Theoretical Statistics, STOR 655 Random Vectors and the Multivariate Normal

Andrew Nobel

January 2022

Stein's Lemma

Stein's Lemma (Gaussian Integration by Parts)

Stein's Lemma: Let $Z \sim \mathcal{N}(0,1)$ and let $f : \mathbb{R} \to \mathbb{R}$ have derivative f'. If $\mathbb{E}|f'(Z)|$ is finite then

 $\mathbb{E}(Zf(Z)) = \mathbb{E}f'(Z)$

Idea of proof

- Show that $\mathbb{E}|f'(Z)|$ finite implies $\mathbb{E}|f(Z)|$ and $\mathbb{E}|Zf(Z)|$ finite.
- If f is zero outside a finite interval, use integration by parts.
- ► For general *f* use a truncation/approximation argument.

Corollary: If $X \sim \mathcal{N}(\mu, \sigma^2)$ and $\mathbb{E}|f'(Z)| < \infty$ then $\mathbb{E}((X - \mu)f(X)) = \sigma^2 \mathbb{E}f'(X)$.

Application: Moments of the Normal Distibution

Let $X \sim \mathcal{N}(0, \sigma^2)$. We know $\mathbb{E}X = 0$ and $\mathbb{E}X^2 = \sigma^2$. What about higher moments?

Fact: If $X \sim \mathcal{N}(0, \sigma^2)$ then $\mathbb{E} X^k = 0$ when k odd and for all $k \geq 1$

$$\mathbb{E}X^{2k} = \sigma^{2k} \prod_{l=1}^{k} (2l-1)$$

Random Vectors

Random Vectors

Definition: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A d-dimensional *random* vector is a Borel-measurable function $X : \Omega \to \mathbb{R}^d$. Write

$$X = (X_1, \cdots, X_d)^t$$

where $X_i : \Omega \to \mathbb{R}$ is the *i*'th component of X. Note

1. *X* is a random vector iff each component X_i is a random variable.

2. If $A \in \mathbb{R}^{k \times d}$ then Y = AX is a *k*-dimensional random vector

Distribution of a Random Vector

Definition: The *distribution* of *X* is the probability measure on \mathbb{R}^d defined by

 $P(A) = \mathbb{P}(X \in A)$ for Borel $A \subseteq \mathbb{R}^d$

▶ *X* is *continuous* if there is a function $f : \mathbb{R}^d \to [0, \infty)$ such that

$$P(A) = \int_A f(x) dx$$

Say f is the probability density function (pdf) of P, write $X \sim f$

▶ *X* is *discrete* if there is a function $p : \mathbb{R}^d \to [0, 1]$ such that

$$P(A) = \sum_{x \in A} p(x)$$

Say p is the probability mass function (pmf) of P, write $X \sim p$

Expectation of a Random Vector

Definition: Let $X = (X_1, ..., X_d)^t$ be a random vector. If $\mathbb{E}|X_i|$ is finite for each *i*, the *expected value* of *X* is given by

 $\mathbb{E}(X) = (\mathbb{E}X_1, \cdots, \mathbb{E}X_d)^t \in \mathbb{R}^d$

Basic Properties

1. If $v \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times d}$ are non-random, $\mathbb{E}(AX + v) = A \mathbb{E}(X) + v$

2. If $Y \in \mathbb{R}^d$ is defined on the same probability space as X then $\mathbb{E}(X + Y) = \mathbb{E}X + \mathbb{E}Y$.

Note: Entry-wise definition of expectation extends to random matrices

Variance Matrix of a Random Vector

Definition: Let $X = (X_1, ..., X_d)^t$ be a random vector. If $\mathbb{E}X_i^2$ is finite for each *i*, the *variance matrix* of **X** is given by

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}(X))(X - \mathbb{E}(X))^t] \in \mathbb{R}^{d \times d}$$

Basic Properties: Let $v \in \mathbb{R}^d$ and $A \in \mathbb{R}^{k \times d}$ be non-random

- 1. Var(X) is symmetric and non-negative definite
- 2. $\operatorname{Var}(X) = \mathbb{E}(XX^t) \mathbb{E}(X)\mathbb{E}(X)^t$
- 3. $\operatorname{Var}(X)_{ij} = \operatorname{Cov}(X_i, X_j)$
- 4. $\operatorname{Var}(X+v) = \operatorname{Var}(X)$
- 5. $\operatorname{Var}(AX) = A \operatorname{Var}(X) A^t$ (a $k \times k$ matrix)

Definition: Let $X \in \mathbb{R}^k$ and $Y \in \mathbb{R}^l$ be random vectors with $\mathbb{E}X_i^2$, $\mathbb{E}Y_j^2$ finite. The covariance matrix of X, Y is given by

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)^{t}]$$

Note that Cov(X, Y) is a $k \times l$ matrix.

Properties of the Covariance Matrix

- 1. $\operatorname{Cov}(X, Y) = \mathbb{E}XY^t (\mathbb{E}X)(\mathbb{E}Y)^t$
- 2. $\operatorname{Cov}(X, Y)_{i,j} = \operatorname{Cov}(X_i, Y_j)$
- 3. If X and Y are independent then Cov(X, Y) = 0
- 4. $\operatorname{Var}(X) = \operatorname{Cov}(X, X)$
- 5. If A, B are non-random matrices Cov(AX, BY) = A Cov(X, Y)B
- 6. If *X*, *Y* are of the same dimension then

Var(X + Y) = Var(X) + Var(Y) + Cov(X, Y) + Cov(Y, X)

7. In general, $Cov(X, Y) \neq Cov(Y, X)$

The Multivariate Normal

Multivariate Normal

Definition: A random vector $X \in \mathbb{R}^d$ is *multinormal* if for each $v \in \mathbb{R}^d$ the random variable $\langle X, v \rangle$ is univariate normal.

Note: A constant $c \in \mathbb{R}$ is regarded as $\mathcal{N}(c, 0)$

Fact: If $X = (X_1, ..., X_d)^t$ is multinormal then components $X_1, ..., X_d$ are univariate normal. In particular, $\mathbb{E}(X)$ and Var(X) are well defined.

Note: Converse is not true.

Notation: If $X \in \mathbb{R}^d$ is multinormal with $\mathbb{E}(X) = \mu$ and $Var(X) = \Sigma$ write

$$X \sim \mathcal{N}_d(\mu, \Sigma)$$

Write $X \sim \mathcal{N}_d$ if $X \in \mathbb{R}^d$ is multinormal, mean and variance unspecified

Standard Multinormal

Example: Let $Z = (Z_1, \ldots, Z_d)^t$ where Z_1, \ldots, Z_d are iid $\mathcal{N}(0, 1)$. Then

 $\mathbb{E}(Z) = 0$ and $\operatorname{Var}(Z) = I_d$

Moreover, Z is multinormal. Thus $Z \sim \mathcal{N}_d(0, I_d)$.

Terminology: Call Z the standard d-dimensional multinormal

Singular Multinormal

Example: Let U be $\mathcal{N}(0,1)$ and define $Y = (U,U)^t$. Then

$$\mathbb{E}(Y) = \begin{bmatrix} 0\\0 \end{bmatrix} \text{ and } \operatorname{Var}(Y) = \begin{bmatrix} 1 & 1\\1 & 1 \end{bmatrix}$$

Moreover, Y is multinormal. Thus we have

$$Y \sim \mathcal{N}_2\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{c}1&1\\1&1\end{array}\right]\right)$$

Basic Properties of Multivariate Normal

Fact: Suppose that $X = (X_1, \ldots, X_d)^t \sim \mathcal{N}_d(\mu, \Sigma)$

a. If $A \in \mathbb{R}^{k \times d}$ and $u \in \mathbb{R}^k$ then $Y = AX + u \sim \mathcal{N}_k(A\mu + u, A\Sigma A^t)$

b. Components $X_i \perp X_j$ iff $Cov(X_i, X_j) = 0$

c. If $Y \sim \mathcal{N}_d(\mu', \Sigma')$ is independent of **X** then

$$X + Y \sim \mathcal{N}_d(\mu + \mu', \Sigma + \Sigma')$$

d. If $1 \leq i_1 \leq \cdots \leq i_r$ then $Y = (X_{i_1}, \ldots, X_{i_r}) \sim \mathcal{N}_r$

Definition: Write $X \stackrel{d}{=} Y$ if X, Y have the same distribution

Theorem: Let X, Y be *d*-dimensional random vectors. Then $X \stackrel{d}{=} Y$ if and only if $\langle X, u \rangle \stackrel{d}{=} \langle Y, u \rangle$ for each $u \in \mathbb{R}^d$

Proof: Characteristic functions

Upshot: The distribution of a random vector is fully determined by the distributions of its one-dimensional projections

Multivariate Normal Representation Theorem

Theorem: If X is multinormal with mean μ and variance Σ then

 $X \stackrel{\mathrm{d}}{=} \Sigma^{1/2} Z + \mu$

• Matrix $\Sigma^{1/2} \ge 0$ is such that $\Sigma^{1/2} \Sigma^{1/2} = \Sigma$

 \triangleright Z is a standard multinormal with iid $\mathcal{N}(0,1)$ components

Corollary

1. The distribution of multinormal random vector is fully determined by its mean and variance

2. If
$$X \sim \mathcal{N}_d(\mu, \Sigma)$$
 with $\Sigma > 0$ then $(X - \mu)^t \Sigma^{-1} (X - \mu) \sim \chi_d^2$

Multivariate Normal Density

Note: Density of $\mathcal{N}(\mu,\sigma^2)$ can be written in the form

$$g(v) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left\{-\frac{1}{2}(v-\mu)(\sigma^2)^{-1}(v-\mu)\right\}$$

Fact: If $X \sim \mathcal{N}_d(\mu, \Sigma)$ with $\Sigma > 0$ then X has density

$$f(x) = \frac{1}{(2\pi)^{d/2} \det(\Sigma)^{1/2}} \exp\left\{-\frac{1}{2} (x-\mu)^t \Sigma^{-1} (x-\mu)\right\}$$

Density of Standard Multinormal

Example: Standard multinormal vector $Z \sim \mathcal{N}_d(0, I)$ has density

$$f(z) = \frac{1}{(2\pi)^{d/2}} \exp\left\{-\frac{1}{2}z^t z\right\} = \prod_{i=1}^d \frac{1}{(2\pi)^{1/2}} \exp\left\{-\frac{z_i^2}{2}\right\}$$

Note: Here $z = (z_1, \ldots, z_d)^t$. Product form follows as components of *Z* are independent standard normals.

Bivariate Normal Density

Ex: Random vector $(X, Y)^t \sim \mathcal{N}_2$ with $\operatorname{Corr}(X, Y) = \rho$ has joint density

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \times \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} \right] \right\}$$

- Here $\mu_X = \mathbb{E}X$, $\mu_Y = \mathbb{E}Y$, $\sigma_X^2 = \operatorname{Var}(X)$, $\sigma_Y^2 = \operatorname{Var}(Y)$
- Density is defined only if $-1 < \rho < 1$
- X and Y are independent if and only if $\rho = 0$

Independence of Multinormals

Definition: Random vectors $X \in \mathbb{R}^k$ and $Y \in \mathbb{R}^l$ are jointly multinormal if

$$\left[egin{array}{c} X \ Y \end{array}
ight] \sim \mathcal{N}_{k+k}$$

Fact: If X, Y are jointly multinormal then $X \perp Y$ iff Cov(X, Y) = 0.

Cor: If $X \sim \mathcal{N}_d(\mu, \Sigma)$ then $AX \perp BX$ if and only if $A\Sigma B^t = 0$.