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Convex Sets



Convex Sets

Definition: A set C ⊆ Rd is convex if for every x, y ∈ C and every α ∈ [0, 1] the point
αx+ (1− α)y ∈ C.

Interpretation

I Vector αx+ (1− α)y called convex combination of x, y with weight α

I Set {αx+ (1− α)y : α ∈ [0, 1]} is just the line between x and y

I So C is convex if the line between any two points in C is contained in C



Examples of Convex Sets

I Simple examples: C = Rd, ∅, {0}

I Open norm ball B(x0, r) := {x : ||x− x0|| < r}

I Halfspace H(w, b) = {x : wtx ≥ b} with direction w and offset b

I Hyperplane ∂H(w, b) = {x : wtx = b} (n-1)-dimensional

I Polyhedron {x : Ax ≤ c} where ≤ understood componentwise

I Probability simplex {u : ui ≥ 0 and
∑d
i=1 ui = 1}



Basic Properties of Convex Sets

Fact

1. If Cλ with λ ∈ Λ are convex sets then so is their intersection ∩λ∈Λ Cλ

2. If A,B ⊆ Rd are convex then so is A+B := {u+ v : u ∈ A and v ∈ B}

3. If A ⊆ Rd is convex and c ∈ R then cA := {cu : u ∈ A} is convex



Convex Functions



Convex Functions

Definition: Let C ⊆ Rd be convex. A function f : C → R is convex if for every
x, y ∈ C and every α ∈ (0, 1),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (∗)

Convexity of C ensures that f(·) is defined at αx+ (1− α)y

Interpretation: For each x, y ∈ C the line connecting (x, f(x)) and (y, f(y))

lies above the graph {(u, f(u)) : u ∈ C} ⊆ Rd+1 of f

Related Definitions

I f : C → R is strictly convex if (∗) holds with ≤ replaced by <

I f : C → R is concave if (∗) holds with ≤ replaced by ≥

I f : C → R is strictly concave if (∗) holds with ≤ replaced by >



Verifying Convexity and Concavity

1. Check the definition: In many cases it is possible to directly check the definition

2. Second derivative condition: Let C ⊆ Rd be convex

I A function f : C → R is convex if the matrix ∇2f(x) of second partial derivatives
is well-defined and non-negative definite for each x ∈ C

I A function f : C → R is concave if the matrix ∇2f(x) of second partial derivatives
is well-defined and non-positive definite for each x ∈ C

Special case: If d = 1 then f is convex if f ′′ ≥ 0 and concave if f ′′ ≤ 0



Examples of Convex/Concave Functions

Case d = 1

I f(x) = |x| is convex, but not strictly convex

I f(x) = x2, ex, e−x are strictly convex on R

I x−1, and x log x are strictly convex on [0,∞)

I f(x) = log x,
√
x are strictly concave on (0,∞)

Case d ≥ 2

I f(x) = ||x|| is convex

I f(x) = 〈x, u〉+ b, affine function, is convex and concave

I f(x) = supu∈A〈x, u〉, where A ⊆ Rd is bounded, is convex

I f(x) = xtAx is convex if A ≥ 0, concave if A ≤ 0



Basic Properties of Convex Functions

Fact: Let C ⊆ Rd be convex

(a) f : C → R is convex if −f is concave, and vice-versa

(b) If f : C → R is convex or concave, it is continuous on the interior of C

(c) If {fλ : λ ∈ Λ} are convex functions on C then so is f(x) = supλ∈Λ fλ(x)

(d) If f1, . . . , fm are convex and α1, . . . , αm ≥ 0 then f =
∑m
i=1 αifi is convex

(e) If f : C → R is convex and g : R→ R is convex and non-dec, then g ◦ f is convex



Subgradients and Jensen’s Inequality



Subgradients of Convex Functions

Fact: Let C ⊆ Rd be convex. If f : C → R is convex, then for every u ∈ Co there is a
vector v ∈ Rd such that

f(x) ≥ f(u) + 〈v, x− u〉 for each x ∈ C

The vector v is called a subgradient of f at u. The set of all subgradients of f at u is
denoted by ∂f(u)

Note

I Lower bound h(x) := f(u) + 〈v, x− u〉 is affine with h(u) = f(u)

I Graph of function h is a hyperplane supporting the graph of f at u

I Function f can be expressed as the maximum of its affine lower bounds



Properties of the Subgradient

Fact: Let f, g : C → R be convex. For each u ∈ C

I ∂f(u) is a closed convex set, and is non-empty if u ∈ Co

I ∂f(u) = {v} is a singleton iff f is differentiable at u

I If ∂f(u) = {v} then v = ∇f(u) is the gradient of f at u

I ∂(αf)(u) = α∂f(u)

I ∂(f + g)(u) = ∂f(u) + ∂g(u)

I ∂f(Ax+ b)(u) = At ∂f(Au+ b)



Jensen’s Inequality

Recall: The expected value of a random vector X = (X1, . . . , Xd)t is defined by

EX = (EX1, . . . ,EXd)t ∈ Rd

Jensen’s Inequality: Let C ⊆ Rd be convex and suppose that X ∈ C. Provided that
all expectations are well-defined, the following hold.

(1) The expectation EX ∈ C

(2) If f : C → R is convex then f(EX) ≤ Ef(X). If f is strictly convex and X is not
constant then the inequality is strict.

(3) If f : C → R is concave then f(EX) ≥ Ef(X). If f is strictly concave and X is
not constant then the inequality is strict.

Note: Definition of convexity is a special case of (2) for a random vector X ∈ C
with P(X = x) = α and P(X = y) = 1− α



Applications of Jensen’s Inequality

Case d = 1

I EX2 ≥ (EX)2 EeX ≥ eEX E(X logX) ≥ (EX) log(EX)

I E logX ≤ logEX E
√
X ≤

√
EX

Case d ≥ 2

I E||X|| ≥ ||EX||

I E(XtAX) ≤ (EX)tA(EX) if A ≤ 0

AM-GM inequality: If a1, . . . , an are positive then (
∏n
i=1 ai)

1/n ≤ n−1
∑n
i=1 ai



Holder’s Inequality

Fact: Let a, b ≥ 0 and 1 < p, q <∞ be such that 1/p+ 1/q = 1. Then

1

p
ap +

1

q
bq ≥ ab

Holder’s Inequality: Let 1 < p, q <∞ be such that 1/p+ 1/q = 1. If X,Y are
random variables such that E|X|p,E|Y |q are finite then

|EXY | ≤ E|XY | ≤ (E|X|p)1/p (E|Y |q)1/q

Cauchy-Schwartz: If EX2, EY 2 finite then E|XY | ≤
√
EX2 EY 2

General version: If p, q ≥ 0 satisfy 1/p+ 1/q = 1 and f, g, h : X → R with h ≥ 0 then

∫
|f(x)g(x)|h(x) dx ≤

(∫
|f(x)|ph(x) dx

)1/p (∫
|g(x)|qh(x) dx

)1/q



Convexity and Optimization



General Optimization Problem

Problem: Minimize a function f : Rd → R over a set A ⊆ Rd of interest. Often
expressed in the form of a mathematical program:

min f(x) subject to x ∈ A

I Function f called objective function

I Set A represents constraints on the arguments x of interest

I Points x ∈ A called feasible

I Usually interested in minA f(x) and argminA f(x)



General Optimization Problem, cont.

Global and local minima

I Feasible x ∈ A is a global minimum of f if f(x) ≤ f(y) for all y ∈ A

I Feasible x ∈ A is a local minimum of f if there exists an r > 0 such
that f(x) ≤ f(y) for all y ∈ A with ||x− y|| ≤ r

Notes: A global minimum is a local minimum. Other issues

I Is there a global min? Is it unique?

I Is there a closed form solution for the global min?

I Are there good iterative or approximate solutions?

I Does f have many local minima?



Convexity and Optimization

Fact: If C ⊆ Rd is convex and f : C → R is convex then

1. Any local minimum is a global minimum

2. If f is strictly convex any global minimum is unique

In general: If C ⊆ Rd and f : C → R are convex then there are efficient iterative
methods to find the global minimum of f when it exists



Convex Hulls and Extreme Points



Convex Hulls

Definition: The convex hull of a set A ⊆ Rn is the intersection of all convex sets
containing A, formally

cvx(A) =
⋂ {

C ⊆ Rn : A ⊆ C and C convex
}

I cvx(A) is convex, and is the smallest convex set containing A

I A ⊆ cvx(A) with equality iff A is convex

I cvx(A) can be open, closed, or neither

Fact: cvx(A) equal to the set of all finite convex combinations of points in A

cvx(A) =


k∑
j=1

αjxj : k ≥ 1, xk1 ∈ A,αj ≥ 0,

k∑
j=1

αj = 1





Convex Hulls and Subgradients

Fact: If f1, . . . , fn : C → R are convex and f = max(f1, . . . , fn) then

∂f(u) = cvx

 ⋃
i:fi(u)=f(u)

∂fi(u)


That is, the subgradient of f is the convex hull of the subgradients of the functions
fi that achieve the maximum



Extreme Points

Definition: Let C ⊆ Rn be convex. A element x ∈ C is an extrema point of C if for all
u, v ∈ C and λ ∈ (0, 1), the relation x = λu+ (1− λ)v implies u = v = x

I Definition says that an extreme point cannot be expressed as a non-trivial convex
combination of other points in C

I Let E(C) = extreme points of C

Examples:

1. C = [0, 1], [0, 1), (0, 1)

2. C = {x : ||x|| ≤ 1}, {x : ||x|| < 1} (closed, open unit ball)

3. C = convex hull of a finite set of points



More on Extreme Points

Theorem (Krein-Millman): If ∅ 6= C ⊆ Rn is compact (closed and bounded) then

1. E(C) 6= ∅

2. C = cvx(E(C)) (C is the convex hull of its extreme points)

Fact: If f : C → R is strictly convex, then

argmax
x∈C

f(x) ⊆ E(C))


