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Information Inequality in One Dimension



Setting and Assumptions

Family P = {f(z|0) : 6 € ©} of densities on (X, .A) with base measure v.
Assume that

A1 Parameter space © C R is open

A2 2 f(x|0) exists for every z € X and ¢ € ©, and for every 6 € ©

9
/%f(ﬂ@) v = 0

A3 For each 6 € © function v (z, 0) := 2 log f(z|0) well defined P-a.s. and

1(0) = Eo [¢(X,60)%] € (0,00)

Note: A2 implies Egy(X, 0) = 0 so that 1(0) = Varg(v(X,0))



Information Inequality

Cramer-Rau Bound: Let 6 : X — R be any statistic. Assume that A1 - A3
hold, and that for all § € ©

1. g(9) := X)] = fX f(z|0)dv exists

2. 4'(0) = fx f(x]0)dv

Then foreach § € ©

Varg(0(X)) = Eo(8(X) — g(6))* > 2

Note: Var,(6(X)) = MSE of 6(X) as estimate of g(f)



Interpretations of Information Inequality

Interpretation 1: Focus on function g(6)
> Wish to estimate g(0), a parameter of interest

> CR gives lower bound on MSE of any unbiased estimate 6 of g(6)

Interpretation 2: Focus on statistic 6
> Regard §(X) as an unbiased estimate of g(6) := Eq[0(X)]
> CR gives lower bound ¢'(6)%/1(8) on MSE of §

Interpretation 2’: Focus on statistic 6
> Regard 6(X) as biased estimate of 6 with bias b(8) = g(6) — 0
> CR gives lower bound (1 + b'(6))?/1(6) on the variance of §



Fisher Information of an Independent Sample

Definition: Given X1,..., X, iid with X; ~ f(z|6) € P define the n-sample
Fisher information

1.(60) = B [(galogﬂxme)ﬂ

Fact: Under the usual regularity conditions
1. I,(0) = nI(0)

2. 1f6,,(X7) has expectation g(0) = E¢[0,,(X})] then

MSE, (6(x7)) > L0



Gamma Family

Recall: For «, 8 > 0 the Gam(«, 3) distribution has density

1
I(c) g

f(zla, B) = 2 te Pz > 0)

Fact: If X ~ Gam(a, 8) then EX = a3 and Var(X) = a3?



Example: Gamma Family with Fixed Shape Parameter

Consider: Model P = {Gam(«po, 8) : B > 0} where ag > 0 is fixed
1. Fisher Information 7(3) = ao /3>
2. If B(X7}) is unbiased for 3 then MSE(3(X7)) > 8%/ (nao)
3. Estimator 3(X}') = X,/ achieves lower bound (UMVUE)
4. If B(X7]) is unbiased for 1/ then MSE(B(X])) > (nf%apn) !

5. Lower bound not achievable by any estimator



Example: Variance of Normal with Known Mean

Consider: Model P = {N(p0,0?) : o > 0} with o € R known. Wish to
estimate g(o) = o

> If ,, unbiased for o2, CR gives Var,2(6,(X7)) > 2¢* /n which is
achieved by unbiased estimator

n

Ga(X7)) = 1 (X = o)’

i=1

» However, it is easy to see that the biased estimator
5(XT) = — 30X — po)?
n 1 nt2 i Mo

1=

has mean squared error 20 /(n 4 2), which is less than the CR bound

Moral: Biased estimators can outperform unbiased ones



Multivariate Information Inequality



Setting and Assumptions

Setting: Family P = {f(z|0) : ¢ € ©} of densities on (X, .A) with base
measure v. Recall ¢(z, 8) := Vg log f(z|f). Assume that

A1. Parameter set © C R” is open

A2. Vg f(z|0) exists for every z € X and 6 € ©, and for every 6 € ©

/vgf(x\e)du =0

A3. Foreach 6 € ©, ¢(x, 0) is well defined with P,-probability 1, and

I(0) = Eg [¢(X,0)9(X,0)"] is invertible

Note: A2 imples that Eq9 (X, 0) = 0 for each 6, so I(6) = Vare(¢(X, 0))



Multivariate Information Inequality

Cramer-Rau Bound: Let § : X — R® be any statistic. Assume that for all 6
1. g(0) == X)] = [, 0(z) f(x|0)dv € R* exists
fx x)Vof(z|0) dv € RS*P
Then for each 6 € © we have the lower bound
Varg(0(X)) > ¢(6) 1(0)™" 4(6)"

where A > B meansthat A— B >0



Multivariate Information Inequality

Cor: Let X,,..., X, beiid with X, ~ f(z|0). If g(9) = E4(X]) then
Varg (0(XT)) > n~'g(0) 1(6) " g(6)"

Special case: If g(0) = 0 this reduces to

I(0)~*

n

Varg(0(X7)) >



Nuisance Parameters



Dealing with Nuisance Parameters

Given: Family P = {f(z]0) : € ©} with ©® C R” open

Setting: Interested in inference about a subset S C {1,2,...,p} of the
components of  with |S| = s. Consider restrictions

> Ford e RP letfs = (§;:j € S) e R®
> For A € RP*? let Ag = {a;,; : 4, € S} € R®*?

Task: Given X1, ..., X, iid with X; ~ f(x|0) estimate 05 € R* using
estimator 6,, : A" — R°®

Terminology: The components 6; with j ¢ S called nuisance parameters



Nuisance Parameters are Known

Case 1: Nuisance parameters 6s- known and fixed.

> Note that § = (6s, 6s<), and that ¢ (x,0); = 0if j € S° as Os- is fixed.
Thus we may focus on ¢ s(z, 6).

» The Fl of s given the values of 6 is

I(0s10s<) = Eq [1s(X,0)9s(X,0)'] = 1(6)s € R***

» Upshot: If 6,,(X}') is unbiased for 65 the CR bound gives

Varo (G (x7)) > LOs1”

- n

and similarly for estimates of g(0s)



Nuisance Parameters are Unknown

Case 2: Nuisance parameters 0sc are unknown. Let S = {i1,... 4}
> Define g : R”? — R® by g(0) = 0s = (0iy,...,0:,)"
> Note that g(6) € R**? has entries g(0);,x = 1(i; = k)

> If 6, is unbiased for 65, then Eq6.,,(X7) = g(6), and CR bound gives

(1(0)s"

Varg(0n(X1)) > n~'9(0) 1(0)" 9(0)" = —~



Example: Univariate Normal Family

The normal family P = {N (i, o) : u € R, o > 0} has Fisher Information

0_72

=[5 ] e =[5 8]

1. Estimating p with o2 known

(In(p,0))™ _ 1

Vary,o (fin(X1)) > _ 1
ar,, (N ( 1)) > - =
2. Estimating p. with o unknown
I No -1
Varpo(n(xry) > T u 1



Example: Univariate Gamma Family

The Gamma family P = {Gam(«, 8) : a, 8 > 0} has Fisher Information

toom = [ N5 o | ana twor = Gl [ 0 il ]
where h(a) = d*logT'(a)/da?
1. Estimating 5 with « known

Varo o (Bu(X1)) > 2= achieved by 3.(x) = 2

2. Estimating 8 with oo unknown

) n ﬁ2h(a) /82
Vara, g(6n(X1)) > W > e



