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Stein’s Lemma



Stein’s Lemma (Gaussian Integration by Parts)

Stein’s Lemma: Let Z ~ N(0,1) and let f : R — R have derivative f’. If
E|f'(Z)| is finite then
E(Zf(Z)) =Ef(2)
Idea of proof
> Show that E|f'(Z)| finite implies E|f(Z)| and E|Z f(Z)| finite.
» If f is zero outside a finite interval, use integration by parts.

» For general f use a truncation/approximation argument.

Corollary: If X ~ N(u,0%) and E|f/(Z)| < oo then
E((X — p)f(X)) = o’Ef'(X).



Application: Moments of the Normal Distibution

Let X ~ N(0,0%). We know EX = 0 and EX? = ¢°. What about higher
moments?

Fact: If X ~ NV (0,0?%) then EX* = 0 when k odd and for all & > 1

k
EX?* = H2zf1



Random Vectors



Random Vectors

Definition: Let (Q2, 7, P) be a probability space. A d-dimensional random
vector is a Borel-measurable function X : Q — R%. Write

X = (Xy,- - ,Xd)t
where X; : 2 — Ris the i'th component of X. Note
1. X is a random vector iff each component X; is a random variable.

2. If A e R**?then Y = AX is a k-dimensional random vector



Distribution of a Random Vector

Definition: The distribution of X is the probability measure on R¢ defined by

P(A) =P(X € A) for Borel A C R?

> X is continuous if there is a function f : R* — [0, co) such that

P(A) = /Af(x)dm

Say f is the probability density function (pdf) of P, write X ~ f

> X is discrete if there is a function p : RY — [0, 1] such that

P(A) = Y p(x)

TEA

Say p is the probability mass function (pmf) of P, write X ~ p



Expectation of a Random Vector

Definition: Let X = (X1,..., X,)" be a random vector. If E|X;| is finite for
each i, the expected value of X is given by

E(X) = (EX4, - ,EXy)" € R

Basic Properties
1. Ifv € R* and A € R¥*¢ are non-random, E(AX +v) = AE(X) 4+ v

2. If Y € R%is defined on the same probability space as X then
E(X +Y)=EX +EY.

Note: Entry-wise definition of expectation extends to random matrices



Variance Matrix of a Random Vector

Definition: Let X = (X1,..., X4)" be a random vector. If EX? is finite for
each i, the variance matrix of X is given by

Var(X) = E[(X — E(X))(X — E(X))"] € R™*?

Basic Properties: Let v € R? and A € R**? be non-random
1. Var(X) is symmetric and non-negative definite
2. Var(X) = E(XX") — E(X)E(X)*
3. Var(X);; = Cov(X;, Xj)
4. Var(X +v) = Var(X)

5. Var(AX) = AVar(X) A" (ak x k matrix)



Covariance Matrix of Two Random Vectors

Definition: Let X € R* and Y € R’ be random vectors with EX?, EY? finite.
The covariance matrix of X, Y is given by

Cov(X,Y) = E[(X —EX)(Y —EY)]

Note that Cov(X,Y) is a k x [ matrix.



Properties of the Covariance Matrix

1. Cov(X,Y) =EXY* — (EX)(EY)*

2. Cov(X,Y);,; = Cov(X;,Y;)

3. If X and Y are independent then Cov(X,Y) =0

4. Var(X) = Cov(X, X)

5. If A, B are non-random matrices Cov(AX, BY) = ACov(X,Y)B
6. If X,Y are of the same dimension then

Var(X +Y) = Var(X) + Var(Y) + Cov(X,Y) + Cov(Y, X)

7. In general, Cov(X,Y) # Cov(Y, X)



The Multivariate Normal



Multivariate Normal

Definition: A random vector X € R? is multinormal if for each v € R the
random variable (X, v) is univariate normal.

Note: A constant ¢ € R is regarded as N (c, 0)

Fact: If X = (X1,...,X,)" is multinormal then components X, ..., X4 are
univariate normal. In particular, E(X) and Var(X) are well defined.

Note: Converse is not true.

Notation: If X € R? is multinormal with E(X) = p and Var(X) = ¥ write
X ~ Na(p, %)

Write X ~ Ny if X € R? is multinormal, mean and variance unspecified



Standard Multinormal

Example: Let Z = (Z1,...,Z4)" where Z1,. .., Z4 are iid N'(0,1). Then
E(Z) = 0 and Var(Z) = I4

Moreover, Z is multinormal. Thus Z ~ A (0, 14).

Terminology: Call Z the standard d-dimensional multinormal



Singular Multinormal

Example: Let U be A/(0,1) and define Y = (U, U)*. Then

]E(Y):[O} andVar(Y):[i 1}

Moreover, Y is multinormal. Thus we have

R (EIRERY)



Basic Properties of Multivariate Normal

Fact: Suppose that X = (X1,..., X4)" ~ Na(i, %)

a. fAcR”andu € R*then Y = AX + u ~ Nj(Ap + u, ALAY)

b. Components X; 1L X; iff Cov(X;, X;) =0

c. fY ~Ny(p', %) is independent of X then

X+Y ~ Na(p+p', S+ %)

d f1<i <---<irthenY = (X4y,..., X;,) ~ N



Cramer-Wold Theorem

Definition: Write X < Y if X, Y have the same distribution

Theorem: Let X, Y be d-dimensional random vectors. Then X L v ifand
only if (X, u) £ (Y,u) for each u € R?

Proof: Characteristic functions

Upshot: The distribution of a random vector is fully determined by the
distributions of its one-dimensional projections



Multivariate Normal Representation Theorem

Theorem: If X is multinormal with mean p and variance X then

X £z 4u

> Matrix ©'/2 > 0 is such that ©'/2%/2 =

> Z is a standard multinormal with iid A/(0, 1) components

Corollary

1. The distribution of multinormal random vector is fully determined by its
mean and variance

2. f X ~ Na(p, ) with & > 0then (X — p)'SH(X — p) ~ X2



Multivariate Normal Density

Note: Density of A'(i, 0%) can be written in the form

90) = Gy P {300 0= 0}

Fact: If X ~ Ay(u,X) with 3 > 0 then X has density

1 1 t—1
flz) = Wexp{—i(x—u) Y (a:—u)}



Density of Standard Multinormal

Example: Standard multinormal vector Z ~ N4(0, I) has density

1) = ﬁexp{ *“} U e"p{‘%?}

Note: Here z = (21, ..., z4)". Product form follows as components of Z are
independent standard normals.



Bivariate Normal Density

Ex: Random vector (X, Y)* ~ N2 with Corr(X,Y) = p has joint density

2 2
0% ox0y oy

1 [(w—MX)Q_2p($—ux)(y—lw)+(y—lw)T}

> Here ux = EX, uy = EY, 0% = Var(X), 0% = Var(Y)
» Density is definedonly if -1 < p < 1

» X and Y are independent if and only if p =0



Independence of Multinormals

Definition: Random vectors X € R* and Y € R! are jointly multinormal if

[);] ~ Niess

Fact: If X, Y are jointly multinormal then X Il Y iff Cov(X,Y) = 0.

Cor: If X ~ NMy(p, X) then AX 1L BX if and only if ALB* = 0.



