High-Dimensional Estimation with Constraints

Andrew Nobel

April, 2023

Basic Problem

Problem: Given a known, bounded set $K \subseteq \mathbb{R}^{n}$, wish to estimate an unknown vector $x \in K$ from m random measurements of the form

$$
y_{i}=\left\langle x, V_{i}\right\rangle \text { where } V_{1}, \ldots, V_{m} \text { iid } \mathcal{N}_{n}(0, I)
$$

Idea: Set K reflects assumed structure of the unknown vector x. Set K, observations y_{i}, and vector V_{i} are known to us

Punch line

- In many cases the number of samples m^{*} needed to reliably estimate x is roughly $w(K)^{2} \approx$ effective dimension of K
- In particular, m^{*} is often independent of the ambient dimension n, or depends only logarithmically on n

Estimation from Random Projections

A. No Noise

- Generate V_{1}, \ldots, V_{m} iid $\sim \mathcal{N}_{n}(0, I)$
- Observe $y_{1}=\left\langle x, V_{1}\right\rangle, \ldots, y_{m}=\left\langle x, V_{m}\right\rangle$

In matrix form, $y=W x$ where $y=\left(y_{1}, \ldots, y_{m}\right)^{t}$ and $W=\left(V_{1}^{t}, \ldots, V_{m}^{t}\right)^{t} \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix with iid $\mathcal{N}(0,1)$ entries.
B. Bounded Noise. Assume that $y=W x+\nu$, or equivalently, $y_{i}=\left\langle x, V_{i}\right\rangle+\nu_{i}$ for $1 \leq i \leq m$ where $\nu \in \mathbb{R}^{m}$ is a noise vector such that

$$
m^{-1}\|\nu\|_{1}=m^{-1} \sum_{i=1}^{m}\left|\nu_{i}\right| \leq \varepsilon
$$

where ε is a known noise level

Estimation of Unknown $x \in K$

A. Noiseless case

- We know that $x \in K$ and $W x=y$
- Natural estimate is any $\hat{x} \in \mathbb{R}^{n}$ such that $\hat{x} \in K$ and $W \hat{x}=y$
B. Bounded noise
- We know that $x \in K$ and $m^{-1}\|W x-y\|_{1} \leq \varepsilon$
- Natural estimate is any $\hat{x} \in \mathbb{R}^{n}$ such that $\hat{x} \in K$ and $m^{-1}\|W \hat{x}-y\|_{1} \leq \varepsilon$

Note: Bounded noise case reduces to noiseless case when $\varepsilon=0$. In each setting there is at least one solution \hat{x}

Geometry

Note: Feasibility conditions for estimates in noiseless case equivalent to

$$
\hat{x} \in K \cap\{u: W u=y\}
$$

This is the intersection of the constraint set K and a (random) m-dimensional affine subspace of \mathbb{R}^{n}

- Error $\|\hat{x}-x\| \leq \operatorname{diam}(K \cap\{u: W u=W x\})$
- Will see: Maximum error (over all $x \in K$) is controlled by mean width

Key Theorem

Theorem: Let $L \subseteq \mathbb{R}^{n}$ be bounded and let $W \in \mathbb{R}^{m \times n}$ have iid $\mathcal{N}(0,1)$ entries. For $\varepsilon \geq 0$ define the random set

$$
L_{\varepsilon}=\left\{u \in L: m^{-1}\|W u\|_{1} \leq \varepsilon\right\} \subseteq \mathbb{R}^{n}
$$

Then for each fixed $\varepsilon \geq 0$ we have

$$
\mathbb{E} \sup _{u \in L_{\varepsilon}}\|u\|_{2} \leq \sqrt{\frac{8 \pi}{m}} \mathbb{E} \sup _{u \in L}|\langle u, V\rangle|+\sqrt{\frac{\pi}{2}} \varepsilon
$$

Recovery from Random Projections

Recall: Observe $y=W x+\nu \in \mathbb{R}^{m}$ where $W \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix, $x \in K \subseteq \mathbb{R}^{n}$, and $\nu \in \mathbb{R}^{m}$ satisfies $m^{-1}\|\nu\|_{1} \leq \varepsilon$.

Theorem: If estimate $\hat{x} \in K$ and $m^{-1}\|W \hat{x}-y\|_{1} \leq \varepsilon$ then

$$
\mathbb{E} \sup _{x \in K}\|\hat{x}-x\|_{2} \leq \sqrt{8 \pi}\left(\frac{w(K)}{\sqrt{m}}+\varepsilon\right)
$$

Note

- For $\varepsilon=0$ bound is small when effective dimension $w(K)^{2} \leq c m$
- Bound considers worst case behavior over all possible $x \in K$

Recovery: High Probability Version

Fact: Under conditions of the recovery theorem, for $t>0$, with probability at least

$$
1-2 \exp \left(-m t^{2} / 2 \operatorname{diam}(K)^{2}\right)
$$

we have

$$
\sup _{x \in K}\|\hat{x}-x\|_{2} \leq c_{1}\left(\frac{w(K)}{\sqrt{m}}+\varepsilon\right)+c_{2} t
$$

