The Classification Problem and Statistical Framework

Andrew Nobel

September, 2023

Classification

Data: Labeled pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with

- $x_{i} \in \mathcal{X}$ space of predictors (often $\mathcal{X} \subseteq \mathbb{R}^{d}$)
- $y_{i} \in\{0,1\}$ response or class label

Goal: Given an unlabeled predictor $x \in \mathcal{X}$, assign it to class 0 or 1

- Label may be unavailable or expensive to obtain

Idea: Use labeled examples to classify unlabeled ones

Example: Spam Recognition

Predictor: $x=$ vector of features extracted from text of email, e.g.,

- presence of keywords ("cheap", "cash", "medicine")
- presence of key phrases ("Dear Sir/Madam")
- use of words in all-caps ("VIAGRA")
- point of origin of email

Response: $y=1$ if email is spam, $y=0$ otherwise

Task: Given sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of labeled emails, construct a prediction rule to classify future email messages as spam or not-spam

Measuring Errors in Prediction

Definition: A classification rule is a map $\phi: \mathcal{X} \rightarrow\{0,1\}$. Regard $\phi(x)$ as a prediction of the class label associated with x

Zero-One loss: Performance of ϕ on pair (x, y) given by

$$
\ell(\phi(x), y)=\mathbb{I}(\phi(x) \neq y)= \begin{cases}1 & \text { if } \phi(x) \neq y \\ 0 & \text { if } \phi(x)=y\end{cases}
$$

Summary table: For (x, y) pair four possible outcomes

	$\phi(x)=1$	$\phi(x)=0$
$y=1$	correct	error
$y=0$	error	correct

Receiver Operating Characteristic (ROC) Curves

Idea: Diagram to assess performance of a family of classification rules, usually parametrized by a fixed threshold.

Setting: Binary classification with two outcomes

- $1=$ "positive"
- $0=$ "negative"

Confusion Matrix: For rule $\phi: \mathcal{X} \rightarrow\{0,1\}$ and data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ we can summarize outcome of predictions as follows

	$\phi=1$	$\phi=0$
$y=1$	true positives	false negatives
$y=0$	false positives	true negatives

ROC Curves, cont.

Defn: Given rule $\phi: \mathcal{X} \rightarrow\{0,1\}$ and data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$

- True positive rate (Sensitivity)

$$
\operatorname{TPR}(\phi)=\frac{\sum_{i} \phi\left(x_{i}\right) y_{i}}{\sum_{i} y_{i}}=\frac{\text { \# true positive predictions }}{\text { total \# positives }}
$$

- True negative rate (Specificity)

$$
\operatorname{TNR}(\phi)=\frac{\sum_{i}\left(1-\phi\left(x_{i}\right)\right)\left(1-y_{i}\right)}{\sum_{i}\left(1-y_{i}\right)}=\frac{\# \text { true negative predictions }}{\text { total } \# \text { negatives }}
$$

- False positive/alarm rate

$$
\operatorname{FPR}(\phi)=1-\operatorname{TNR}(\phi)=\frac{\# \text { false positive predictions }}{\text { total \# negatives }}
$$

ROC Curve

Given: Ordered family $\mathcal{F}=\left\{\phi_{t}: t \in T\right\}$ of classification rules, e.g.,

$$
\phi_{t}(x)=\mathbb{I}(x \geq t) \text { or } \phi_{t}(x)=\mathbb{I}(\langle x, v\rangle \geq t)
$$

Note: decreasing t increases both false and true positive rates.

Definition: ROC curve of the family \mathcal{F} is a plot of

$$
\left(\operatorname{FPR}\left(\phi_{t}\right), \operatorname{TPR}\left(\phi_{t}\right)\right) \in[0,1]^{2} \text { for } t \in T
$$

Ideally $\operatorname{TPR}(\phi)$ is close to one when $\operatorname{FPR}(\phi)$ is close to zero

AUC: Quality of family \mathcal{F} assessed by area under the ROC curve

ROC Illustration (cmglee, from Wikipedia)

Decision Regions and Decision Boundary

Note: Every rule $\phi: \mathcal{X} \rightarrow\{0,1\}$ partitions \mathcal{X} into two sets

$$
\begin{aligned}
\mathcal{X}_{0}(\phi) & =\{x \in \mathcal{X}: \phi(x)=0\} \\
\mathcal{X}_{1}(\phi) & =\{x \in \mathcal{X}: \phi(x)=1\}
\end{aligned}
$$

Terminology

- Sets $\mathcal{X}_{0}(\phi), \mathcal{X}_{1}(\phi)$ called decision regions of ϕ
- Interface between $\mathcal{X}_{0}(\phi)$ and $\mathcal{X}_{1}(\phi)$ called decision boundary of ϕ

Classification Problem Revisited

Picture

- Write sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ as points $x_{i} \in \mathcal{X}$ with labels y_{i}
- Look for decision regions that (mostly) separate zeros and ones

Two Related Issues

- Tradeoff between complexity and separation
- Will selected rule perform well on future, unlabeled, samples?

The Stochastic Setting

Stochastic Setting

Assumptions

- Observations $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathcal{X} \times\{0,1\}$ random
- $\left(X_{i}, Y_{i}\right)$ drawn independently from distribution P on $\mathcal{X} \times\{0,1\}$
- Future observation (X, Y) drawn independently from same distribution P

Key Stochastic Quantities

1. Prior probabilities of $Y=0$ and $Y=1$
2. Conditional probability of $Y=1$ given $X=x$
3. Conditional distribution of X given $Y=0$ and $Y=1$

Prior Probabilities

Given: Joint pair $(X, Y) \in \mathcal{X} \times\{0,1\}$

Define: Prior probabilities $\pi_{0}=\mathbb{P}(Y=0)$ and $\pi_{1}=\mathbb{P}(Y=1)$

Notes

- Probability of seeing class $Y=0$ or $Y=1$ prior to observing X
- π_{0}, π_{1} represent relative abundance of class 0 and 1
- Note that $\pi_{0}+\pi_{1}=1$
- Cases in which $\pi_{1} \gg \pi_{0}$ or vice versa can be difficult

Unconditional and Conditional Densities of X

Given: Joint pair $(X, Y) \in \mathbb{R}^{d} \times\{0,1\}$

Define: Unconditional and conditional densities of X

- $f(x)=$ unconditional density of X

$$
\mathbb{P}(X \in A)=\int_{A} f(x) d x \quad A \subseteq \mathcal{X}
$$

- $f(x \mid 0), f(x \mid 1)=$ class-conditional densities of X

$$
\mathbb{P}(X \in A \mid Y=y)=\int_{A} f(x \mid y) d x \quad A \subseteq \mathcal{X}
$$

Note: Densities $f(\cdot \mid 0)$ and $f(\cdot \mid 1)$ tell us about separability of 0 s and 1 s

Conditional Distribution of Y Given X

Given: Joint pair $(X, Y) \in \mathcal{X} \times\{0,1\}$

Define: Conditional probability $\eta(x)=\mathbb{P}(Y=1 \mid X=x)$

- Posterior probability that $Y=1$ given that $X=x$
- Note that $\mathbb{P}(Y=0 \mid X=x)=1-\eta(x)$.

Regimes:

- $\eta(x) \approx 1 \Rightarrow Y$ is likely to be 1 given $X=x$
- $\eta(x) \approx 0 \Rightarrow Y$ is likely to be 0 given $X=x$
- $\eta(x) \approx 1 / 2 \Rightarrow$ value of Y uncertain given $X=x$

Relations Among Distributions

1. By the law of total probability we have

$$
f(x)=\pi_{0} f(x \mid 0)+\pi_{1} f(x \mid 1)
$$

Moreover, as f_{0} and f_{1} are densities $\int f(x \mid 0) d x=\int f(x \mid 1) d x=1$
2. By Bayes theorem we know

$$
\eta(x)=\frac{\pi_{1} f(x \mid 1)}{f(x)}=\frac{\pi_{1} f(x \mid 1)}{\pi_{0} f(x \mid 0)+\pi_{1} f(x \mid 1)}
$$

Risk of a Prediction Rule

Recall: Performance of rule ϕ on single pair (x, y) given by zero-one loss

$$
\ell(\phi(x), y)=\mathbb{I}(\phi(x) \neq y)= \begin{cases}1 & \text { if } \phi(x) \neq y \\ 0 & \text { if } \phi(x)=y\end{cases}
$$

Definition: The risk of a fixed classification rule ϕ on a random pair (X, Y) is its expected loss

$$
R(\phi)=\mathbb{E}[\mathbb{I}(\phi(X) \neq Y)]=\mathbb{P}(\phi(X) \neq Y)
$$

which is just the probability that ϕ misclassifies X

Optimality and the Bayes Rule

Bayes Rule and Bayes Risk

Definition: The Bayes classification rule ϕ^{*} for the pair (X, Y) is

$$
\phi^{*}(x)=\underset{k=0,1}{\operatorname{argmax}} \mathbb{P}(Y=k \mid X=x)
$$

- $\phi^{*}(x)$ is the most likely value of Y given $X=x$
- $\phi^{*}(x)$ depends on distribution of (X, Y), usually unknown

Definition: The Bayes risk R^{*} for (X, Y) is the risk of the Bayes rule

$$
R^{*}=R\left(\phi^{*}\right)=\mathbb{P}\left(\phi^{*}(X) \neq Y\right)
$$

Optimality of the Bayes Rule

Note: For binary Y the Bayes rule has the equivalent forms

$$
\phi^{*}(x)=\mathbb{I}(\eta(x) \geq 1 / 2)=\underset{y=0,1}{\operatorname{argmax}} \pi_{y} f(x \mid y)
$$

Theorem: The Bayes rule ϕ^{*} for (X, Y) is optimal: for every classification rule $\phi: \mathcal{X} \rightarrow\{0,1\}$ we have $R^{*} \leq R(\phi)$.

Fact: The Bayes risk R^{*} can be written in the form

$$
R^{*}=\mathbb{E} \min \{\eta(X), 1-\eta(X)\}
$$

Understanding the Bayes Risk

Fact: Let $(X, Y) \in \mathcal{X} \times\{0,1\}$ be a jointly distributed pair

1. Bayes risk $R^{*} \in[0,1 / 2]$
2. $R^{*}=0$ iff $\eta(x) \in\{0,1\}$ iff Y is a function of X
3. $R^{*}=1 / 2$ iff $\eta(x) \equiv 1 / 2$ which implies that $Y \Perp X$
4. If $Y \Perp X$ then $\phi^{*}(x)$ is constant (1 if $\pi_{1} \geq \pi_{0}$ and 0 if $\pi_{0}<\pi_{1}$)

Fixed vs. Data Dependent Prediction Rules

Observations $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathcal{X} \times\{0,1\}$ iid $\sim(X, Y)$

Fixed rule $\phi: \mathcal{X} \rightarrow\{0,1\}$

- $\phi(x)$ predicts class label of x without regard to D_{n}
- Risk $R(\phi)=\mathbb{P}(\phi(X) \neq Y)$ is a constant

Classification procedure $\phi_{n}: \mathcal{X} \times(\mathcal{X} \times\{0,1\})^{n} \rightarrow\{0,1\}$

- $\hat{\phi}_{n}(x)=\phi_{n}\left(x: D_{n}\right)$ predicts class label of x based on D_{n}
- Risk $R\left(\hat{\phi}_{n}\right)=\mathbb{P}\left(\hat{\phi}_{n}(X) \neq Y \mid D_{n}\right)$ is a random variable

Classification Procedures Based on Distributional Assumptions

Linear and Quadratic Discriminant Analysis

Idea: Assume class conditional density $f(x \mid y)=\mathcal{N}_{d}\left(\mu_{y}, \Sigma_{y}\right)$ for $y=0,1$

Fitting: Given observations D_{n}

1. Estimate mean $\hat{\mu}_{y}$ and variance $\hat{\Sigma}_{y}$. Let $\hat{f}(x \mid y)=\mathcal{N}_{d}\left(\hat{\mu}_{y}, \hat{\Sigma}_{y}\right)$
2. Estimate priors $\hat{\pi}_{y}$
3. Define $\hat{\phi}(x)=\operatorname{argmax}_{y=0,1} \hat{\pi}_{y} \hat{f}(x \mid y)$
4. LDA: Assume $\Sigma_{0}=\Sigma_{1}$. In this case $\hat{\phi}$ has linear decision boundary
5. QDA: Allow $\Sigma_{0} \neq \Sigma_{1}$. In this case $\hat{\phi}$ has quadratic decision boundary

Logistic Regression Model

Model: For some coefficient vector $\beta \in \mathbb{R}^{d+1}$

$$
\log \frac{\eta(x)}{1-\eta(x)}=\langle\beta, x\rangle \text { equivalently } \eta(x: \beta)=\frac{e^{\langle\beta, x\rangle}}{1+e^{\langle\beta, x\rangle}}
$$

Fitting: Given observations D_{n} find the coefficient vector $\hat{\beta}$ maximizing the conditional log-likelihood (using gradient descent)

$$
\ell(\beta)=\log \prod_{i=1}^{n} \eta\left(x_{i}: \beta\right)^{y_{i}}\left(1-\eta\left(x_{i}: \beta\right)\right)^{1-y_{i}}
$$

Define rule $\hat{\phi}(x)=\mathbb{I}(\eta(x: \hat{\beta}) \geq 1 / 2)$

Naive Bayes

Setting: Covariate $X=\left(X_{1}, \ldots, X_{d}\right)^{t}$ has d components. Assume the components are conditionally independent given Y : for $y=0,1$

$$
f\left(x_{1}, \ldots, x_{d} \mid y\right)=f_{1}\left(x_{1} \mid y\right) \cdots f_{d}\left(x_{d} \mid y\right)
$$

Approach: Given observations D_{n}

- Form estimates $\hat{f}_{j}\left(x_{j} \mid y\right)$ of conditional marginals
- Estimate class conditional $\hat{f}(x \mid y)=\prod_{j=1}^{d} \hat{f}_{j}\left(x_{j} \mid y\right)$
- Combine with estimates $\hat{\pi}_{0}, \hat{\pi}_{1}$ of priors to obtain the rule

$$
\hat{\phi}(x)=\underset{j=0,1}{\operatorname{argmax}} \hat{\pi}_{y} \hat{f}(x \mid y)
$$

More General Classification Procedures

Histogram Rules

- Observations $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathcal{X} \times\{0,1\}$
- Partition $\pi=\left\{A_{1}, \ldots, A_{K}\right\}$ of \mathcal{X} into disjoint sets called cells
- Let $\pi(x)=$ cell A_{k} of π containing x

Definition: The histogram classification rule for π is given by

$$
\phi_{n}^{\pi}\left(x: D_{n}\right)=\hat{\phi}_{n}^{\pi}(x)=\operatorname{maj}-\text { vote }\left\{Y_{i}: X_{i} \in \pi(x)\right\}
$$

- Classifies x using "local" data in the same cell as x
- No assumptions about the distribution of (X, Y)
- Decision regions of rule determined by cells of π

Nearest Neighbor Rules

Setting: Observations $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathbb{R}^{d} \times\{0,1\}$.

For $x \in \mathbb{R}^{d}$ let $X_{(1)}(x), \ldots, X_{(n)}(x)$ be reordering of X_{1}, \ldots, X_{n} s.t.

$$
\left\|x-X_{(1)}(x)\right\| \leq\left\|x-X_{(2)}(x)\right\| \leq \cdots \leq\left\|x-X_{(n)}(x)\right\|
$$

Let $Y_{(j)}(x)=$ class label of $X_{(j)}(x)=$ the j th nearest neighbor of x.

Definition: For $k \geq 1$ odd the k-nearest neighbor rule is given by

$$
\phi_{n}^{\text {k-NN }}(x)=\text { majority-vote }\left\{Y_{(1)}(x), \ldots, Y_{(k)}(x)\right\}
$$

Asymptotic Performance of 1-NN Rule

Note: The 1-NN rule assigns to $x \in \mathbb{R}^{d}$ the label of the nearest X_{i}

Theorem (Cover and Hart) As the number of samples n tends to infinity,

$$
\mathbb{E} R\left(\hat{\phi}_{n}^{1-N N}\right) \rightarrow 2 \mathbb{E}[\eta(X)(1-\eta(X))] \leq 2 R^{*}
$$

Upshot: asymptotic probability of error of 1-NN rule is at most twice the Bayes risk (best performance of any classification rule)!

Other Methods

- Classification trees
- Bagging
- Boosting
- Support vector machines

