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Background

Basic question: How far apart (different) are two distributions P and Q?

I Measured through distances and divergences

I Used to define convergence of distributions

I Used to assess smoothness of parametrizations {Pθ : θ ∈ Θ}

I Means of assessing the complexity of a family of distributions

I Key ingredient in formulating lower and upper bounds on the
performance of inference procedures



Kolmogorov-Smirnov Distance

Definition: Let P and Q be probability distributions on R with CDFs F and G.
The Kolmogorov-Smirnov (KS) distance between P and Q is

KS(P,Q) = sup
t
|F (t)−G(t)|

Properties of KS distance

1. 0 ≤ KS(P,Q) ≤ 1

2. KS(P,Q) = 0 iff P = Q

3. KS is a metric

4. KS(P,Q) = 1 iff exists s ∈ R with P ((−∞, s]) = 1 and Q((s,∞)) = 1



Total Variation Distance

Definition: Let X be a set with a sigma-field A. The total variation distance
between two probability measures P and Q on (X ,A) is

TV(P,Q) = sup
A∈A
|P (A)−Q(A)|

Properties of Total Variation

1. 0 ≤ TV(P,Q) ≤ 1

2. TV(P,Q) = 0 iff P = Q

3. TV is a metric

4. TV(P,Q) = 1 iff there exists A ∈ A with P (A) = 1 and Q(A) = 0



KS, TV, and the CLT

Note: KS(P,Q) and TV(P,Q) can both be expressed in the form

sup
A∈A0

|P (A)−Q(A)|

For KS sup over all intervals (−∞, t], while for TV sup over all Borel sets

Example: Let X1, X2, . . . ∈ {−1, 1} iid with P(Xi = 1) = P(Xi = −1) = 1/2.
By the standard central limit theorem

Zn =
1

n1/2

n∑
i=1

Xi ⇒ N (0, 1)

Let Pn = distribution of Zn and Q = N (0, 1). Can show that

KS(Pn, Q) ≤ cn−1/2 while TV(Pn, Q) ≡ 1



Total Variation and Densities

Scheffé’s Theorem: Let P ∼ f and Q ∼ g be distributions on X = Rd. Then

1. TV(P,Q) = 1
2

∫
|f(x)− g(x)| dx

2. TV(P,Q) = 1−
∫

min{f(x), g(x)} dx

3. TV(P,Q) = P (A)−Q(A) where A = {x : f(x) ≥ g(x)}

Analogous results hold when P ∼ p(x) and Q ∼ q(x) are described by pmfs

Upshot: Total variation distance between P and Q is half the L1-distance
between densities or mass functions



Total Variation and Hypothesis Testing

Problem: Observe X ∈ X having density f0 or f1. Wish to test

H0 : X ∼ f0 vs. H1 : X ∼ f1

Any decision rule d : X → {0, 1} has overall (Type I + Type II) error

Err(d) = P0(d(X) = 1) + P1(d(X) = 0)

Fact: The optimum overall error among all decision rules is

inf
d:X→{0,1}

Err(d) =

∫
min{f0(x), f1(x)} dx = 1− TV(P0, P1)



Coupling and Total Variation

Fact: Let P and Q be distributions on X . Then

TV(P,Q) = min
(X,Y )

P(X 6= Y )

where the minimum is over all joint distributions (X,Y ) such that X ∼ P
and Y ∼ Q. A joint distribution of this sort is called a coupling

Corollary

I If X ∼ P and Y ∼ Q are defined on the same probability space
then P(X = Y ) ≤ 1− TV(P,Q)

I There is an optimal coupling achieving the upper bound, which
makes X and Y equal as much as possible



Kullback-Liebler (KL) Divergence

Definition: The KL-divergence between distributions P ∼ f and Q ∼ g is

KL(P : Q) =

∫
f(x) log

f(x)

g(x)
dx = Ef

[
log

f(X)

g(X)

]

Analogous definition for discrete distributions P ∼ p and Q ∼ q

I The integrand can be positive or negative. By convention

f(x) log
f(x)

g(x)
=

{
+∞ if f(x) > 0 and g(x) = 0

0 if f(x) = 0

I KL divergence is not symmetric, and is not a metric



First Properties of KL Divergence

Fact: Divergence KL(P : Q) is well defined: if u− = max(−u, 0) then∫ (
f(x) log

f(x)

g(x)

)
−
dx ≤ 1

Key Fact:

I Divergence KL(P : Q) ≥ 0 with equality if and only if P = Q

I KL(P : Q) = +∞ if there is a set A with P (A) > 0 and Q(A) = 0

Notation: When pmfs/pdfs clear from context, write KL(p : q) or KL(f : g)



KL Divergence Examples

Example: Let p and q be pmfs on {0, 1} with

p(0) = p(1) = 1/2 and q(0) = (1− ε)/2, q(1) = (1 + ε)/2

where ε ∈ (0, 1). Then we have

I KL(p : q) = − 1
2

log(1− ε2) ≤ ε2 when ε ≤ 1√
2

I KL(q : p) = 1
2

log(1− ε2) + ε
2

log( 1−ε
1+ε

) ≤ 2ε2

Example: If P ∼ Nd(µ0,Σ0) and Q ∼ Nd(µ1,Σ1) with Σ0,Σ1 > 0 then

2 KL(P : Q) = tr(Σ−1
1 Σ0) + (µ1 − µ0)tΣ−1

1 (µ1 − µ0) + ln(|Σ1|/|Σ0|)− d



KL Divergence and Inference

Ex 1. (Testing) Consider testing H0 : X ∼ f0 vs. H1 : X ∼ f1. The divergence

KL(f0 : f1) = E0

(
log

f0(X)

f1(X)

)
≥ 0

is just the expected log likelihood ratio under H0

Ex 2. (Estimation) Let X1, X2, . . . iid with Xi ∼ f(x|θ0) ∈ {f(x|θ) : θ ∈ Θ}.
Under suitable assumptions, when n is large,

θ̂MLE
n (Xn

1 ) ≈ argmin
θ∈Θ

KL(f(·|θ0) : f(·|θ))

In other words, MLE is trying to find θ minimizing KL divergence with true
distribution



Data Processing Inequality

I Measurable spaces (X ,A) with measures P and Q

I Measurable function f : X → Y from (X ,A) to (Y,B)

I Map f pushes P and Q forward to measures P̃ and Q̃ on (Y,B) where

P̃ (B) = P (f−1B) and Q̃(B) = Q(f−1B)

Data Processing Inequality: Application of f reduces divergence, namely

KL(P̃ : Q̃) ≤ KL(P : Q)

Result extends to stochastic transformations (transition kernels) from X to Y



Variational Formulation and Convexity

Fact: Let P and Q be distributions on (X ,A). Then

KL(P : Q) = sup
f

[∫
f dP − log

(∫
ef dQ

)]

where the supremum is over all functions f : X → R such that
∫
ef dQ is finite

Corollary: For each distribution Q on (X ,A) the function KL(· : Q) is convex:
if P1, P2 are distributions and α ∈ (0, 1) then

KL(αP1 + (1− α)P2 : Q) ≤ αKL(P1 : Q) + (1− α)KL(P2 : Q)



Product Densities (Tensorization)

Notation: Given distributions P1, . . . , Pn on X with densities f1, . . . , fn let
⊗ni=1Pi denote the product distribution on Xn with density f1(x1) · · · fn(xn)

Tensorization: Let P1, . . . , Pn and Q1, . . . , Qn be distributions on X with
densities f1, . . . , fn and g1, . . . , gn, respectively. Then

1. KS(⊗ni=1Pi,⊗ni=1Qi) ≤
∑n
i=1 KS(Pi, Qi)

2. TV(⊗ni=1Pi,⊗ni=1Qi) ≤
∑n
i=1 TV(Pi, Qi)

3. KL(⊗ni=1Pi : ⊗ni=1Qi) =
∑n
i=1 KL(Pi, Qi)



Kullback Liebler vs Total Variation

Pinsker’s Inequality: For any distributions P and Q on (X ,A),

KL(P : Q) ≥ 2TV(P : Q)2


