Theoretical Statistics, STOR 655 Likelihood Ratio Test

Andrew Nobel

January 2022

Likelihood Ratio Test

Family $\mathcal{P} = \{f(x|\theta) : \theta \in \Theta\}$ of densities on $(\mathcal{X}, \mathcal{A})$, base measure ν

Suppose $\Theta \subseteq \mathbb{R}^p$ partitioned as $\Theta = \Theta_0 \cup \Theta_1$

Observations $X_1, X_2, \ldots \in \mathcal{X}$ iid with $X_i \sim f(x|\theta')$

• Wish to test $H_0: \theta' \in \Theta_0$ vs $H_1: \theta' \in \Theta_1$ based on X_1, \ldots, X_n

Recall: Let $L_n(\theta)$ be the likelihood function of X_1, \ldots, X_n . The likelihood ratio test statistic is

$$\lambda_n = \frac{\sup_{\theta \in \Theta_0} L_n(\theta)}{\sup_{\theta \in \Theta} L_n(\theta)}$$

The likelihood ratio test rejects H_0 if λ_n is small

Likelihood Ratio Test

Note: Likelihood ratio test statistic can be written as

$$\lambda_n = \frac{L_n(\theta_n^*)}{L_n(\hat{\theta}_n)}$$

where

$$\theta_n^* = \operatorname*{argmax}_{\theta \in \Theta_0} L_n(\theta) \qquad \hat{\theta}_n = \operatorname*{argmax}_{\theta \in \Theta} L_n(\theta)$$

are the restricted and unrestricted MLEs of the true parameter θ'

Goal: Identify asymptotic distribution of λ_n for appropriate nulls Θ_0

Asymptotic Distribution of Likelihood Ratio Test Statistic

Assumption: For some $1 \le k \le p$ we have

$$\Theta_0 = \{\theta \in \Theta : \theta_1 = \dots = \theta_k = 0\} \neq \emptyset$$

Equivalently, we may write $H_0: \theta_1 = \cdots = \theta_k = 0$.

Note: k is the number of restrictions on θ under the null.

Theorem: Let Θ_0 be as above, and suppose the conditions for the asymptotic normality of the MLE hold. If $\theta' \in \Theta_0$ then

$$-2\log\lambda_n \Rightarrow \chi_k^2$$