Theoretical Statistics, STOR 655 Overview of Weak Convergence and the CLT

Andrew Nobel

January 2023

Review: Families of Continuous Functions

Definition

- 1. $C_b(\mathbb{R}^d) = \{ \text{bounded continuous functions } f : \mathbb{R}^d \to \mathbb{R} \}$
- 2. $C_o(\mathbb{R}^d) = \{ \text{continuous } f : \mathbb{R}^d \to \mathbb{R} \text{ with compact support} \}$

Fact

- 1. Every $f \in C_o(\mathbb{R}^d)$ is uniformly continuous
- 2. Every $f \in C_o(\mathbb{R}^d)$ is bounded, so $C_o(\mathbb{R}^d) \subseteq C_b(\mathbb{R}^d)$
- 3. Every $f \in C_b(\mathbb{R}^d)$ is Borel measurable

Weak Convergence of Random Vectors

Idea: Define the convergence of X_1, X_2, \ldots to a limit X by considering the expectations of smooth functions

Definition: A sequence of random vectors $X_1, X_2, \ldots \in \mathbb{R}^d$ converges weakly (in-distribution) to a random vector X, written $X_n \Rightarrow X$, if

$$\mathbb{E}f(X_n) \to \mathbb{E}f(X)$$
 for every $f \in C_b(\mathbb{R}^d)$

Important: Random vectors $X_1, X_2, ..., X$ can be defined on different probability spaces

Weak Convergence, cont.

Note: If $X_n \sim \mu_n$ then $\mathbb{E}f(X_n) = \int f d\mu_n$, so weak convergence depends only on the individual distributions of X_1, X_2, \ldots

Definition: A sequence of distributions μ_1, μ_2, \ldots on \mathbb{R}^d converges to a distribution μ if $\int f d\mu_n \to \int f d\mu$ for every $f \in C_b(\mathbb{R}^d)$

Other points

- Definition generalizes to random objects taking values general, possibly infinite dimensional, spaces
- ▶ In general, $X_n \Rightarrow X$ does *not* imply that $\mathbb{E}X_n \to \mathbb{E}X$.

Weak Convergence Examples

1. If X_n has the discrete uniform distribution with pmf p(j/n) = 1/n for j = 1, ..., n then $X_n \Rightarrow$ Uniform[0, 1]

2. If $X_n \sim Bin(n, p)$ for $p \in (0, 1)$ then

$$\frac{X_n - np}{\sqrt{np(1-p)}} \Rightarrow \mathcal{N}(0,1)$$

3. If μ_n and σ_n^2 are numerical sequences such that $\mu_n \to \mu$ and $\sigma_n^2 \to \sigma^2 > 0$ then $\mathcal{N}(\mu_n, \sigma_n^2) \Rightarrow \mathcal{N}(\mu, \sigma^2)$

Multivariate Central Limit Theorem

Theorem: If $X_1, X_2, \ldots \in \mathbb{R}^d$ are iid with mean $\mathbb{E}(X_i) = \mu$ and finite variance matrix $\operatorname{Var}(X_i) = \Sigma$ then

$$n^{1/2}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right) \Rightarrow \mathcal{N}_{d}(0,\Sigma)$$

Note that Σ need not be positive definite.

Many extension of the standard CLT

- Non identically distributed, dependent random vectors
- Random functions, combinatorial structures

Weak Convergence

Theorem: Let $X_1, X_2, \ldots, X \in \mathbb{R}^d$ be random vectors

1. If $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all $f \in C_o(\mathbb{R}^d)$ then $X_n = O_p(1)$

2. If $X_n \Rightarrow X$ then $\{X_n\}$ is stochastically bounded

3.
$$X_n \Rightarrow X$$
 iff $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all $f \in C_o(\mathbb{R}^d)$

Corollary: To establish weak convergence, we can replace $C_b(\mathbb{R}^d)$ by the smaller family $C_o(\mathbb{R}^d)$

Weak Convergence and Convergence in Probability

Fact

- 1. If $X_n \to X$ in probability then $X_n \Rightarrow X$
- 2. If $X_n \Rightarrow v$ where v is a constant vector, then $X_n \rightarrow v$ in probability

Example: If $X \sim \mathcal{N}(0,1)$ and $X_n = (-1)^n X$ then clearly $X_n \Rightarrow X$, but X_n has no almost sure or in probability limit

Portmanteau Theorem

Theorem: Let $X_1, X_2, \ldots, X \in \mathbb{R}^d$ have CDFs F_1, F_2, \ldots, F . TFAE

- 1. $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all $f \in C_b(\mathbb{R}^d)$
- 2. $F_n(x) \to F(x)$ for every $x \in \mathbb{R}^d$ where F is continuous
- **3.** $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all $f \in C_o(\mathbb{R}^d)$
- 4. $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all bounded Lipshitz functions $f : \mathbb{R}^d \to \mathbb{R}$
- 5. $\mathbb{E}\exp(i\langle X_n, v\rangle) \to \mathbb{E}\exp(i\langle X, v\rangle)$ for all $v \in \mathbb{R}^d$
- 6. $\limsup_{n} \mathbb{E}f(X_n) \ge \mathbb{E}f(X)$ for all continuous $f : \mathbb{R}^d \to \mathbb{R}$
- 7. $\liminf_{n \in G} \mathbb{P}(X_n \in G) \ge \mathbb{P}(X \in G)$ for all open $G \subseteq \mathbb{R}^d$
- 8. $\limsup_{n} \mathbb{P}(X_n \in H) \leq \mathbb{P}(X \in H)$ for all closed $H \subseteq \mathbb{R}^d$
- 9. $\lim_{n} \mathbb{P}(X_n \in B) = \mathbb{P}(X \in B)$ for all Borel *B* s.t. $\mathbb{P}(X \in \overline{B} \setminus B^o) = 0$