Theoretical Statistics, STOR 655 Information Inequality: Cramer-Rao Lower Bound

Andrew Nobel

February 2023

Information Inequality in One Dimension

Setting and Assumptions

Family $\mathcal{P} = \{f(x|\theta) : \theta \in \Theta\}$ of densities on $(\mathcal{X}, \mathcal{A})$ with base measure ν . Assume that

A1 Parameter space $\Theta \subseteq \mathbb{R}$ is open

A2 $\frac{\partial}{\partial \theta} f(x|\theta)$ exists for every $x \in \mathcal{X}$ and $\theta \in \Theta$, and for every $\theta \in \Theta$

$$\int \frac{\partial}{\partial \theta} f(x|\theta) \, d\nu \, = \, 0$$

A3 For each $\theta \in \Theta$ function $\psi(x, \theta) := \frac{\partial}{\partial \theta} \log f(x|\theta)$ well defined P_{θ} -a.s. and

$$I(\theta) = \mathbb{E}_{\theta} \left[\psi(X, \theta)^2 \right] \in (0, \infty)$$

Note: A2 implies $\mathbb{E}_{\theta}\psi(X,\theta) = 0$ so that $I(\theta) = \operatorname{Var}_{\theta}(\psi(X,\theta))$

Information Inequality

Cramer-Rau Bound: Let $\hat{\theta} : \mathcal{X} \to \mathbb{R}$ be any statistic. Assume that A1 - A3 hold, and that for all $\theta \in \Theta$

1.
$$g(\theta) := \mathbb{E}_{\theta}[\hat{\theta}(X)] = \int_{\mathcal{X}} \hat{\theta}(x) f(x|\theta) d\nu$$
 exists

2.
$$g'(\theta) = \frac{\partial}{\partial \theta} g(\theta) = \int_{\mathcal{X}} \hat{\theta}(x) \frac{\partial}{\partial \theta} f(x|\theta) d\nu$$

Then for each $\theta \in \Theta$

$$\operatorname{Var}_{\theta}(\hat{\theta}(X)) = \mathbb{E}_{\theta}(\hat{\theta}(X) - g(\theta))^{2} \geq \frac{g'(\theta)^{2}}{I(\theta)}$$

Note: $\operatorname{Var}_{\theta}(\hat{\theta}(X)) = \mathsf{MSE} \text{ of } \hat{\theta}(X) \text{ as estimate of } g(\theta)$

Interpretations of Information Inequality

Interpretation 1: Focus on function $g(\theta)$

- Wish to estimate $g(\theta)$, a parameter of interest
- **CR** gives lower bound on MSE of any unbiased estimate $\hat{\theta}$ of $g(\theta)$

Interpretation 2: Focus on statistic $\hat{\theta}$

- Regard $\hat{\theta}(X)$ as an unbiased estimate of $g(\theta) := \mathbb{E}_{\theta}[\hat{\theta}(X)]$
- ▶ CR gives lower bound $g'(\theta)^2/I(\theta)$ on MSE of $\hat{\theta}$

Interpretation 2': Focus on statistic $\hat{\theta}$

- Regard $\hat{\theta}(X)$ as *biased* estimate of θ with bias $b(\theta) = g(\theta) \theta$
- ► CR gives lower bound $(1 + b'(\theta))^2/I(\theta)$ on the variance of $\hat{\theta}$

Fisher Information of an Independent Sample

Definition: Given X_1, \ldots, X_n iid with $X_i \sim f(x|\theta) \in \mathcal{P}$ define the *n*-sample Fisher information

$$I_n(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X_1^n | \theta) \right)^2 \right]$$

Fact: Under the usual regularity conditions

1.
$$I_n(\theta) = nI(\theta)$$

2. If $\hat{\theta}_n(X_1^n)$ has expectation $g(\theta) = \mathbb{E}_{\theta}[\hat{\theta}_n(X_1^n)]$ then

$$\mathsf{MSE}_{\theta}(\hat{\theta}(X_1^n)) \geq \frac{g'(\theta)^2}{nI(\theta)}$$

Gamma Family

Recall: For $\alpha, \beta > 0$ the Gam (α, β) distribution has density

$$f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} \mathbb{I}(x>0)$$

Fact: If $X \sim \text{Gam}(\alpha, \beta)$ then $\mathbb{E}X = \alpha\beta$ and $\text{Var}(X) = \alpha\beta^2$

Example: Gamma Family with Fixed Shape Parameter

Consider: Model $\mathcal{P} = \{ \mathsf{Gam}(\alpha_0, \beta) : \beta > 0 \}$ where $\alpha_0 > 0$ is fixed

- 1. Fisher Information $I(\beta) = \alpha_0/\beta^2$
- 2. If $\hat{\beta}(X_1^n)$ is unbiased for β then $\mathsf{MSE}_{\beta}(\hat{\beta}(X_1^n)) \geq \beta^2/(n\alpha_0)$
- 3. Estimator $\hat{\beta}(X_1^n) = \overline{X}_n / \alpha_0$ achieves lower bound (UMVUE)
- 4. If $\hat{\beta}(X_1^n)$ is unbiased for $1/\beta$ then $\mathsf{MSE}_{\beta}(\hat{\beta}(X_1^n)) \ge (n\beta^2\alpha_0)^{-1}$
- 5. Lower bound not achievable by any estimator

Example: Variance of Normal with Known Mean

Consider: Model $\mathcal{P} = \{\mathcal{N}(\mu_0, \sigma^2) : \sigma > 0\}$ with $\mu_0 \in \mathbb{R}$ known. Wish to estimate $g(\sigma) = \sigma^2$

$$\hat{\sigma}_n(X_1^n)) = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2$$

However, it is easy to see that the biased estimator

$$\tilde{\sigma}_n(X_1^n) = \frac{1}{n+2} \sum_{i=1}^n (X_i - \mu_0)^2$$

has mean squared error $2\sigma^4/(n+2)$, which is less than the CR bound

Moral: Biased estimators can outperform unbiased ones

Multivariate Information Inequality

Setting and Assumptions

Setting: Family $\mathcal{P} = \{f(x|\theta) : \theta \in \Theta\}$ of densities on $(\mathcal{X}, \mathcal{A})$ with base measure ν . Recall $\psi(x, \theta) := \nabla_{\theta} \log f(x|\theta)$. Assume that

A1. Parameter set $\Theta \subseteq \mathbb{R}^p$ is open

A2. $\nabla_{\theta} f(x|\theta)$ exists for every $x \in \mathcal{X}$ and $\theta \in \Theta$, and for every $\theta \in \Theta$

$$\int
abla_{ heta} f(x| heta) d
u \,=\, 0$$

A3. For each $\theta \in \Theta$, $\psi(x, \theta)$ is well defined with P_{θ} -probability 1, and

$$I(\theta) = \mathbb{E}_{\theta} \left[\psi(X, \theta) \psi(X, \theta)^t \right]$$
 is invertible

Note: A2 imples that $\mathbb{E}_{\theta}\psi(X,\theta) = 0$ for each θ , so $I(\theta) = \operatorname{Var}_{\theta}(\psi(X,\theta))$

Multivariate Information Inequality

Cramer-Rau Bound: Let $\hat{\theta} : \mathcal{X} \to \mathbb{R}^s$ be any statistic. Assume that for all θ

1.
$$g(\theta) := \mathbb{E}_{\theta}[\hat{\theta}(X)] = \int_{\mathcal{X}} \hat{\theta}(x) f(x|\theta) d\nu \in \mathbb{R}^{s}$$
 exists

2.
$$\dot{g}(\theta) = \int_{\mathcal{X}} \hat{\theta}(x) \nabla_{\theta} f(x|\theta)^{t} d\nu \in \mathbb{R}^{s \times p}$$

Then for each $\theta \in \Theta$ we have the lower bound

$$\operatorname{Var}_{\theta}(\hat{\theta}(X)) \geq \dot{g}(\theta) I(\theta)^{-1} \dot{g}(\theta)^{t}$$

where $A \ge B$ means that $A - B \ge 0$

Multivariate Information Inequality

Cor: Let X_1, \ldots, X_n be iid with $X_i \sim f(x|\theta)$. If $g(\theta) = \mathbb{E}\hat{\theta}(X_1^n)$ then

$$\operatorname{Var}_{\theta}(\hat{\theta}(X_1^n)) \geq n^{-1} \dot{g}(\theta) I(\theta)^{-1} \dot{g}(\theta)^t$$

Special case: If $g(\theta) = \theta$ this reduces to

$$\operatorname{Var}_{\theta}(\hat{\theta}(X_1^n)) \geq \frac{I(\theta)^{-1}}{n}$$

Nuisance Parameters

Dealing with Nuisance Parameters

Given: Family $\mathcal{P} = \{f(x|\theta) : \theta \in \Theta\}$ with $\Theta \subseteq \mathbb{R}^p$ open

Setting: Interested in inference about a subset $S \subset \{1, 2, ..., p\}$ of the components of θ with |S| = s. Consider restrictions

For
$$\theta \in \mathbb{R}^p$$
 let $\theta_S = (\theta_j : j \in S) \in \mathbb{R}^s$

For
$$A \in \mathbb{R}^{p \times p}$$
 let $A_S = \{a_{i,j} : i, j \in S\} \in \mathbb{R}^{s \times s}$

Task: Given X_1, \ldots, X_n iid with $X_i \sim f(x|\theta)$ estimate $\theta_S \in \mathbb{R}^s$ using estimator $\tilde{\theta}_n : \mathcal{X}^n \to \mathbb{R}^s$

Terminology: The components θ_j with $j \notin S$ called *nuisance parameters*

Nuisance Parameters are Known

Case 1: Nuisance parameters θ_{S^c} known and fixed.

▶ Note that $\theta = (\theta_S, \theta_{S^c})$, and that $\psi(x, \theta)_j = 0$ if $j \in S^c$ as θ_{S^c} is fixed. Thus we may focus on $\psi_S(x, \theta)$.

▶ The FI of θ_S given the values of θ_{S^c} is

$$I(\theta_S|\theta_{S^c}) = \mathbb{E}_{\theta} \left[\psi_S(X,\theta)\psi_S(X,\theta)^t \right] = I(\theta)_S \in \mathbb{R}^{s \times s}$$

• Upshot: If $\tilde{\theta}_n(X_1^n)$ is unbiased for θ_S the CR bound gives

$$\operatorname{Var}_{\theta}(\tilde{\theta}_n(X_1^n)) \geq \frac{[I(\theta)_S]^{-1}}{n}$$

and similarly for estimates of $g(\theta_S)$

Nuisance Parameters are Unknown

Case 2: Nuisance parameters θ_{S^c} are unknown. Let $S = \{i_1, \ldots, i_s\}$

• Define
$$g: \mathbb{R}^p \to \mathbb{R}^s$$
 by $g(\theta) = \theta_S = (\theta_{i_1}, \dots, \theta_{i_s})^t$

▶ Note that $\dot{g}(\theta) \in \mathbb{R}^{s \times p}$ has entries $\dot{g}(\theta)_{j,k} = \mathbb{I}(i_j = k)$

▶ If $\tilde{\theta}_n$ is unbiased for θ_S , then $\mathbb{E}_{\theta} \tilde{\theta}_n(X_1^n) = g(\theta)$, and CR bound gives

$$\operatorname{Var}_{\theta}(\tilde{\theta}_n(X_1^n)) \ge n^{-1} \dot{g}(\theta) I(\theta)^{-1} \dot{g}(\theta)^t = \frac{(I(\theta))_s^{-1}}{n}$$

Example: Univariate Normal Family

The normal family $\mathcal{P}=\{\mathcal{N}(\mu,\sigma^2):\mu\in\mathbb{R},\sigma>0\}$ has Fisher Information

$$I(\mu,\sigma) = \begin{bmatrix} \sigma^{-2} & 0\\ 0 & 2\sigma^{-2} \end{bmatrix} \text{ and } I(\mu,\sigma)^{-1} = \begin{bmatrix} \sigma^2 & 0\\ 0 & \sigma^2/2 \end{bmatrix}$$

1. Estimating μ with σ^2 known

$$\operatorname{Var}_{\mu,\sigma}(\hat{\mu}_n(X_1^n)) \ge \frac{(I_{11}(\mu,\sigma))^{-1}}{n} = \frac{1}{n\sigma^2}$$

2. Estimating μ with σ^2 unknown

$$\operatorname{Var}_{\mu,\sigma}(\hat{\mu}_n(X_1^n)) \ge \frac{(I(\mu,\sigma)^{-1})_{11}}{n} = \frac{1}{n\sigma^2}$$

Example: Univariate Gamma Family

The Gamma family $\mathcal{P} = \{ \operatorname{Gam}(\alpha, \beta) : \alpha, \beta > 0 \}$ has Fisher Information

$$I(\alpha,\beta) = \begin{bmatrix} h(\alpha) & 1/\beta \\ 1/\beta & \alpha/\beta^2 \end{bmatrix} \text{ and } I(\mu,\sigma)^{-1} = \frac{\beta^2}{\alpha h(\alpha) - 1} \begin{bmatrix} \alpha/\beta^2 & -1/\beta \\ -1/\beta & h(\alpha) \end{bmatrix}$$

where $h(\alpha) = d^2 \log \Gamma(\alpha) / d\alpha^2$

1. Estimating β with α known

$$\operatorname{Var}_{\alpha,\beta}(\hat{\beta}_n(X_1^n)) \geq \frac{\beta^2}{n\alpha}$$
 achieved by $\hat{\beta}_n(X_1^n) = \frac{\overline{X}_n}{\alpha}$

2. Estimating β with α unknown

$$\operatorname{Var}_{\alpha,\beta}(\hat{\beta}_n(X_1^n)) \ge \frac{\beta^2 h(\alpha)}{n(\alpha h(\alpha) - 1)} > \frac{\beta^2}{n\alpha}$$