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Stein’s Lemma



Stein’s Lemma (Gaussian Integration by Parts)

Stein’s Lemma: Let Z ∼ N (0, 1) and let f : R→ R have derivative f ′. If
E|f ′(Z)| is finite then

E(Zf(Z)) = Ef ′(Z)

Idea of proof

I Show that E|f ′(Z)| finite implies E|f(Z)| and E|Zf(Z)| finite.

I If f is zero outside a finite interval, use integration by parts.

I For general f use a truncation/approximation argument.

Corollary: If X ∼ N (µ, σ2) and E|f ′(Z)| <∞ then
E((X − µ)f(X)) = σ2Ef ′(X).



Application: Moments of the Normal Distibution

Let X ∼ N (0, σ2). We know EX = 0 and EX2 = σ2. What about higher
moments?

Fact: If X ∼ N (0, σ2) then EXk = 0 when k odd and for all k ≥ 1

EX2k = σ2k
k∏

l=1

(2l − 1)



Random Vectors



Random Vectors

Definition: Let (Ω,F ,P) be a probability space. A d-dimensional random
vector is a Borel-measurable function X : Ω→ Rd. Write

X = (X1, · · · , Xd)t

where Xi : Ω→ R is the i’th component of X. Note

1. X is a random vector iff each component Xi is a random variable.

2. If A ∈ Rk×d then Y = AX is a k-dimensional random vector



Distribution of a Random Vector

Definition: The distribution of X is the probability measure on Rd defined by

P (A) = P(X ∈ A) for Borel A ⊆ Rd

I X is continuous if there is a function f : Rd → [0,∞) such that

P (A) =

∫
A

f(x)dx

Say f is the probability density function (pdf) of P , write X ∼ f

I X is discrete if there is a function p : Rd → [0, 1] such that

P (A) =
∑
x∈A

p(x)

Say p is the probability mass function (pmf) of P , write X ∼ p



Expectation of a Random Vector

Definition: Let X = (X1, . . . , Xd)t be a random vector. If E|Xi| is finite for
each i, the expected value of X is given by

E(X) = (EX1, · · · ,EXd)t ∈ Rd

Basic Properties

1. If v ∈ Rk and A ∈ Rk×d are non-random, E(AX + v) = AE(X) + v

2. If Y ∈ Rd is defined on the same probability space as X then
E(X + Y ) = EX + EY .

Note: Entry-wise definition of expectation extends to random matrices



Variance Matrix of a Random Vector

Definition: Let X = (X1, . . . , Xd)t be a random vector. If EX2
i is finite for

each i, the variance matrix of X is given by

Var(X) = E[(X − E(X))(X − E(X))t] ∈ Rd×d

Basic Properties: Let v ∈ Rd and A ∈ Rk×d be non-random

1. Var(X) is symmetric and non-negative definite

2. Var(X) = E(XXt) − E(X)E(X)t

3. Var(X)ij = Cov(Xi, Xj)

4. Var(X + v) = Var(X)

5. Var(AX) = AVar(X)At (a k × k matrix)



Covariance Matrix of Two Random Vectors

Definition: Let X ∈ Rk and Y ∈ Rl be random vectors with EX2
i , EY 2

j finite.
The covariance matrix of X,Y is given by

Cov(X,Y ) = E[(X − EX)(Y − EY )t]

Note that Cov(X,Y ) is a k × l matrix.



Properties of the Covariance Matrix

1. Cov(X,Y ) = EXY t − (EX)(EY )t

2. Cov(X,Y )i,j = Cov(Xi, Yj)

3. If X and Y are independent then Cov(X,Y ) = 0

4. Var(X) = Cov(X,X)

5. If A,B are non-random matrices Cov(AX,BY ) = ACov(X,Y )B

6. If X,Y are of the same dimension then

Var(X + Y ) = Var(X) + Var(Y ) + Cov(X,Y ) + Cov(Y,X)

7. In general, Cov(X,Y ) 6= Cov(Y,X)



The Multivariate Normal



Multivariate Normal

Definition: A random vector X ∈ Rd is multinormal if for each v ∈ Rd the
random variable 〈X, v〉 is univariate normal.

Note: A constant c ∈ R is regarded as N (c, 0)

Fact: If X = (X1, . . . , Xd)t is multinormal then components X1, . . . , Xd are
univariate normal. In particular, E(X) and Var(X) are well defined.

Note: Converse is not true.

Notation: If X ∈ Rd is multinormal with E(X) = µ and Var(X) = Σ write

X ∼ Nd(µ,Σ)

Write X ∼ Nd if X ∈ Rd is multinormal, mean and variance unspecified



Standard Multinormal

Example: Let Z = (Z1, . . . , Zd)t where Z1, . . . , Zd are iid N (0, 1). Then

E(Z) = 0 and Var(Z) = Id

Moreover, Z is multinormal. Thus Z ∼ Nd (0, Id).

Terminology: Call Z the standard d-dimensional multinormal



Singular Multinormal

Example: Let U be N (0, 1) and define Y = (U,U)t. Then

E(Y ) =

[
0
0

]
and Var(Y ) =

[
1 1
1 1

]

Moreover, Y is multinormal. Thus we have

Y ∼ N2

([
0
0

]
,

[
1 1
1 1

])



Basic Properties of Multivariate Normal

Fact: Suppose that X = (X1, . . . , Xd)t ∼ Nd(µ,Σ)

a. If A ∈ Rk×d and u ∈ Rk then Y = AX + u ∼ Nk(Aµ+ u,AΣAt)

b. Components Xi ⊥⊥ Xj iff Cov(Xi, Xj) = 0

c. If Y ∼ Nd(µ′,Σ′) is independent of X then

X + Y ∼ Nd(µ+ µ′,Σ + Σ′)

d. If 1 ≤ i1 ≤ · · · ≤ ir then Y = (Xi1 , . . . , Xir ) ∼ Nr



Cramer-Wold Theorem

Definition: Write X d
= Y if X,Y have the same distribution

Theorem: Let X,Y be d-dimensional random vectors. Then X d
= Y if and

only if 〈X,u〉 d
= 〈Y, u〉 for each u ∈ Rd

Proof: Characteristic functions

Upshot: The distribution of a random vector is fully determined by the
distributions of its one-dimensional projections



Multivariate Normal Representation Theorem

Theorem: If X is multinormal with mean µ and variance Σ then

X
d
= Σ1/2Z + µ

I Matrix Σ1/2 ≥ 0 is such that Σ1/2Σ1/2 = Σ

I Z is a standard multinormal with iid N (0, 1) components

Corollary

1. The distribution of multinormal random vector is fully determined by its
mean and variance

2. If X ∼ Nd(µ,Σ) with Σ > 0 then (X − µ)tΣ−1(X − µ) ∼ χ2
d



Multivariate Normal Density

Note: Density of N (µ, σ2) can be written in the form

g(v) =
1

(2π)1/2 σ
exp

{
−1

2
(v − µ)(σ2)−1(v − µ)

}

Fact: If X ∼ Nd(µ,Σ) with Σ > 0 then X has density

f(x) =
1

(2π)d/2 det(Σ)1/2
exp

{
−1

2
(x− µ)t Σ−1 (x− µ)

}



Density of Standard Multinormal

Example: Standard multinormal vector Z ∼ Nd(0, I) has density

f(z) =
1

(2π)d/2
exp

{
−1

2
ztz

}
=

d∏
i=1

1

(2π)1/2
exp

{
−z

2
i

2

}

Note: Here z = (z1, . . . , zd)t. Product form follows as components of Z are
independent standard normals.



Bivariate Normal Density

Ex: Random vector (X,Y )t ∼ N2 with Corr(X,Y ) = ρ has joint density

f(x, y) =
1

2πσXσY

√
1− ρ2

×

exp

{
− 1

2(1− ρ2)

[
(x− µX)2

σ2
X

− 2ρ
(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2
Y

]}

I Here µX = EX, µY = EY , σ2
X = Var(X), σ2

Y = Var(Y )

I Density is defined only if −1 < ρ < 1

I X and Y are independent if and only if ρ = 0



Independence of Multinormals

Definition: Random vectors X ∈ Rk and Y ∈ Rl are jointly multinormal if[
X
Y

]
∼ Nk+l

Fact: If X, Y are jointly multinormal then X ⊥⊥ Y iff Cov(X,Y ) = 0.

Cor: If X ∼ Nd(µ,Σ) then AX ⊥⊥ BX if and only if AΣBt = 0.


