Theoretical Statistics, STOR 655 Subadditivity

Andrew Nobel

February 2022

Fekete's Lemma

Definition: A sequence $a_1, a_2, \ldots \in \mathbb{R}$ is *subadditive* if $a_{m+n} \leq a_m + a_n$ for every $m, n \geq 1$

Fact: If the sequence a_1, a_2, \ldots is subadditive then

$$\lim_{n \to \infty} \frac{a_n}{n}$$
 exists and is equal to $\inf_{n \ge 1} \frac{a_n}{n}$

Note: The limit may be $-\infty$, is non-negative if a_1, a_2, \ldots are non-negative

Recall: A random sequence $X_1, X_2, \ldots \in \mathcal{X}$ is *stationary* if for all $k, j \ge 1$,

$$(X_1,\ldots,X_k) \stackrel{\mathsf{d}}{=} (X_{j+1},\ldots,X_{j+k})$$

In other words, the distribution of k-blocks is invariant under shifts

Application: Averages of Stationary Sequences

Example: Let $X_1, X_2, \ldots \in \mathcal{X}$ be stationary and let \mathcal{F} be a family of functions $f : \mathcal{X} \to [-1, 1]$. Then

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f(X)\right|\right]$$

converges to a non-negative constant. If the constant is zero, the family \mathcal{F} satisfies a uniform law of large numbers with respect to $\{X_i\}$

Example: If $X_1, X_2, \ldots \in \mathbb{R}$ is stationary with $\mathbb{E}|X_i|$ finite, then

$$\mathbb{E}\Big|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}X\Big|$$

converges to a non-negative constant. The constant is zero if the usual LLN holds in expectation

Application: Bin Packing

For $n \ge 1$ define $f_n : [0,1]^n \to \mathbb{N}$ by $f_n(x_1^n) =$ minimum number of size 1 bins needed to hold n objects of size x_1, \ldots, x_n . For example

►
$$f_3(3/4, 3/4, 2/3) = 3$$

$$f_3(1/2, 1/3, 1/4) = 2$$

Note that $0 \le f_n \le n$ and that

$$f_{m+n}(x_1^{m+n}) \leq f_m(x_1^m) + f_n(x_{m+1}^{m+n})$$

Fact: If $X_1, X_2, \ldots \in [0, 1]$ is stationary, then the expected number of bins per item converges, that is

$$\frac{\mathbb{E}f_n(X_1^n)}{n} \to \inf_k \frac{\mathbb{E}f_k(X_1^k)}{k}$$

Induced Subsets

Setting: Set ${\mathcal X}$ and a family ${\mathcal A}\subseteq 2^{{\mathcal X}}$ of subsets of ${\mathcal X}$

Let points $x_1, \ldots, x_n \in \mathcal{X}$ be given. Every set $A \in \mathcal{A}$ induces a subset

 $A \cap \{x_1, \ldots, x_n\}$

of the points, namely, the set of x_i that belong to A

Question: How many subsets of x_1, \ldots, x_n are induced by sets $A \in A$?

Shatter Coefficients

Definition: The *shatter coefficient* of the family A on points x_1, \ldots, x_n is the number of *distinct* subsets of x_1, \ldots, x_n induced by sets in A,

$$S_{\mathcal{A}}(x_1^n) = |\{A \cap \{x_1, \dots, x_n\} : A \in \mathcal{A}\}|$$

Note: Always have $1 \leq S_{\mathcal{A}}(x_1^n) \leq 2^n$, even if family \mathcal{A} is infinite

Definition: The family A shatters x_1, \ldots, x_n if $S_A(x_1^n) = 2^n$, or equivalently, the elements of A induce every subset of x_1, \ldots, x_n

Sub-Multiplicative Property of Shatter Coefficients

Fact: For every $m, n \geq 1$ and $x_1, \ldots, x_{n+m} \in \mathcal{X}$

$$S_{\mathcal{A}}(x_1^{m+n}) \leq S_{\mathcal{A}}(x_1^m) S_{\mathcal{A}}(x_{m+1}^{m+n})$$

Fact: If the sequence $X_1, X_2, \ldots \in \mathcal{X}$ is stationary, then

$$\frac{\mathbb{E}\log S_{\mathcal{A}}(X_1^n)}{n} \to \inf_k \frac{\mathbb{E}\log S_{\mathcal{A}}(X_1^k)}{k}$$

In other words, the expected exponential growth rate of the shatter coefficients converges to a constant

Digression: The Vapnik-Chervonenkis (VC) Dimension

Recall: Family $\mathcal{A} \subseteq 2^{\mathcal{X}}$ shatters $x_1, \ldots, x_n \in \mathcal{X}$ if $S(x_1^n : \mathcal{A}) = 2^n$

Definition: The VC-dimension $\dim(\mathcal{A})$ is the largest *n* such that \mathcal{A} shatters some *n*-point set. If \mathcal{A} shatters arbitrarily large finite sets then $\dim(\mathcal{A}) = \infty$

Examples

▶ $\mathcal{X} = \mathbb{R}$, family $\mathcal{A} = \{(-\infty, t] : t \in \mathbb{R}\}$ has dim $(\mathcal{A}) = 1$

•
$$\mathcal{X} = \mathbb{R}^2$$
, family $\mathcal{A} =$ all open disks has $\dim(\mathcal{A}) = 3$

- ▶ $\mathcal{X} = \mathbb{R}^d$, family $\mathcal{A} =$ all half-spaces has dim $(\mathcal{A}) = d + 1$
- $\mathcal{X} = \mathbb{R}^d$, family $\mathcal{A} =$ all rectangles has $\dim(\mathcal{A}) = 2d$

•
$$\mathcal{X} = \mathbb{R}^2$$
, family $\mathcal{A} =$ all convex sets has $\dim(\mathcal{A}) = \infty$

Sauer's Lemma: If A has VC-dimension d then for all $n \ge 1$ and all $x_1, \ldots, x_n \in \mathcal{X}$

$$S_{\mathcal{A}}(x_1^n) \leq \sum_{k=0}^d \binom{n}{k} \leq (n+1)^d$$

which is a polynomial in n with degree d