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Maxima and Minima
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The Usual Order Relation

Definition: For a, b ∈ R write a ≤ b if (b− a) ≥ 0 and a < b if (b− a) > 0

Basic Properties

1. If a ≤ b and b ≤ a then a = b

2. If a ≤ b then −b ≤ −a

3. If a ≤ b and c ≤ d then a+ c ≤ b+ d

4. If 0 ≤ a ≤ b and 0 ≤ c ≤ d then ac ≤ bd

Note: (2)-(4) continue to hold if we replace ≤ by <
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Maxima and Minima

Basic Properties: Let a1, . . . , an ∈ R and b1, . . . , bn ∈ R be finite sequences

1. If ai ≤ bi each i, then maxi ai ≤ maxi bi and mini ai ≤ mini bi

2. If a ≥ ai for each i then a ≥ maxi ai

3. −mini ai = maxi(−ai) and −maxi ai = mini(−ai)

4. If c ≥ 0 and b are constants, c maxi ai + b = maxi(c ai + b)

5. maxi(ai + bi) ≤ maxi ai +maxi bi

6. mini(ai + bi) ≥ mini ai +mini bi

7. maxi ai −maxi bi ≤ maxi |ai − bi|

8. mini ai −mini bi ≤ maxi |ai − bi|
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Suprema and Infima

Definition: Let A ⊆ R be bounded. Recall that

1. sup(A) = least upper bound for A

2. inf(A) = greatest lower bound for A

Existence of sup and inf follows from construction of the real numbers

I By convention sup(∅) = −∞ and inf(∅) = +∞

I If A ⊆ B then sup(A) ≤ sup(B) while inf(A) ≥ inf(B)

Key Fact: Basic properties of minima and maxima extend to infima and
suprema over infinite sets
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Iterated Minima and Maxima

Fact: Let h : X × Y → R be any function. Then the following relations hold

sup
x∈X

sup
y∈Y

h(x, y) = sup
y∈Y

sup
x∈X

h(x, y)

inf
x∈X

inf
y∈Y

h(x, y) = inf
y∈Y

inf
x∈X

h(x, y)

sup
x∈X

inf
y∈Y

h(x, y) ≤ inf
y∈Y

sup
x∈X

h(x, y)
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Argmax and Argmin

Definition: The argmax of a function f : X → R is the set of points y ∈ X
where f is maximized

argmax
x∈X

f(x) = {y ∈ X : f(y) ≥ f(x) for all x ∈ X}

=

{
y ∈ X : f(y) = max

x∈X
f(x)

}

Similarly, the argmin of f is the set of points y ∈ X where f is minimized

argmin
x∈X

f(x) = {y ∈ X : f(y) ≤ f(x) for all x ∈ X}

=

{
y ∈ X : f(y) = min

x∈X
f(x)

}
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Argmax and Argmin, cont.

Note that argmaxx∈X f(x) is a subset of X

I maxx∈X f(x) is the maximum value of f(x) if this exists

I argmaxx∈X f(x) is the set of arguments x achieving the maximum value

I argmaxx∈X f(x) is non-empty iff maxx∈X f(x) defined

Note that argminx∈X f(x) is a subset of X

I minx∈X f(x) is the minimum value of f(x) if this exists

I argminx∈X f(x) is the set of arguments x achieving the minimum value

I argminx∈X f(x) is non-empty iff minx∈X f(x) defined
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Basic Concentration Inequalities
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Recall: Elementary Inequalities for Probability

Fact: If A,B are events, the axioms of probability ensure that

1. If A ⊆ B then P (A) ≤ P (B)

2. P (A ∪B) ≤ P (A) + P (B)

Examples: Let X,Y be random variables and a, b > 0

I P (|X + Y | ≥ a+ b) ≤ P (|X| ≥ a) + P (|Y | ≥ b)

I P (|XY | ≥ a) ≤ P (|X| ≥ a/b) + P (|Y | ≥ b)

Idea: Show that the event on the left is contained in the union of the events
on the right using elementary logic. Then apply the basic properties of
probability above.
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Concentration Inequalities

Recall: For a random variable X

I EX tells us about the center of its distribution

I Var(X) tells us about the spread of its distribution

Concentration Inequalities: Bounds on the probability that a random
variable is far from its expectation

P(X ≥ EX + t) P(X ≤ EX − t) P(|X − EX| ≥ t)

I Often X = U1 + · · ·+ Un sum of independent random variables

I More generally X = function of independent random variables
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Markov’s and Chebyshev’s Inequalities

Markov’s inequality: If X ≥ 0 and t > 0 then

P(X ≥ t) ≤ EX
t

Chebyshev’s Inequality: If EX2 <∞ then for each t > 0

P(|X − EX| ≥ t) ≤ Var(X)

t2

I Upper bound may be larger than 1 (not useful)

I Upper bound is less than 1 if t > SD(X)
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Moment Generating Functions

Recall: The moment generating function (MGF) of a rv X is defined by

MX(s) = E
[
esX

]
for s ∈ R

Note that MX(s) ≥ 0, and that MX(s) may be +∞.

Fact: if X1, . . . , Xn are independent and MXi(s) are finite in a neighborhood
of 0 then Sn = X1 + · · ·+Xn has MGF

MSn(s) =

n∏
i=1

MXi(s)

MGFs are a good way to study sums of independent random variables
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Chernoff’s Bound

Chernoff Bound: For any random variable X and t ∈ R

P(X ≥ t) ≤ min
s>0

e−st EesX = min
s>0

e−st MX(s)

Corollary: If MGF of (X − EX) is at most M(s) for s ≥ 0, then for t > 0

P(X ≥ EX + t) ≤ inf
s>0

e−st M(s)

I Inequalities for left tail P(X ≤ EX − t) established in same way

I Bound on P(|X − EX| ≥ t) obtained by adding L/R tail bounds
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Hoeffding’s MGF Bound and Hoeffding’s Inequality

MGF bound: If X ∈ [a, b] then for every s ≥ 0

Ees(X−EX) ≤ es
2(b−a)2/8

Probability Inequality: Let X1, . . . , Xn be independent with ai ≤ Xi ≤ bi
and let Sn = X1 + · · ·+Xn. For every t ≥ 0,

P(Sn − ESn ≥ t) ≤ exp

{
−2t2∑n

i=1(bi − ai)2

}

Also P(Sn − ESn ≤ −t) ≤ RHS and P(|Sn − ESn| ≥ t) ≤ 2 RHS

Note: Bound does not use information about variance of the Xis
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Example: Bernoulli Random Variables

Let X1, . . . , Xn be iid Bern(p). Note that E(
∑n

i=1 Xi) = np

Chebyshev: Uses Var(Xi) = p(1− p). For each t ≥ 0

P

(
n∑

i=1

Xi − np ≥ t

)
≤ n p(1− p)

t2
≤ n

4t2

Hoeffding: Uses 0 ≤ Xi ≤ 1. For each t ≥ 0

P

(
n∑

i=1

Xi − np ≥ t

)
≤ exp

{
−2t2

n

}

Note: In each case upper bounds are useful only when t &
√
n
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Bernoulli Example, cont.

Compare bounds of Chebyshev and Hoeffding when n = 100

t Chebyshev Hoeffding

5 1 .607

10 .250 .135

12 .173 .0561

14 .128 .0198

16 .0977 .0060

20 .0625 .000335

Upshot: Once the bounds kick in, Hoeffding is better
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Bounded Difference Inequality

Setting: Let X be a set, possibly finite

I Function f : Xn → R

I X1, . . . , Xn ∈ X independent, not necessarily identically distributed

Of interest: bounds on the probability that the random variable

Z = f(X1, . . . , Xn)

is far from its mean EZ

18/19



Bounded Difference Inequality

Definition: The ith difference coefficient ci of f is the maximum possible
change in the value of f if we change the value of the ith coordinate,

ci = sup |f(xn
1 )− f(xi−1

1 , x′i, x
n
i+1)|

where the supremum is over all sequences x1, . . . , xi, x
′
i, xi+1, . . . , xn ∈ X

Theorem (McDiarmid) If X1, . . . , Xn ∈ X independent, then for every t ≥ 0

P (|f(Xn
1 )− Ef(Xn

1 )| ≥ t) ≤ 2 exp

{
−2t2∑n
i=1 c

2
i

}

Moreover, Var(f(Xn
1 )) ≤

∑n
i=1 c

2
i /4
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