Convexity Sets and Functions

Andrew Nobel

April, 2023

Convex Sets

Convex Sets

Definition: A set $C \subseteq \mathbb{R}^d$ is *convex* if for every $x, y \in C$ and every $\alpha \in [0, 1]$ the point $\alpha x + (1 - \alpha)y \in C$.

Interpretation

- Vector $\alpha x + (1 \alpha)y$ called *convex combination* of x, y with weight α
- Set $\{\alpha x + (1 \alpha)y : \alpha \in [0, 1]\}$ is just the line between x and y
- So C is convex if the line between any two points in C is contained in C

Examples of Convex Sets

Simple examples: $C = \mathbb{R}^d, \emptyset, \{0\}$

- Open norm ball $B(x_0, r) := \{x : ||x x_0|| < r\}$
- Halfspace $H(w, b) = \{x : w^t x \ge b\}$ with direction w and offset b
- Hyperplane $\partial H(w, b) = \{x : w^t x = b\}$ (n-1)-dimensional
- Polyhedron $\{x : Ax \leq c\}$ where \leq understood componentwise

• Probability simplex
$$\{u : u_i \ge 0 \text{ and } \sum_{i=1}^d u_i = 1\}$$

Basic Properties of Convex Sets

Fact

- 1. If C_{λ} with $\lambda \in \Lambda$ are convex sets then so is their intersection $\cap_{\lambda \in \Lambda} C_{\lambda}$
- 2. If $A, B \subseteq \mathbb{R}^d$ are convex then so is $A + B := \{u + v : u \in A \text{ and } v \in B\}$
- 3. If $A \subseteq \mathbb{R}^d$ is convex and $c \in \mathbb{R}$ then $cA := \{cu : u \in A\}$ is convex

Convex Functions

Convex Functions

Definition: Let $C \subseteq \mathbb{R}^d$ be convex. A function $f : C \to \mathbb{R}$ is *convex* if for every $x, y \in C$ and every $\alpha \in (0, 1)$,

$$f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y) \quad (*)$$

Convexity of C ensures that $f(\cdot)$ is defined at $\alpha x + (1 - \alpha)y$

Interpretation: For each $x, y \in C$ the line connecting (x, f(x)) and (y, f(y)) lies *above* the graph $\{(u, f(u)) : u \in C\} \subseteq \mathbb{R}^{d+1}$ of f

Related Definitions

- $f: C \to \mathbb{R}$ is *strictly convex* if (*) holds with \leq replaced by <
- $f: C \to \mathbb{R}$ is *concave* if (*) holds with \leq replaced by \geq
- ▶ $f: C \to \mathbb{R}$ is *strictly concave* if (*) holds with \leq replaced by >

Verifying Convexity and Concavity

- 1. Check the definition: In many cases it is possible to directly check the definition
- **2. Second derivative condition:** Let $C \subseteq \mathbb{R}^d$ be convex
 - A function $f: C \to \mathbb{R}$ is convex if the matrix $\nabla^2 f(x)$ of second partial derivatives is well-defined and non-negative definite for each $x \in C$
 - A function $f : C \to \mathbb{R}$ is concave if the matrix $\nabla^2 f(x)$ of second partial derivatives is well-defined and non-positive definite for each $x \in C$

Special case: If d = 1 then f is convex if $f'' \ge 0$ and concave if $f'' \le 0$

Examples of Convex/Concave Functions

Case d = 1

- f(x) = |x| is convex, but *not* strictly convex
- ▶ $f(x) = x^2$, e^x , e^{-x} are strictly convex on \mathbb{R}
- x^{-1} , and $x \log x$ are strictly convex on $[0, \infty)$
- $f(x) = \log x, \sqrt{x}$ are strictly concave on $(0, \infty)$

 $\textbf{Case} \ d \geq 2$

- f(x) = ||x|| is convex
- $f(x) = \langle x, u \rangle + b$, affine function, is convex and concave
- $f(x) = \sup_{u \in A} \langle x, u \rangle$, where $A \subseteq \mathbb{R}^d$ is bounded, is convex
- $f(x) = x^t A x$ is convex if $A \ge 0$, concave if $A \le 0$

Basic Properties of Convex Functions

Fact: Let $C \subseteq \mathbb{R}^d$ be convex

(a) $f: C \to \mathbb{R}$ is convex if -f is concave, and vice-versa

(b) If $f: C \to \mathbb{R}$ is convex or concave, it is continuous on the interior of C

(c) If $\{f_{\lambda} : \lambda \in \Lambda\}$ are convex functions on C then so is $f(x) = \sup_{\lambda \in \Lambda} f_{\lambda}(x)$

(d) If f_1, \ldots, f_m are convex and $\alpha_1, \ldots, \alpha_m \ge 0$ then $f = \sum_{i=1}^m \alpha_i f_i$ is convex

(e) If $f: C \to \mathbb{R}$ is convex and $g: \mathbb{R} \to \mathbb{R}$ is convex and non-dec, then $g \circ f$ is convex

Subgradients and Jensen's Inequality

Subgradients of Convex Functions

Fact: Let $C \subseteq \mathbb{R}^d$ be convex. If $f : C \to \mathbb{R}$ is convex, then for every $u \in C^o$ there is a vector $v \in \mathbb{R}^d$ such that

$$f(x) \geq f(u) + \langle v, x - u \rangle$$
 for each $x \in C$

The vector v is called a *subgradient* of f at u. The set of all subgradients of f at u is denoted by $\partial f(u)$

Note

• Lower bound $h(x) := f(u) + \langle v, x - u \rangle$ is affine with h(u) = f(u)

• Graph of function h is a hyperplane supporting the graph of f at u

Function f can be expressed as the maximum of its affine lower bounds

Properties of the Subgradient

Fact: Let $f, g: C \to \mathbb{R}$ be convex. For each $u \in C$

- $\partial f(u)$ is a closed convex set, and is non-empty if $u \in C^o$
- $\partial f(u) = \{v\}$ is a singleton iff f is differentiable at u
- If $\partial f(u) = \{v\}$ then $v = \nabla f(u)$ is the gradient of f at u

$$\blacktriangleright \ \partial(\alpha f)(u) = \alpha \, \partial f(u)$$

- $\blacktriangleright \ \partial (f+g)(u) = \partial f(u) + \partial g(u)$
- $\blacktriangleright \ \partial f(Ax+b)(u) = A^t \, \partial f(Au+b)$

Jensen's Inequality

Recall: The expected value of a random vector $X = (X_1, \ldots, X_d)^t$ is defined by

 $\mathbb{E}X = (\mathbb{E}X_1, \dots, \mathbb{E}X_d)^t \in \mathbb{R}^d$

Jensen's Inequality: Let $C \subseteq \mathbb{R}^d$ be convex and suppose that $X \in C$. Provided that all expectations are well-defined, the following hold.

- (1) The expectation $\mathbb{E}X \in C$
- (2) If $f : C \to \mathbb{R}$ is convex then $f(\mathbb{E}X) \leq \mathbb{E}f(X)$. If f is strictly convex and X is not constant then the inequality is strict.
- (3) If f : C → ℝ is concave then f(EX) ≥ Ef(X). If f is strictly concave and X is not constant then the inequality is strict.

Note: Definition of convexity is a special case of (2) for a random vector $X \in C$ with $\mathbb{P}(X = x) = \alpha$ and $\mathbb{P}(X = y) = 1 - \alpha$

Applications of Jensen's Inequality

Case d = 1

- $\blacktriangleright \ \mathbb{E} X^2 \geq (\mathbb{E} X)^2 \quad \mathbb{E} e^X \geq e^{\mathbb{E} X} \quad \mathbb{E} (X \log X) \geq (\mathbb{E} X) \log(\mathbb{E} X)$
- $\blacktriangleright \ \mathbb{E} \log X \le \log \mathbb{E} X \quad \mathbb{E} \sqrt{X} \le \sqrt{\mathbb{E} X}$

 $\textbf{Case} \ d \geq 2$

 $\blacktriangleright \mathbb{E}||X|| \ge ||\mathbb{E}X||$

• $\mathbb{E}(X^t A X) \leq (\mathbb{E}X)^t A(\mathbb{E}X)$ if $A \leq 0$

AM-GM inequality: If a_1, \ldots, a_n are positive then $(\prod_{i=1}^n a_i)^{1/n} \leq n^{-1} \sum_{i=1}^n a_i$

Holder's Inequality

Fact: Let $a, b \ge 0$ and $1 < p, q < \infty$ be such that 1/p + 1/q = 1. Then

$$\frac{1}{p}a^p + \frac{1}{q}b^q \ge ab$$

Holder's Inequality: Let $1 < p, q < \infty$ be such that 1/p + 1/q = 1. If X, Y are random variables such that $\mathbb{E}|X|^p, \mathbb{E}|Y|^q$ are finite then

$$|\mathbb{E}XY| \leq \mathbb{E}|XY| \leq (\mathbb{E}|X|^p)^{1/p} (\mathbb{E}|Y|^q)^{1/q}$$

Cauchy-Schwartz: If $\mathbb{E}X^2$, $\mathbb{E}Y^2$ finite then $\mathbb{E}|XY| \leq \sqrt{\mathbb{E}X^2 \mathbb{E}Y^2}$

General version: If $p,q \ge 0$ satisfy 1/p + 1/q = 1 and $f,g,h: \mathcal{X} \to \mathbb{R}$ with $h \ge 0$ then

$$\int |f(x)g(x)|h(x)\,dx \,\leq\, \left(\int |f(x)|^p h(x)\,dx\right)^{1/p} \left(\int |g(x)|^q h(x)\,dx\right)^{1/q}$$

Convexity and Optimization

General Optimization Problem

Problem: Minimize a function $f : \mathbb{R}^d \to \mathbb{R}$ over a set $A \subseteq \mathbb{R}^d$ of interest. Often expressed in the form of a *mathematical program*:

 $\min f(x)$ subject to $x \in A$

- Function *f* called *objective function*
- Set A represents *constraints* on the arguments x of interest
- Points $x \in A$ called *feasible*
- Usually interested in $\min_A f(x)$ and $\operatorname{argmin}_A f(x)$

General Optimization Problem, cont.

Global and local minima

- Feasible $x \in A$ is a global minimum of f if $f(x) \leq f(y)$ for all $y \in A$
- Feasible $x \in A$ is a *local minimum* of f if there exists an r > 0 such that $f(x) \le f(y)$ for all $y \in A$ with $||x y|| \le r$

Notes: A global minimum is a local minimum. Other issues

- Is there a global min? Is it unique?
- Is there a closed form solution for the global min?
- Are there good iterative or approximate solutions?
- Does f have many local minima?

Convexity and Optimization

Fact: If $C \subseteq \mathbb{R}^d$ is convex and $f : C \to \mathbb{R}$ is convex then

- 1. Any local minimum is a global minimum
- 2. If f is strictly convex any global minimum is unique

In general: If $C \subseteq \mathbb{R}^d$ and $f : C \to \mathbb{R}$ are convex then there are efficient iterative methods to find the global minimum of f when it exists

Convex Hulls and Extreme Points

Convex Hulls

Definition: The convex hull of a set $A \subseteq \mathbb{R}^n$ is the intersection of all convex sets containing A, formally

$$\mathsf{cvx}(A) = \bigcap \left\{ C \subseteq \mathbb{R}^n : A \subseteq C \text{ and } C \text{ convex} \right\}$$

cvx(A) is convex, and is the smallest convex set containing A

- $A \subseteq cvx(A)$ with equality iff A is convex
- cvx(A) can be open, closed, or neither

Fact: cvx(A) equal to the set of all finite convex combinations of points in A

$$\mathsf{cvx}(A) \;=\; \left\{ \sum_{j=1}^k \alpha_j x_j : k \ge 1, x_1^k \in A, \alpha_j \ge 0, \sum_{j=1}^k \alpha_j = 1 \right\}$$

Fact: If $f_1, \ldots, f_n : C \to \mathbb{R}$ are convex and $f = \max(f_1, \ldots, f_n)$ then

$$\partial f(u) \, = \, \mathsf{cvx} \left(\bigcup_{i: f_i(u) = f(u)} \partial f_i(u) \right)$$

That is, the subgradient of f is the convex hull of the subgradients of the functions f_i that achieve the maximum

Extreme Points

Definition: Let $C \subseteq \mathbb{R}^n$ be convex. A element $x \in C$ is an extrema point of C if for all $u, v \in C$ and $\lambda \in (0, 1)$, the relation $x = \lambda u + (1 - \lambda)v$ implies u = v = x

- Definition says that an extreme point cannot be expressed as a non-trivial convex combination of other points in C
- Let $\mathcal{E}(C)$ = extreme points of C

Examples:

- 1. C = [0, 1], [0, 1), (0, 1)
- 2. $C = \{x : ||x|| \le 1\}, \{x : ||x|| < 1\}$ (closed, open unit ball)
- 3. C = convex hull of a finite set of points

More on Extreme Points

Theorem (Krein-Millman): If $\emptyset \neq C \subseteq \mathbb{R}^n$ is compact (closed and bounded) then

- 1. $\mathcal{E}(C) \neq \emptyset$
- 2. $C = cvx(\mathcal{E}(C))$ (C is the convex hull of its extreme points)

Fact: If $f: C \to \mathbb{R}$ is strictly convex, then

 $\operatorname*{argmax}_{x \in C} f(x) \subseteq \mathcal{E}(C))$