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Background

Basic question: How far apart (different) are two distributions P and Q?
» Measured through distances and divergences
» Used to define convergence of distributions
> Used to assess smoothness of parametrizations {Fy : 6 € 6}
» Means of assessing the complexity of a family of distributions

> Key ingredient in formulating lower and upper bounds on the
performance of inference procedures



Kolmogorov-Smirnov Distance

Definition: Let P and @Q be probability distributions on R with CDFs F' and G.
The Kolmogorov-Smirnov (KS) distance between P and Q is

KS(P,Q) = sup|F(t) — G(t)]

Properties of KS distance
1. 0<KS(P,Q) <1
2. KS(P,Q)=0iff P=Q
3. KS is a metric

4. KS(P,Q) = 1iff exists s € R with P((—o0, s]) = 1 and Q((s, o)) = 1



Total Variation Distance

Definition: Let X be a set with a sigma-field .A. The total variation distance
between two probability measures P and Q on (X, A) is

VP,Q) = Sup |P(A) = Q(A)|
Properties of Total Variation
1. 0<TV(P,Q) <1
2. TV(P,Q)=0iff P=Q
3. TV is a metric

4. TV(P,Q) = 1iff there exists A € Awith P(A) =1and Q(A4) =0



KS, TV, and the CLT

Note: KS(P, Q) and TV(P, Q) can both be expressed in the form

sup |P(A) — Q(A)]
A€Ap

For KS sup over all intervals (—oo, t], while for TV sup over all Borel sets

Example: Let X, X,,... € {—1,1}iidwithP(X; =1) =P(X; = —1) = 1/2.
By the standard central limit theorem

1 n
Zn = WZ)Q = N(0,1)
=1

Let P, = distribution of Z,, and Q = A/(0,1). Can show that

KS(P.,Q) < en™'/? while TV(P,,Q) =1



Total Variation and Densities

Scheffé’s Theorem: Let P ~ f and Q ~ ¢ be distributions on X = R?. Then
1L TV(PQ) = 5 [If(@) - g(@)da
2. TV(P,Q) = 1 - [ min{f(x), g(x)} du
3. TV(P,Q) = P(A) — Q(A) where A = {z: f(x) > g(z)}

Analogous results hold when P ~ p(x) and Q ~ ¢(z) are described by pmfs

Upshot: Total variation distance between P and Q is half the L;-distance
between densities or mass functions



Total Variation and Hypothesis Testing

Problem: Observe X € X having density f, or f1. Wish to test
Ho:XNfo VS. H1:XNf1
Any decision rule d : X — {0, 1} has overall (Type | 4+ Type Il) error

Err(d) = Po(d(X) = 1) + Py (d(X) = 0)

Fact: The optimum overall error among all decision rules is

inf Err(d) = /min{fo(x),fl(a:)}dm = 1-TV(Py, P)

d:X—{0,1}



Coupling and Total Variation

Fact: Let P and Q be distributions on X’. Then

TV(P,Q) = min F(X #Y)

where the minimum is over all joint distributions (X,Y") such that X ~ P
and Y ~ Q. A joint distribution of this sort is called a coupling

Corollary

> If X ~ PandY ~ @ are defined on the same probability space
thenP(X =Y) <1-TV(P,Q)

> There is an optimal coupling achieving the upper bound, which
makes X and Y equal as much as possible



Kullback-Liebler (KL) Divergence

Definition: The KL-divergence between distributions P ~ f and Q ~ g is

flx) F(X)
o) ™= {bg g(X>]

KL(P:Q) = [ f(a)tog
Analogous definition for discrete distributions P ~ p and Q ~ ¢

» The integrand can be positive or negative. By convention

£(@)log f@) _ {+oo if f(z)>0andg(z) =0

g(w) 0 iff(x)=0

> KL divergence is not symmetric, and is not a metric



First Properties of KL Divergence

Fact: Divergence KL(P : Q) is well defined: if u_ = max(—u, 0) then

/(f(x)log%)dx <1

Key Fact:
» Divergence KL(P : Q) > 0 with equality if and only if P = Q

> KL(P: Q) = +ocoif there is a set A with P(A) > 0and Q(A) =0

Notation: When pmfs/pdfs clear from context, write KL(p : q) or KL(f : g)



KL Divergence Examples

Example: Let p and ¢ be pmfs on {0, 1} with
p(0) =p(1) =1/2 and ¢(0) = (1 -€)/2, (1) = (1 +¢)/2
where € € (0,1). Then we have

> KL(p:q) = —1log(1—€*) < € when e < -

S

> KL(g:p) = 3log(l—€*) + §log(i55) < 2¢7

Example: If P ~ Ny(po, Zo) and Q ~ Ny(p1, 1) with o, X3 > 0 then

2KL(P: Q) = tr(X1" Xo) + (1 — o) £1 " (1 = pro) + n(|Z1/|Z0]) — d



KL Divergence and Inference

Ex 1. (Testing) Consider testing Ho : X ~ fo vs. Hi : X ~ fi. The divergence

KL(fo: /1) = Eo (1og ;g;) >0

is just the expected log likelihood ratio under Ho

Ex 2. (Estimation) Let X1, X», ... iid with X; ~ f(z|60) € {f(z]0) : 6 € ©}.
Under suitable assumptions, when n is large,

OnF(XT) ~ argminKL(f(-|60) : £(-|6))
0co

In other words, MLE is trying to find # minimizing KL divergence with true
distribution



Data Processing Inequality

» Measurable spaces (X, .A) with measures P and Q

» Measurable function f : X — Y from (X, A) to (Y, B)

> Map f pushes P and Q forward to measures P and Q on (), B) where

P(B) = P(f~'B) and Q(B) = Q(f"'B)

Data Processing Inequality: Application of f reduces divergence, namely
KL(P:Q) < KL(P: Q)

Result extends to stochastic transformations (transition kernels) from X’ to



Variational Formulation and Convexity

Fact: Let P and Q be distributions on (X, .A). Then

KL(P:Q) = Sl}p [/fdP—log (/efdQ)}

where the supremum is over all functions f : X — R such that [ e/ dQ is finite

Corollary: For each distribution Q on (X, A) the function KL(- : Q) is convex:
if P1, P> are distributions and « € (0, 1) then

KLlaPAi+(1—a)P: Q) < aKL(P1: Q)+ (1 — a)KL(P: : Q)



Product Densities (Tensorization)

Notation: Given distributions Pi, ..., P, on X’ with densities f1,..., f, let
®;—, P; denote the product distribution on X™ with density fi(z1) - - fa(xn)

Tensorization: Let P1,..., P, and Q1,..., Q. be distributions on X" with
densities f1,..., fn and gi1,..., gn, respectively. Then

1. KS(®i1 P, ®721Qi) < 301, KS(P;, Qi)

3. KL(®7=1 P - ®i=1Q:) = .7 KL(P;, Qi)



Kullback Liebler vs Total Variation

Pinsker’s Inequality: For any distributions P and @ on (X, A),

KL(P: Q) > 2TV(P: Q)?



