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Information Inequality in One Dimension



Setting and Assumptions

Family P = {f(x|θ) : θ ∈ Θ} of densities on (X ,A) with base measure ν.
Assume that

A1 Parameter space Θ ⊆ R is open

A2 ∂
∂θ
f(x|θ) exists for every x ∈ X and θ ∈ Θ, and for every θ ∈ Θ∫

∂

∂θ
f(x|θ) dν = 0

A3 For each θ ∈ Θ function ψ(x, θ) := ∂
∂θ

log f(x|θ) well defined Pθ-a.s. and

I(θ) = Eθ
[
ψ(X, θ)2

]
∈ (0,∞)

Note: A2 implies Eθψ(X, θ) = 0 so that I(θ) = Varθ(ψ(X, θ))



Information Inequality

Cramer-Rau Bound: Let θ̂ : X → R be any statistic. Assume that A1 - A3
hold, and that for all θ ∈ Θ

1. g(θ) := Eθ[θ̂(X)] =
∫
X θ̂(x)f(x|θ)dν exists

2. g′(θ) = ∂
∂θ
g(θ) =

∫
X θ̂(x) ∂

∂θ
f(x|θ)dν

Then for each θ ∈ Θ

Varθ(θ̂(X)) = Eθ(θ̂(X)− g(θ))2 ≥ g′(θ)2

I(θ)

Note: Varθ(θ̂(X)) = MSE of θ̂(X) as estimate of g(θ)



Interpretations of Information Inequality

Interpretation 1: Focus on function g(θ)

I Wish to estimate g(θ), a parameter of interest

I CR gives lower bound on MSE of any unbiased estimate θ̂ of g(θ)

Interpretation 2: Focus on statistic θ̂

I Regard θ̂(X) as an unbiased estimate of g(θ) := Eθ[θ̂(X)]

I CR gives lower bound g′(θ)2/I(θ) on MSE of θ̂

Interpretation 2’: Focus on statistic θ̂

I Regard θ̂(X) as biased estimate of θ with bias b(θ) = g(θ)− θ

I CR gives lower bound (1 + b′(θ))2/I(θ) on the variance of θ̂



Fisher Information of an Independent Sample

Definition: Given X1, . . . , Xn iid with Xi ∼ f(x|θ) ∈ P define the n-sample
Fisher information

In(θ) = Eθ

[(
∂

∂θ
log f(Xn

1 |θ)
)2
]

Fact: Under the usual regularity conditions

1. In(θ) = nI(θ)

2. If θ̂n(Xn
1 ) has expectation g(θ) = Eθ[θ̂n(Xn

1 )] then

MSEθ(θ̂(Xn
1 )) ≥ g′(θ)2

nI(θ)



Gamma Family

Recall: For α, β > 0 the Gam(α, β) distribution has density

f(x|α, β) =
1

Γ(α)βα
xα−1e−x/β I(x > 0)

Fact: If X ∼ Gam(α, β) then EX = αβ and Var(X) = αβ2



Example: Gamma Family with Fixed Shape Parameter

Consider: Model P = {Gam(α0, β) : β > 0} where α0 > 0 is fixed

1. Fisher Information I(β) = α0/β
2

2. If β̂(Xn
1 ) is unbiased for β then MSEβ(β̂(Xn

1 )) ≥ β2/(nα0)

3. Estimator β̂(Xn
1 ) = Xn/α0 achieves lower bound (UMVUE)

4. If β̂(Xn
1 ) is unbiased for 1/β then MSEβ(β̂(Xn

1 )) ≥ (nβ2α0)−1

5. Lower bound not achievable by any estimator



Example: Variance of Normal with Known Mean

Consider: Model P = {N (µ0, σ
2) : σ > 0} with µ0 ∈ R known. Wish to

estimate g(σ) = σ2

I If σ̂n unbiased for σ2, CR gives Varσ2(σ̂n(Xn
1 )) ≥ 2σ4/n which is

achieved by unbiased estimator

σ̂n(Xn
1 )) =

1

n

n∑
i=1

(Xi − µ0)2

I However, it is easy to see that the biased estimator

σ̃n(Xn
1 ) =

1

n+ 2

n∑
i=1

(Xi − µ0)2

has mean squared error 2σ4/(n+ 2), which is less than the CR bound

Moral: Biased estimators can outperform unbiased ones



Multivariate Information Inequality



Setting and Assumptions

Setting: Family P = {f(x|θ) : θ ∈ Θ} of densities on (X ,A) with base
measure ν. Recall ψ(x, θ) := ∇θ log f(x|θ). Assume that

A1. Parameter set Θ ⊆ Rp is open

A2. ∇θf(x|θ) exists for every x ∈ X and θ ∈ Θ, and for every θ ∈ Θ∫
∇θf(x|θ)dν = 0

A3. For each θ ∈ Θ, ψ(x, θ) is well defined with Pθ-probability 1, and

I(θ) = Eθ
[
ψ(X, θ)ψ(X, θ)t

]
is invertible

Note: A2 imples that Eθψ(X, θ) = 0 for each θ, so I(θ) = Varθ(ψ(X, θ))



Multivariate Information Inequality

Cramer-Rau Bound: Let θ̂ : X → Rs be any statistic. Assume that for all θ

1. g(θ) := Eθ[θ̂(X)] =
∫
X θ̂(x)f(x|θ)dν ∈ Rs exists

2. ġ(θ) =
∫
X θ̂(x)∇θf(x|θ)tdν ∈ Rs×p

Then for each θ ∈ Θ we have the lower bound

Varθ(θ̂(X)) ≥ ġ(θ) I(θ)−1 ġ(θ)t

where A ≥ B means that A−B ≥ 0



Multivariate Information Inequality

Cor: Let X1, . . . , Xn be iid with Xi ∼ f(x|θ). If g(θ) = Eθ̂(Xn
1 ) then

Varθ(θ̂(X
n
1 )) ≥ n−1 ġ(θ) I(θ)−1 ġ(θ)t

Special case: If g(θ) = θ this reduces to

Varθ(θ̂(X
n
1 )) ≥ I(θ)−1

n



Nuisance Parameters



Dealing with Nuisance Parameters

Given: Family P = {f(x|θ) : θ ∈ Θ} with Θ ⊆ Rp open

Setting: Interested in inference about a subset S ⊂ {1, 2, . . . , p} of the
components of θ with |S| = s. Consider restrictions

I For θ ∈ Rp let θS = (θj : j ∈ S) ∈ Rs

I For A ∈ Rp×p let AS = {ai,j : i, j ∈ S} ∈ Rs×s

Task: Given X1, . . . , Xn iid with Xi ∼ f(x|θ) estimate θS ∈ Rs using
estimator θ̃n : Xn → Rs

Terminology: The components θj with j 6∈ S called nuisance parameters



Nuisance Parameters are Known

Case 1: Nuisance parameters θSc known and fixed.

I Note that θ = (θS , θSc), and that ψ(x, θ)j = 0 if j ∈ Sc as θSc is fixed.
Thus we may focus on ψS(x, θ).

I The FI of θS given the values of θSc is

I(θS |θSc) = Eθ
[
ψS(X, θ)ψS(X, θ)t

]
= I(θ)S ∈ Rs×s

I Upshot: If θ̃n(Xn
1 ) is unbiased for θS the CR bound gives

Varθ(θ̃n(Xn
1 )) ≥ [I(θ)S ]−1

n

and similarly for estimates of g(θS)



Nuisance Parameters are Unknown

Case 2: Nuisance parameters θSc are unknown. Let S = {i1, . . . , is}

I Define g : Rp → Rs by g(θ) = θS = (θi1 , . . . , θis)t

I Note that ġ(θ) ∈ Rs×p has entries ġ(θ)j,k = I(ij = k)

I If θ̃n is unbiased for θS , then Eθ θ̃n(Xn
1 ) = g(θ), and CR bound gives

Varθ(θ̃n(Xn
1 )) ≥ n−1ġ(θ) I(θ)−1 ġ(θ)t =

(I(θ))−1
S

n



Example: Univariate Normal Family

The normal family P = {N (µ, σ2) : µ ∈ R, σ > 0} has Fisher Information

I(µ, σ) =

[
σ−2 0

0 2σ−2

]
and I(µ, σ)−1 =

[
σ2 0
0 σ2/2

]

1. Estimating µ with σ2 known

Varµ,σ(µ̂n(Xn
1 )) ≥ (I11(µ, σ))−1

n
=

1

nσ2

2. Estimating µ with σ2 unknown

Varµ,σ(µ̂n(Xn
1 )) ≥

(
I(µ, σ)−1

)
11

n
=

1

nσ2



Example: Univariate Gamma Family

The Gamma family P = {Gam(α, β) : α, β > 0} has Fisher Information

I(α, β) =

[
h(α) 1/β
1/β α/β2

]
and I(µ, σ)−1 =

β2

αh(α)− 1

[
α/β2 −1/β
−1/β h(α)

]

where h(α) = d2 log Γ(α)/dα2

1. Estimating β with α known

Varα,β(β̂n(Xn
1 )) ≥ β2

nα
achieved by β̂n(Xn

1 ) =
Xn

α

2. Estimating β with α unknown

Varα,β(β̂n(Xn
1 )) ≥ β2h(α)

n(αh(α)− 1)
>

β2

nα


