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Order, Minima, and Maxima



Multiplication and Addition

Recall: For any numbers a, b

(1) If a, b ≥ 0 or a, b ≤ 0 then ab ≥ 0

(2) If a ≥ 0 and b ≤ 0 or vice-versa then ab ≤ 0

(3) If a, b ≥ 0 then a+ b ≥ 0

(4) If a, b ≤ 0 then a+ b ≤ 0.

Note: (1)-(4) continue to hold if we replace ≤ and ≥ by < and >, respectively



The Usual Order Relation

Definition: For a, b ∈ R write a ≤ b if (b− a) ≥ 0 and a < b if (b− a) > 0

Basic Properties

1. If a ≤ b and b ≤ a then a = b

2. If a ≤ b then −b ≤ −a

3. If a ≤ b and c ≤ d then a+ c ≤ b+ d

4. If 0 ≤ a ≤ b and 0 ≤ c ≤ d then ac ≤ bd

Note: (2)-(4) continue to hold if we replace ≤ by <



Maxima and Minima of Finite Sequences

Definition: Let a1, . . . , an ∈ R

I max{a1, . . . , an} is any element aj such that ai ≤ aj for i = 1, . . . , n

I min{a1, . . . , an} is any element aj such that ai ≥ aj for i = 1, . . . , n

Other Notation

I max1≤i≤n ai or simply maxi ai

I min1≤i≤n ai or simply mini ai



Maxima and Minima, cont.

Basic Properties: Let a1, . . . , an ∈ R and b1, . . . , bn ∈ R be finite sequences

1. If ai ≤ bi for each i, then maxi ai ≤ maxi bi and mini ai ≤ mini bi

2. mini ai ≤ aj ≤ maxi ai for j = 1, . . . , n

3. −mini ai = maxi(−ai) and −maxi ai = mini(−ai)

4. If c ≥ 0 and b are constants then c maxi ai + b = maxi(c ai + b)

5. maxi(ai + bi) ≤ maxi ai + maxi bi

6. mini(ai + bi) ≥ mini ai + mini bi

7. maxi ai −maxi bi ≤ maxi |ai − bi|



Suprema and Infima

Definition: Let A ⊆ R be bounded. Recall that

I sup(A) = least upper bound for A

I inf(A) = greatest lower bound for A

Existence of sup and inf follows from construction of the real numbers.

Basic Properties and Conventions

1. If A is not bounded, then sup(A) = +∞ or inf(A) = −∞, or both

2. By convention sup(∅) = −∞ and inf(∅) = +∞

3. If A ⊆ B then sup(A) ≤ sup(B) while inf(A) ≥ inf(B)



Order Relations for Maxima and Minima of Functions

Fact: Let f, g : X → R be functions.

(1) infx∈X f(x) ≤ f(x0) ≤ supx∈X f(x) for every x0 ∈ X

(2) − supx∈X f(x) = infx∈X (−f(x))

(3) supx∈X{f(x) + g(x)} ≤ supx∈X f(x) + supx∈X g(x)

(4) If X0 ⊆ X then supx∈X0
f(x) ≤ supx∈X f(x)

Fact: If h : X × Y → R is any function

sup
x∈X

inf
y∈Y

h(x, y) ≤ inf
y∈Y

sup
x∈X

h(x, y)



Argmax and Argmin

Definition: The argmax of a function f : X → R is the set of points y ∈ X
where f is maximized

argmax
x∈X

f(x) = {y ∈ X : f(y) ≥ f(x) for all x ∈ X}

=

{
y ∈ X : f(y) = max

x∈X
f(x)

}

Similarly, the argmin of f is the set of points y ∈ X where f is minimized

argmin
x∈X

f(x) = {y ∈ X : f(y) ≤ f(x) for all x ∈ X}

=

{
y ∈ X : f(y) = min

x∈X
f(x)

}



Argmax and Argmin, cont.

Note that argmaxx∈X f(x) is a subset of X

I maxx∈X f(x) is the maximum value of f(x) if this exists

I argmaxx∈X f(x) is the set of arguments x achieving the maximum value

I argmaxx∈X f(x) is non-empty iff maxx∈X f(x) defined

Note that argminx∈X f(x) is a subset of X

I minx∈X f(x) is the minimum value of f(x) if this exists

I argminx∈X f(x) is the set of arguments x achieving the minimum value

I argminx∈X f(x) is non-empty iff minx∈X f(x) defined



Matrix Algebra



Inner Product

Definition: The inner product of two vectors u, v ∈ Rd is given by

〈u, v〉 = utv =

d∑
i=1

ui vi

Basic Properties: Let u, v, w ∈ Rd and a, b ∈ R

1. 〈u, v〉 = 〈v, u〉

2. 〈au, bv〉 = ab 〈u, v〉

3. 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉



Euclidean Norm

Definition: The Euclidean norm of a vector u ∈ Rd is

||u|| = 〈u, u〉1/2 = (u2
1 + · · ·+ u2

d)
1/2

Basic Properties

1. ||u|| ≥ 0 with equality if and only if u = 0

2. For a ∈ R, ||a u|| = |a| ||u||

3. ||u+ v||2 = ||u||2 + 2〈u, v〉+ ||v||2

4. |〈u, v〉| = |utv| ≤ ||u|| ||v|| (Cauchy-Schwarz inequality)

5. ||u+ v|| ≤ ||u||+ ||v|| (triangle inequality)

6. | ||u|| − ||v|| | ≤ ||u− v|| (reverse triangle inequality)



Orthogonality and Projections

Definition: Vectors u, v ∈ Rn are orthogonal, written u ⊥ v, if 〈u, v〉 = 0

Defn: Let V be a subspace of Rn. The projection of u ∈ Rn onto V is the
vector w ∈ V closest to u. Formally,

projV (u) = argmin
w∈V

||u− w||

Fact: Let V = {αv : α ∈ R} be the 1-d subspace generated by v ∈ Rn

1. projV (u) = 〈u, v〉 v/||v||2

2. (u− projV (u)) ⊥ v



Orthogonal Matrices

Vectors u1, . . . , un are orthonormal if 〈ui, uj〉 = I(i = j) for 1 ≤ i, j ≤ n

A matrix A ∈ Rn×n is orthogonal if AtA = I. If A is orthogonal then

I A−1 = At

I AAt = I

I the rows and columns of A are orthonormal

I the eigenvalues λi(A) ∈ {+1,−1}

I det(A) ∈ {+1,−1}



Quadratic Forms

Each symmetric matrix A ∈ Rn×n has an associated quadratic form
qA : Rn → R defined by

qA(u) = utAu =
n∑
i=1

n∑
j=1

ui aij uj

I A is non-negative definite (A ≥ 0) if utAu ≥ 0 for every u

I A is positive definite (A > 0) if utAu > 0 for every u 6= 0

Fact: Let A n× n be symmetric.

I A ≥ 0 iff all its eigenvalues are non-negative

I A > 0 iff all its eigenvalues are positive



Trace of a Matrix

Definition: The trace of a matrix A ∈ Rn×n is the sum of its diagonal
elements

tr(A) =

n∑
i=1

aii

I tr(A) = sum of eigenvalues of A

I tr(A) = tr(At)

I If B is n× n then tr(AB) = tr(BA)



Frobenius Norm

Definition: The Frobenius norm of a matrix A ∈ Rm×n is

||A|| =

√√√√ m∑
i=1

n∑
j=1

a2ij

Basic Properties

I ||A||2 = tr(AtA)

I ||A|| = 0 if and only if A = 0

I ||bA|| = |b| ||A||

I ||A+B|| ≤ ||A||+ ||B||

I ||AB|| ≤ ||A|| ||B||



Rank of a Matrix

Definition: Let A ∈ Rm×n be an m x n matrix

I row-space of A = span of the rows of A (subspace of Rn)

I col-space of A = span of the cols of A (subspace of Rm)

I row-rank(A) := dim of the row-space of A (at most n)

I col-rank(A) := dim of the col-space of A (at most m)

Fact: row-rank(A) = col-rank(A)

Definition: The rank of A is the common value of the row and column ranks



Basic Properties of the Rank

I If A ∈ Rm×n then rank(A) ≤ min{m,n}

I rank(AB) ≤ min{rank(A), rank(B)}

I rank(A+B) ≤ rank(A) + rank(B)

I rank(A) = rank(At) = rank(AtA) = rank(AAt)

I A ∈ Rn×n has at most rank(A) non-zero eigenvalues

I A ∈ Rn×n is invertible iff rank(A) = n, that is, A is of full rank



Outer Products

Definition: The outer product uvt of vectors u ∈ Rm and v ∈ Rn is an m× n
matrix with entries

(uvt)ij = uivj

I If u, v 6= 0 then rank(uvt) = 1

I ||uvt|| = ||u|| ||v||

I If m = n then tr(uvt) = 〈u, v〉



The Spectral Theorem

Spectral Theorem: If A ∈ Rn×n is symmetric there exists an orthonormal
basis of Rn consisting of eigenvectors of A

Corollary: If A ∈ Rn×n is symmetric then it can be expressed in the form

A = ΓD Γt

where Γ ∈ Rn×n is orthogonal and D = diag(λ1(A), . . . , λn(A)) has the
eigenvalues of A on the diagonal, with all other values equal to zero

I Ak = ΓDkΓt for k ≥ 1

I If A ≥ 0 we may define Aα = ΓDαΓt for α > 0



Courant Fischer Theorem

Thm: Let A ∈ Rn×n be symmetric with eigenvalues λ1(A) ≥ · · · ≥ λn(A).

λ1(A) = max
v 6=0

vtAv

vtv
= max

v:||v||=1
vtAv

λn(A) = min
v 6=0

vtAv

vtv
= min

v:||v||=1
vtAv

λi(A) = max
V :dim(V )=i

min
v∈V,||v||=1

vtAv



Continuous Functions and Compact Sets



Continuous Functions

Definition: Let f : Rd → R be a function. We say that f is

1. bounded if there exists M <∞ such that |f(x)| ≤M for all x.

2. continuous at x ∈ Rd if for every ε > 0 there exists δ > 0 such
that ||x− y|| < δ implies |f(x)− f(y)| < ε

3. continuous if it is continuous at every x ∈ Rd

4. uniformly continuous if for every ε > 0 there exists δ > 0 such
that ||x− y|| < δ implies |f(x)− f(y)| < ε

Distinction

I Continuity: δ depends on ε and x

I Uniformly continuity: δ depends only on ε



Continuous Functions, cont.

Fact: A set K ⊆ Rd is compact iff it is closed and bounded

Fact: If K ⊆ Rd is compact and f : K → R is continuous, then f is
uniformly continuous and bounded on K

Definition: The support of a function f : Rd → R is

supp(f) = {x : f(x) 6= 0}

Note: supp(f) is closed by definition, and compact if it is bounded



Continuous Functions, cont.

Definition

1. Cb(Rd) = family of bounded continuous functions f : Rd → R

2. Co(Rd) = family of continuous functions f : Rd → R with compact
support

Fact

1. Every f ∈ Co(Rd) is uniformly continuous

2. Co(Rd) ⊆ Cb(Rd)

3. Every f ∈ Cb(Rd) is Borel measurable



Multivariate Calculus



Multivariate Differentiation: Total Derivative

Definition: A function f : Rd → Rk is differentiable at x ∈ Rd if there exists a
matrix A ∈ Rk×d such that

lim
h→0

||f(x+ h)− f(x)−Ah||
||h|| = 0

which can be written in the equivalent form

f(x+ h) = f(x) +Ah+ o(||h||)

The (unique) matrix A satisfying these conditions is called the total derivative
of f at x, and denoted by Df(x) or ḟ(x)



Total Derivatives

First Examples: Consider a function f : Rd → Rk

I If d = k = 1 then Df(x) = f ′(x) coincides with ordinary derivative

I If f(x) = c is constant then Df(x) = 0 is the k × d zero matrix

I If f(x) = Bx is linear then Df(x) = B

I If f(x) = xtV x where V ∈ Rd×d is symmetric then DF (x) = 2xtV

Chain Rule: If f : Rd → Rk is differentiable at x and g : Rk → Rl is
differentiable at f(x), then g ◦ f is differentiable at x and

D(g ◦ f)(x) = Dg(f(x))Df(x)



Jacobians

Note that f : Rd → Rk can be written f = (f1, . . . , fk) where fi : Rd → R

Definition: The Jacobian of f at x is the k × d matrix of partial derivatives

Jf (x) =

[
∂fi
∂xj

(x) : 1 ≤ i ≤ k, 1 ≤ j ≤ d
]

Fact: Jacobians and Total Derivatives

(a) If f is differentiable at x then Jf (x) exists and is equal to Df(x)

(b) If the Jacobian Jf exists and is continuous at x then f is differentiable
at x and Jf (x) = Df(x)



Gradients and Hessians

Definition. Let f : Rd → R

I The gradient of f at x is the d× 1 vector of partial derivatives

∇f(x) =

(
∂f

∂x1
(x), · · · , ∂f

∂xd
(x)

)t
When derivative Df(x) exists, ∇f(x) exists and is equal to Df(x)t

I The Hessian of f at x is the d× d matrix of second partial derivatives

∇2f(x) =

[
∂2f

∂xi∂xj
(x) : 1 ≤ i, j ≤ d

]

If the second partials are continuous, then ∇2f(x) is symmetric



Multivariate Taylor’s Theorem I

Fact: If f : Rd → Rk has continuous partial derivatives ∂fi/∂xj at each point
in Rd then for every x, h ∈ Rd

f(x+ h) = f(x) + 〈∇f(x̃), h〉

where x̃ = x+ αh for some α ∈ [0, 1]. In particular, we have

f(x+ h) = f(x) + 〈∇f(x̃), h〉 + o(||h||)



Multivariate Taylor’s Theorem II

Fact: If f : Rd → R has continuous second partial derivatives ∂2f/∂xi∂xj at
each point in Rd then for every x, h ∈ Rd

f(x+ h) = f(x) + 〈∇f(x), h〉 +
1

2
ht∇2f(x̃)h

where x̃ = x+ αh for some α ∈ [0, 1]. In particular, we have

f(x+ h) = f(x) + 〈∇f(x), h〉 +
1

2
ht∇2f(x)h + o(||h||2)


