Convexity Sets and Functions

Andrew Nobel

April, 2023

Convex Sets

Convex Sets

Definition: A set $C \subseteq \mathbb{R}^{d}$ is convex if for every $x, y \in C$ and every $\alpha \in[0,1]$ the point $\alpha x+(1-\alpha) y \in C$.

Interpretation

- Vector $\alpha x+(1-\alpha) y$ called convex combination of x, y with weight α
- Set $\{\alpha x+(1-\alpha) y: \alpha \in[0,1]\}$ is just the line between x and y
- So C is convex if the line between any two points in C is contained in C

Examples of Convex Sets

- Simple examples: $C=\mathbb{R}^{d}, \emptyset,\{0\}$
- Open norm ball $B\left(x_{0}, r\right):=\left\{x:\left\|x-x_{0}\right\|<r\right\}$
- Halfspace $H(w, b)=\left\{x: w^{t} x \geq b\right\}$ with direction w and offset b
- Hyperplane $\partial H(w, b)=\left\{x: w^{t} x=b\right\}(\mathrm{n}$-1)-dimensional
- Polyhedron $\{x: A x \leq c\}$ where \leq understood componentwise
- Probability simplex $\left\{u: u_{i} \geq 0\right.$ and $\left.\sum_{i=1}^{d} u_{i}=1\right\}$

Basic Properties of Convex Sets

Fact

1. If C_{λ} with $\lambda \in \Lambda$ are convex sets then so is their intersection $\cap_{\lambda \in \Lambda} C_{\lambda}$
2. If $A, B \subseteq \mathbb{R}^{d}$ are convex then so is $A+B:=\{u+v: u \in A$ and $v \in B\}$
3. If $A \subseteq \mathbb{R}^{d}$ is convex and $c \in \mathbb{R}$ then $c A:=\{c u: u \in A\}$ is convex

Convex Functions

Convex Functions

Definition: Let $C \subseteq \mathbb{R}^{d}$ be convex. A function $f: C \rightarrow \mathbb{R}$ is convex if for every $x, y \in C$ and every $\alpha \in(0,1)$,

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)(*)
$$

Convexity of C ensures that $f(\cdot)$ is defined at $\alpha x+(1-\alpha) y$

Interpretation: For each $x, y \in C$ the line connecting $(x, f(x))$ and $(y, f(y))$ lies above the graph $\{(u, f(u)): u \in C\} \subseteq \mathbb{R}^{d+1}$ of f

Related Definitions

- $f: C \rightarrow \mathbb{R}$ is strictly convex if $(*)$ holds with \leq replaced by $<$
- $f: C \rightarrow \mathbb{R}$ is concave if $(*)$ holds with \leq replaced by \geq
- $f: C \rightarrow \mathbb{R}$ is strictly concave if $(*)$ holds with \leq replaced by $>$

Verifying Convexity and Concavity

1. Check the definition: In many cases it is possible to directly check the definition
2. Second derivative condition: Let $C \subseteq \mathbb{R}^{d}$ be convex

- A function $f: C \rightarrow \mathbb{R}$ is convex if the matrix $\nabla^{2} f(x)$ of second partial derivatives is well-defined and non-negative definite for each $x \in C$
- A function $f: C \rightarrow \mathbb{R}$ is concave if the matrix $\nabla^{2} f(x)$ of second partial derivatives is well-defined and non-positive definite for each $x \in C$

Special case: If $d=1$ then f is convex if $f^{\prime \prime} \geq 0$ and concave if $f^{\prime \prime} \leq 0$

Examples of Convex/Concave Functions

Case $d=1$

- $f(x)=|x|$ is convex, but not strictly convex
- $f(x)=x^{2}, e^{x}, e^{-x}$ are strictly convex on \mathbb{R}
- x^{-1}, and $x \log x$ are strictly convex on $[0, \infty)$
- $f(x)=\log x, \sqrt{x}$ are strictly concave on $(0, \infty)$

Case $d \geq 2$

- $f(x)=\|x\|$ is convex
- $f(x)=\langle x, u\rangle+b$, affine function, is convex and concave
- $f(x)=\sup _{u \in A}\langle x, u\rangle$, where $A \subseteq \mathbb{R}^{d}$ is bounded, is convex
- $f(x)=x^{t} A x$ is convex if $A \geq 0$, concave if $A \leq 0$

Basic Properties of Convex Functions

Fact: Let $C \subseteq \mathbb{R}^{d}$ be convex
(a) $f: C \rightarrow \mathbb{R}$ is convex if $-f$ is concave, and vice-versa
(b) If $f: C \rightarrow \mathbb{R}$ is convex or concave, it is continuous on the interior of C
(c) If $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$ are convex functions on C then so is $f(x)=\sup _{\lambda \in \Lambda} f_{\lambda}(x)$
(d) If f_{1}, \ldots, f_{m} are convex and $\alpha_{1}, \ldots, \alpha_{m} \geq 0$ then $f=\sum_{i=1}^{m} \alpha_{i} f_{i}$ is convex
(e) If $f: C \rightarrow \mathbb{R}$ is convex and $g: \mathbb{R} \rightarrow \mathbb{R}$ is convex and non-dec, then $g \circ f$ is convex

Subgradients and Jensen's Inequality

Subgradients of Convex Functions

Fact: Let $C \subseteq \mathbb{R}^{d}$ be convex. If $f: C \rightarrow \mathbb{R}$ is convex, then for every $u \in C^{o}$ there is a vector $v \in \mathbb{R}^{d}$ such that

$$
f(x) \geq f(u)+\langle v, x-u\rangle \text { for each } x \in C
$$

The vector v is called a subgradient of f at u. The set of all subgradients of f at u is denoted by $\partial f(u)$

Note

- Lower bound $h(x):=f(u)+\langle v, x-u\rangle$ is affine with $h(u)=f(u)$
- Graph of function h is a hyperplane supporting the graph of f at u
- Function f can be expressed as the maximum of its affine lower bounds

Properties of the Subgradient

Fact: Let $f, g: C \rightarrow \mathbb{R}$ be convex. For each $u \in C$

- $\partial f(u)$ is a closed convex set, and is non-empty if $u \in C^{o}$
- $\partial f(u)=\{v\}$ is a singleton iff f is differentiable at u
- If $\partial f(u)=\{v\}$ then $v=\nabla f(u)$ is the gradient of f at u
- $\partial(\alpha f)(u)=\alpha \partial f(u)$
- $\partial(f+g)(u)=\partial f(u)+\partial g(u)$
- $\partial f(A x+b)(u)=A^{t} \partial f(A u+b)$

Jensen's Inequality

Recall: The expected value of a random vector $X=\left(X_{1}, \ldots, X_{d}\right)^{t}$ is defined by

$$
\mathbb{E} X=\left(\mathbb{E} X_{1}, \ldots, \mathbb{E} X_{d}\right)^{t} \in \mathbb{R}^{d}
$$

Jensen's Inequality: Let $C \subseteq \mathbb{R}^{d}$ be convex and suppose that $X \in C$. Provided that all expectations are well-defined, the following hold.
(1) The expectation $\mathbb{E} X \in C$
(2) If $f: C \rightarrow \mathbb{R}$ is convex then $f(\mathbb{E} X) \leq \mathbb{E} f(X)$. If f is strictly convex and X is not constant then the inequality is strict.
(3) If $f: C \rightarrow \mathbb{R}$ is concave then $f(\mathbb{E} X) \geq \mathbb{E} f(X)$. If f is strictly concave and X is not constant then the inequality is strict.

Note: Definition of convexity is a special case of (2) for a random vector $X \in C$ with $\mathbb{P}(X=x)=\alpha$ and $\mathbb{P}(X=y)=1-\alpha$

Applications of Jensen's Inequality

Case $d=1$

- $\mathbb{E} X^{2} \geq(\mathbb{E} X)^{2} \quad \mathbb{E} e^{X} \geq e^{\mathbb{E} X} \quad \mathbb{E}(X \log X) \geq(\mathbb{E} X) \log (\mathbb{E} X)$
- $\mathbb{E} \log X \leq \log \mathbb{E} X \quad \mathbb{E} \sqrt{X} \leq \sqrt{\mathbb{E} X}$

Case $d \geq 2$

- $\mathbb{E}\|X\| \geq\|\mathbb{E} X\|$
- $\mathbb{E}\left(X^{t} A X\right) \leq(\mathbb{E} X)^{t} A(\mathbb{E} X)$ if $A \leq 0$

AM-GM inequality: If a_{1}, \ldots, a_{n} are positive then $\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n} \leq n^{-1} \sum_{i=1}^{n} a_{i}$

Holder's Inequality

Fact: Let $a, b \geq 0$ and $1<p, q<\infty$ be such that $1 / p+1 / q=1$. Then

$$
\frac{1}{p} a^{p}+\frac{1}{q} b^{q} \geq a b
$$

Holder's Inequality: Let $1<p, q<\infty$ be such that $1 / p+1 / q=1$. If X, Y are random variables such that $\mathbb{E}|X|^{p}, \mathbb{E}|Y|^{q}$ are finite then

$$
|\mathbb{E} X Y| \leq \mathbb{E}|X Y| \leq\left(\mathbb{E}|X|^{p}\right)^{1 / p}\left(\mathbb{E}|Y|^{q}\right)^{1 / q}
$$

Cauchy-Schwartz: If $\mathbb{E} X^{2}, \mathbb{E} Y^{2}$ finite then $\mathbb{E}|X Y| \leq \sqrt{\mathbb{E} X^{2} \mathbb{E} Y^{2}}$

General version: If $p, q \geq 0$ satisfy $1 / p+1 / q=1$ and $f, g, h: \mathcal{X} \rightarrow \mathbb{R}$ with $h \geq 0$ then

$$
\int|f(x) g(x)| h(x) d x \leq\left(\int|f(x)|^{p} h(x) d x\right)^{1 / p}\left(\int|g(x)|^{q} h(x) d x\right)^{1 / q}
$$

Convexity and Optimization

General Optimization Problem

Problem: Minimize a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ over a set $A \subseteq \mathbb{R}^{d}$ of interest. Often expressed in the form of a mathematical program:

$$
\min f(x) \text { subject to } x \in A
$$

- Function f called objective function
- Set A represents constraints on the arguments x of interest
- Points $x \in A$ called feasible
- Usually interested in $\min _{A} f(x)$ and $\operatorname{argmin}_{A} f(x)$

General Optimization Problem, cont.

Global and local minima

- Feasible $x \in A$ is a global minimum of f if $f(x) \leq f(y)$ for all $y \in A$
- Feasible $x \in A$ is a local minimum of f if there exists an $r>0$ such that $f(x) \leq f(y)$ for all $y \in A$ with $\|x-y\| \leq r$

Notes: A global minimum is a local minimum. Other issues

- Is there a global min? Is it unique?
- Is there a closed form solution for the global min?
- Are there good iterative or approximate solutions?
- Does f have many local minima?

Convexity and Optimization

Fact: If $C \subseteq \mathbb{R}^{d}$ is convex and $f: C \rightarrow \mathbb{R}$ is convex then

1. Any local minimum is a global minimum
2. If f is strictly convex any global minimum is unique

In general: If $C \subseteq \mathbb{R}^{d}$ and $f: C \rightarrow \mathbb{R}$ are convex then there are efficient iterative methods to find the global minimum of f when it exists

Convex Hulls and Extreme Points

Convex Hulls

Definition: The convex hull of a set $A \subseteq \mathbb{R}^{n}$ is the intersection of all convex sets containing A, formally

$$
\operatorname{cvx}(A)=\bigcap\left\{C \subseteq \mathbb{R}^{n}: A \subseteq C \text { and } C \text { convex }\right\}
$$

- $\operatorname{cvx}(A)$ is convex, and is the smallest convex set containing A
- $A \subseteq \operatorname{cvx}(A)$ with equality iff A is convex
- $\operatorname{cvx}(A)$ can be open, closed, or neither

Fact: $\operatorname{cvx}(A)$ equal to the set of all finite convex combinations of points in A

$$
\operatorname{cvx}(A)=\left\{\sum_{j=1}^{k} \alpha_{j} x_{j}: k \geq 1, x_{1}^{k} \in A, \alpha_{j} \geq 0, \sum_{j=1}^{k} \alpha_{j}=1\right\}
$$

Convex Hulls and Subgradients

Fact: If $f_{1}, \ldots, f_{n}: C \rightarrow \mathbb{R}$ are convex and $f=\max \left(f_{1}, \ldots, f_{n}\right)$ then

$$
\partial f(u)=\operatorname{cvx}\left(\bigcup_{i: f_{i}(u)=f(u)} \partial f_{i}(u)\right)
$$

That is, the subgradient of f is the convex hull of the subgradients of the functions f_{i} that achieve the maximum

Extreme Points

Definition: Let $C \subseteq \mathbb{R}^{n}$ be convex. A element $x \in C$ is an extrema point of C if for all $u, v \in C$ and $\lambda \in(0,1)$, the relation $x=\lambda u+(1-\lambda) v$ implies $u=v=x$

- Definition says that an extreme point cannot be expressed as a non-trivial convex combination of other points in C
- Let $\mathcal{E}(C)=$ extreme points of C

Examples:

1. $C=[0,1],[0,1),(0,1)$
2. $C=\{x:\|x\| \leq 1\},\{x:\|x\|<1\}$ (closed, open unit ball)
3. $C=$ convex hull of a finite set of points

More on Extreme Points

Theorem (Krein-Millman): If $\emptyset \neq C \subseteq \mathbb{R}^{n}$ is compact (closed and bounded) then

1. $\mathcal{E}(C) \neq \emptyset$
2. $C=\operatorname{cvx}(\mathcal{E}(C))$ (C is the convex hull of its extreme points)

Fact: If $f: C \rightarrow \mathbb{R}$ is strictly convex, then

$$
\underset{x \in C}{\operatorname{argmax}} f(x) \subseteq \mathcal{E}(C))
$$

