity,

ER(φ̂1-NN
n ) → 2E[η(X)(1− η(X))] ≤ 2R∗

Upshot: asymptotic probability of error of 1-NN rule is at most twice the
Bayes risk (best performance of any classification rule)!
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Other Methods

I Classification trees

I Bagging

I Boosting

I Support vector machines
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