Theoretical Statistics, STOR 655 Total Variation Distance and Kullback-Liebler Divergence

Andrew Nobel

February 2023

Background

Basic question: How far apart (different) are two distributions *P* and *Q*?

- Measured through distances and divergences
- Used to define convergence of distributions
- Used to assess smoothness of parametrizations $\{P_{\theta} : \theta \in \Theta\}$
- Means of assessing the complexity of a family of distributions
- Key ingredient in formulating lower and upper bounds on the performance of inference procedures

Kolmogorov-Smirnov Distance

Definition: Let *P* and *Q* be probability distributions on \mathbb{R} with CDFs *F* and *G*. The Kolmogorov-Smirnov (KS) distance between *P* and *Q* is

$$\mathsf{KS}(P,Q) = \sup_{t} |F(t) - G(t)|$$

Properties of KS distance

- 1. $0 \leq \mathsf{KS}(P,Q) \leq 1$
- **2**. KS(P,Q) = 0 iff P = Q
- 3. KS is a metric
- 4. $\mathsf{KS}(P,Q) = 1$ iff exists $s \in \mathbb{R}$ with $P((-\infty,s]) = 1$ and $Q((s,\infty)) = 1$

Total Variation Distance

Definition: Let \mathcal{X} be a set with a sigma-field \mathcal{A} . The total variation distance between two probability measures P and Q on $(\mathcal{X}, \mathcal{A})$ is

$$\mathsf{TV}(P,Q) = \sup_{A \in \mathcal{A}} |P(A) - Q(A)|$$

Properties of Total Variation

- **1.** $0 \leq \mathsf{TV}(P,Q) \leq 1$
- 2. $\mathsf{TV}(P,Q) = 0$ iff P = Q
- 3. TV is a metric
- 4. $\mathsf{TV}(P,Q) = 1$ iff there exists $A \in \mathcal{A}$ with P(A) = 1 and Q(A) = 0

KS, TV, and the CLT

Note: KS(P,Q) and TV(P,Q) can both be expressed in the form

 $\sup_{A\in\mathcal{A}_0}|P(A)-Q(A)|$

For KS sup over all intervals $(-\infty, t]$, while for TV sup over all Borel sets

Example: Let $X_1, X_2, \ldots \in \{-1, 1\}$ iid with $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$. By the standard central limit theorem

$$Z_n = \frac{1}{n^{1/2}} \sum_{i=1}^n X_i \Rightarrow \mathcal{N}(0,1)$$

Let P_n = distribution of Z_n and $Q = \mathcal{N}(0, 1)$. Can show that

 $\mathsf{KS}(P_n, Q) \leq cn^{-1/2}$ while $\mathsf{TV}(P_n, Q) \equiv 1$

Total Variation and Densities

Scheffé's Theorem: Let $P \sim f$ and $Q \sim g$ be distributions on $\mathcal{X} = \mathbb{R}^d$. Then

1.
$$\mathsf{TV}(P,Q) = \frac{1}{2} \int |f(x) - g(x)| \, dx$$

2.
$$\mathsf{TV}(P,Q) = 1 - \int \min\{f(x), g(x)\} dx$$

3.
$$\mathsf{TV}(P,Q) = P(A) - Q(A)$$
 where $A = \{x : f(x) \ge g(x)\}$

Analogous results hold when $P \sim p(x)$ and $Q \sim q(x)$ are described by pmfs

Upshot: Total variation distance between P and Q is half the L_1 -distance between densities or mass functions

Total Variation and Hypothesis Testing

Problem: Observe $X \in \mathcal{X}$ having density f_0 or f_1 . Wish to test

 $H_0: X \sim f_0$ vs. $H_1: X \sim f_1$

Any decision rule $d: \mathcal{X} \to \{0, 1\}$ has overall (Type I + Type II) error

$$\operatorname{Err}(d) = \mathbb{P}_0(d(X) = 1) + \mathbb{P}_1(d(X) = 0)$$

Fact: The optimum overall error among *all* decision rules is

$$\inf_{d:\mathcal{X}\to\{0,1\}} \mathsf{Err}(d) = \int \min\{f_0(x), f_1(x)\} \, dx = 1 - \mathsf{TV}(P_0, P_1)$$

Coupling and Total Variation

Fact: Let P and Q be distributions on \mathcal{X} . Then

$$\mathsf{TV}(P,Q) = \min_{(X,Y)} \mathbb{P}(X \neq Y)$$

where the minimum is over all joint distributions (X, Y) such that $X \sim P$ and $Y \sim Q$. A joint distribution of this sort is called a *coupling*

Corollary

- If X ~ P and Y ~ Q are defined on the same probability space then P(X = Y) ≤ 1 − TV(P,Q)
- There is an optimal coupling achieving the upper bound, which makes X and Y equal as much as possible

Kullback-Liebler (KL) Divergence

Definition: The *KL*-divergence between distributions $P \sim f$ and $Q \sim g$ is

$$\mathsf{KL}(P:Q) = \int f(x) \log \frac{f(x)}{g(x)} dx = \mathbb{E}_f \left[\log \frac{f(X)}{g(X)} \right]$$

Analogous definition for discrete distributions $P \sim p$ and $Q \sim q$

The integrand can be positive or negative. By convention

$$f(x)\log\frac{f(x)}{g(x)} = \begin{cases} +\infty & \text{if } f(x) > 0 \text{ and } g(x) = 0\\ 0 & \text{if } f(x) = 0 \end{cases}$$

KL divergence is not symmetric, and is not a metric

First Properties of KL Divergence

Fact: Divergence KL(P:Q) is well defined: if $u_{-} = max(-u, 0)$ then

$$\int \left(f(x) \log \frac{f(x)}{g(x)} \right)_{-} dx \leq 1$$

Key Fact:

- Divergence $KL(P:Q) \ge 0$ with equality if and only if P = Q
- ▶ $\mathsf{KL}(P:Q) = +\infty$ if there is a set A with P(A) > 0 and Q(A) = 0

Notation: When pmfs/pdfs clear from context, write KL(p:q) or KL(f:g)

KL Divergence Examples

Example: Let p and q be pmfs on $\{0, 1\}$ with

 $p(0) = p(1) = 1/2 \quad \text{and} \quad q(0) = (1-\epsilon)/2, \; q(1) = (1+\epsilon)/2$

where $\epsilon \in (0, 1)$. Then we have

$$\blacktriangleright$$
 KL $(p:q) = -\frac{1}{2}\log(1-\epsilon^2) \le \epsilon^2$ when $\epsilon \le \frac{1}{\sqrt{2}}$

$$\blacktriangleright \mathsf{KL}(q:p) = \frac{1}{2}\log(1-\epsilon^2) + \frac{\epsilon}{2}\log(\frac{1-\epsilon}{1+\epsilon}) \le 2\epsilon^2$$

Example: If $P \sim \mathcal{N}_d(\mu_0, \Sigma_0)$ and $Q \sim \mathcal{N}_d(\mu_1, \Sigma_1)$ with $\Sigma_0, \Sigma_1 > 0$ then

$$2 \operatorname{\mathsf{KL}}(P:Q) = \operatorname{\mathsf{tr}}(\Sigma_1^{-1} \Sigma_0) + (\mu_1 - \mu_0)^t \Sigma_1^{-1} (\mu_1 - \mu_0) + \ln(|\Sigma_1| / |\Sigma_0|) - d$$

KL Divergence and Inference

Ex 1. (Testing) Consider testing $H_0 : X \sim f_0$ vs. $H_1 : X \sim f_1$. The divergence

$$\mathsf{KL}(f_0:f_1) = \mathbb{E}_0\left(\log\frac{f_0(X)}{f_1(X)}\right) \ge 0$$

is just the expected log likelihood ratio under H₀

Ex 2. (Estimation) Let X_1, X_2, \ldots iid with $X_i \sim f(x|\theta_0) \in \{f(x|\theta) : \theta \in \Theta\}$. Under suitable assumptions, when n is large,

$$\hat{\theta}_n^{\mathsf{MLE}}(X_1^n) \approx \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(f(\cdot|\theta_0) : f(\cdot|\theta))$$

In other words, MLE is trying to find $\boldsymbol{\theta}$ minimizing KL divergence with true distribution

Data Processing Inequality

- Measurable spaces $(\mathcal{X}, \mathcal{A})$ with measures P and Q
- Measurable function $f : \mathcal{X} \to \mathcal{Y}$ from $(\mathcal{X}, \mathcal{A})$ to $(\mathcal{Y}, \mathcal{B})$
- Map f pushes P and Q forward to measures \tilde{P} and \tilde{Q} on $(\mathcal{Y}, \mathcal{B})$ where

$$\tilde{P}(B) = P(f^{-1}B)$$
 and $\tilde{Q}(B) = Q(f^{-1}B)$

Data Processing Inequality: Application of *f* reduces divergence, namely

$$\mathsf{KL}(P:Q) \le \mathsf{KL}(P:Q)$$

Result extends to stochastic transformations (transition kernels) from ${\cal X}$ to ${\cal Y}$

Variational Formulation and Convexity

Fact: Let *P* and *Q* be distributions on $(\mathcal{X}, \mathcal{A})$. Then

$$\mathsf{KL}(P:Q) \ = \ \sup_{f} \left[\int f \, dP - \log\left(\int e^{f} \, dQ\right) \right]$$

where the supremum is over all functions $f : \mathcal{X} \to \mathbb{R}$ such that $\int e^f dQ$ is finite

Corollary: For each distribution Q on $(\mathcal{X}, \mathcal{A})$ the function $KL(\cdot : Q)$ is convex: if P_1, P_2 are distributions and $\alpha \in (0, 1)$ then

 $\mathsf{KL}(\alpha P_1 + (1-\alpha)P_2:Q) \leq \alpha \mathsf{KL}(P_1:Q) + (1-\alpha)\mathsf{KL}(P_2:Q)$

Product Densities (Tensorization)

Notation: Given distributions P_1, \ldots, P_n on \mathcal{X} with densities f_1, \ldots, f_n let $\bigotimes_{i=1}^n P_i$ denote the product distribution on \mathcal{X}^n with density $f_1(x_1) \cdots f_n(x_n)$

Tensorization: Let P_1, \ldots, P_n and Q_1, \ldots, Q_n be distributions on \mathcal{X} with densities f_1, \ldots, f_n and g_1, \ldots, g_n , respectively. Then

1.
$$\mathsf{KS}(\otimes_{i=1}^{n} P_i, \otimes_{i=1}^{n} Q_i) \leq \sum_{i=1}^{n} \mathsf{KS}(P_i, Q_i)$$

2.
$$\mathsf{TV}(\otimes_{i=1}^{n} P_i, \otimes_{i=1}^{n} Q_i) \leq \sum_{i=1}^{n} \mathsf{TV}(P_i, Q_i)$$

3.
$$\mathsf{KL}(\bigotimes_{i=1}^{n} P_i : \bigotimes_{i=1}^{n} Q_i) = \sum_{i=1}^{n} \mathsf{KL}(P_i, Q_i)$$

Pinsker's Inequality: For any distributions P and Q on $(\mathcal{X}, \mathcal{A})$,

 $\mathsf{KL}(P:Q) \ \ge \ 2\mathsf{TV}(P:Q)^2$