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Order, Minima, and Maxima



Multiplication and Addition

Recall: For any numbers a, b

(1) fa,b>00ra,b<0thenab >0

(2) Ifa>0andb < 0orvice-versathen ab <0
(8) Ifa,b>0thena+b>0

(4) Ifa,b<0thena+b<0.

Note: (1)-(4) continue to hold if we replace < and > by < and >, respectively



The Usual Order Relation

Definition: For a,b € Rwrite a < b if (b—a) >0anda < bif (b—a) >0

Basic Properties

1. fa<bandb<athena=1»

2. lfa<bthen —b < —a

3. fa<bandc<dthena+c<b+d

4. f0<a<band 0 < c¢ < dthenac<bd

Note: (2)-(4) continue to hold if we replace < by <



Maxima and Minima of Finite Sequences

Definition: Letai,...,a, € R
» max{ai,...,an}is any element a; suchthata; <aj;fori=1,...
» min{ai,...,an} is any element a; such that a; > a; fori =1,...

Other Notation
> maxi<;<n a; OF SIMply max; a;

> mini<i<n a; OF simply min; a;

,n



Maxima and Minima, cont.

Basic Properties: Let ay,...,a, € Rand by,...,b, € R be finite sequences
1. If a; < b; for each i, then max; a; < max; b; and min; a; < min; b;
2. min;a; < a; <max;a;forj=1,....n
3. —min; a; = max;(—a;) and —max; a; = min;(—a;)
4. If ¢ > 0 and b are constants then ¢ max; a; + b = max;(ca; + b)
5. max;(a; + b;) < max;a; + max; b;
6. min;(a; + b;) > min; a; + min; b;

7. max; a; — max; b; < max;|a; — b



Suprema and Infima

Definition: Let A C R be bounded. Recall that
> sup(A) = least upper bound for A
> inf(A) = greatest lower bound for A

Existence of sup and inf follows from construction of the real numbers.

Basic Properties and Conventions
1. If A is not bounded, then sup(A) = +oo or inf(A) = —co, or both
2. By convention sup(#) = —oco and inf(f) = 400

3. If A C Bthensup(A) < sup(B) while inf(A) > inf(B)



Order Relations for Maxima and Minima of Functions

Fact: Let f,¢: X — R be functions.
(1) infeex f(z) < f(xo) < sup,er f(x) forevery zp € X
(2) —sup,ex f(z) = infrex(—f(2))

(3) sup,ex{f(z) + g(x)} < sup,cx f(x) + sup,cr g(2)

(4) If X C X then sup,¢x, f(x) < supgex f(x)

Fact: If h : X x Y — Ris any function

sup inf h(z,y) < inf sup h(z,y)
zeXx YEY YEY pex



Argmax and Argmin

Definition: The argmax of a function f : X — Ris the set of points y € X
where f is maximized

argmax f(z) = {yeX: f(y)> f(z)foralz e X}
zEX

{y € X: f(y) :rzneagf(m)}

Similarly, the argmin of f is the set of points y € X where f is minimized

argmin f(x) {lye X: f(y) < f(z) forallz € X}

TeX
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Argmax and Argmin, cont.

Note that argmax, ., f(x) is a subset of X
> maxzex f(z) is the maximum value of f(x) if this exists
> argmax,. f(z) is the set of arguments x achieving the maximum value

> argmax, .y f(x) is non-empty iff max.cx f(x) defined

Note that argmin ., f(x) is a subset of X
» mingcx f(z) is the minimum value of f(x) if this exists
» argmin_, f(z) is the set of arguments z achieving the minimum value

> argmin_., f(x) is non-empty iff minzex f(z) defined



Matrix Algebra



Inner Product

Definition: The inner product of two vectors u, v € R? is given by

d
(u,v) = uty = Zuivi
=1

Basic Properties: Let u,v,w € R and a,b € R
1. (u,v) = (v,u)
2. (au,bv) = ab (u,v)

3. (u+w,v) = (u,v) + (w,v)



Euclidean Norm

Definition: The Euclidean norm of a vector u € R? is

lull = (u,u)/? = (uf + - +ud)"/?

Basic Properties

1.

2.

[|u|| > 0 with equality if and only if v = 0

Fora e R, [laul| = |a| [|ull

llu+ol* = [lull* + 2{u, v) + |||

[{(u, v)| = |ulv| < ||ul||]v]| (Cauchy-Schwarz inequality)
[lu+ ]| < |lu|| + |lv|| (triangle inequality)

[u]] = l|v]]] < ||lu—v|| (reverse triangle inequality)



Orthogonality and Projections

Definition: Vectors u,v € R™ are orthogonal, written « L v, if (u,v) =0

Defn: Let V be a subspace of R™. The projection of u € R™ onto V is the
vector w € V closest to u. Formally,

proj,, (u) = argmin ||u — w||
weV

Fact: Let V = {av : « € R} be the 1-d subspace generated by v € R"

1. projy (u) = (u, v) v/||]|*

2. (u—projy (u)) L v



Orthogonal Matrices

Vectors w1, ..., u, are orthonormal if (u;,u;) = I(i =j)for1 <i,57<n

A matrix A € R™*™ is orthogonal if A'A = I. If Ais orthogonal then
> AT = Al
> AAL =T
> the rows and columns of A are orthonormal
> the eigenvalues \;(A) € {+1,—1}

> det(A) € {+1,—1}



Quadratic Forms

Each symmetric matrix A € R"*™ has an associated quadratic form
ga : R™ — R defined by

ga(u) =u'Au = zn:zn:uz Qij Uj

i=1 j=1

> A is non-negative definite (A > 0) if u* Au > 0 for every u

> Ais positive definite (A > 0) if u* Aw > 0 for every u # 0

Fact: Let A n x n be symmetric.
> A > 0iff all its eigenvalues are non-negative

> A > 0 iff all its eigenvalues are positive



Trace of a Matrix

Definition: The trace of a matrix A € R™*" is the sum of its diagonal

elements N
tr(A) = Zaii
=1

> tr(A) = sum of eigenvalues of A
> tr(A) =tr(A")

> If Bisn x nthentr(AB) =tr(BA)



Frobenius Norm

Definition: The Frobenius norm of a matrix A € R™*" is

1Al = | > a3
i=1 j=1

Basic Properties

v

A = tr(A"4)

v

[|A]l =0ifand only if A=0

v

[[oA[| = [o] || Al

v

A+ Bl < [[All +[|B]|

v

IAB|| < [[A[l]|B]|



Rank of a Matrix

Definition: Let A € R™*™ be an m x n matrix
» row-space of A = span of the rows of A (subspace of R™)
» col-space of A = span of the cols of A (subspace of R™)
> row-rank(A) := dim of the row-space of A (at most n)

» col-rank(A) := dim of the col-space of A (at most m)

Fact: row-rank(A) = col-rank(A)

Definition: The rank of A is the common value of the row and column ranks



Basic Properties of the Rank

> If A e R™*" then rank(A4) < min{m,n}

» rank(A B) < min{rank(A), rank(B)}

> rank(A + B) < rank(A) + rank(B)

> rank(A) = rank(A") = rank(A*A) = rank(A4A")

> A e R™*" has at most rank(A) non-zero eigenvalues

> A e R™"isinvertible iff rank(A) = n, that is, A is of full rank



Outer Products

Definition: The outer product uv® of vectors w € R™ and v € R" isanm x n
matrix with entries

(uvt)ij = U;V;

> If u,v # 0 then rank(uv') =1
> luv’|| = [Jull ||v]]

> If m = n then tr(uvt) = (u,v)



The Spectral Theorem

Spectral Theorem: If A € R"*" is symmetric there exists an orthonormal

basis of R™ consisting of eigenvectors of A

Corollary: If A € R"*™ is symmetric then it can be expressed in the form
A=TDr"

where I' € R™*™ is orthogonal and D = diag(A1(A), ..., An(A)) has the
eigenvalues of A on the diagonal, with all other values equal to zero

> AF =TD*T*fork > 1

> If A > 0we may define A* =T'D*T" fora > 0



Courant Fischer Theorem

Thm: Let A € R"*" be symmetric with eigenvalues A\, (A) > --

t
A(4) = max - Av

v#£0  vtu vil|v]|=1
. vt Av . ¢
An(A) min = min v Av
v£0  vitv v:[]v||=1
Ai(A) =  max

t
v Av

min
V:dim(V)=i veV,||v]|=1

> An(A).



Continuous Functions and Compact Sets



Continuous Functions

Definition: Let f : R? — R be a function. We say that f is
1. bounded if there exists M < oo such that |f(z)| < M for all z.

2. continuous at z € R if for every ¢ > 0 there exists § > 0 such
that ||z — y|| < & implies |f(z) — f(y)| < e

3. continuous if it is continuous at every = € R?

4. uniformly continuous if for every € > 0 there exists ¢ > 0 such
that ||z — y|| < 0 implies |f(z) — f(y)| < €

Distinction
» Continuity: § depends on € and x

» Uniformly continuity: 6 depends only on e



Continuous Functions, cont.

Fact: A set K C R%is compact iff it is closed and bounded

Fact: If K C R is compact and f : K — R is continuous, then f is
uniformly continuous and bounded on K

Definition: The support of a function f : R — R is

supp(f) = {=z: f(z) # 0}

Note: supp(f) is closed by definition, and compact if it is bounded



Continuous Functions, cont.

Definition
1. Cp(R%) = family of bounded continuous functions f : R — R

2. C,(R?%) = family of continuous functions f : R¢ — R with compact
support

Fact
1. Every f € C,(R?) is uniformly continuous

2. C,(R%) C Cy(RY)

3. Every f € C,(R?) is Borel measurable



Multivariate Calculus



Multivariate Differentiation: Total Derivative

Definition: A function f : R* — R is differentiable at = € R¢ if there exists a
matrix A € R**? such that

o PG h) = (@) = ARl _

h—0 [|R]]

which can be written in the equivalent form
fl@+h) = f(z)+ Ah+ o([|h]])

The (unique) matrix A satisfying these conditions is called the total derivative
of f at x, and denoted by D f(z) or f(x)



Total Derivatives

First Examples: Consider a function f : R — R*
> Ifd = k = 1then Df(z) = f'(x) coincides with ordinary derivative

> If f(x) = cis constant then D f(z) = 0 is the k x d zero matrix

v

If f(x) = Bxis linearthen Df(x) = B

v

If f(z) = 'V where V € R4*? is symmetric then DF(x) = 22"V

Chain Rule: If f : R? — R is differentiable at z and g : R* — Rl is
differentiable at f(z), then g o f is differentiable at z and

D(go f)(z) = Dg(f(z)) Df(x)



Jacobians

Note that f : R? — R* can be written f = (f1,..., fx) where f; : R = R

Definition: The Jacobian of f at x is the k x d matrix of partial derivatives

@) = | L@y icichi<i<d
J

Fact: Jacobians and Total Derivatives
(a) If fis differentiable at = then J;(z) exists and is equal to D f(z)

(b) If the Jacobian J; exists and is continuous at « then f is differentiable
atz and Jy(z) = Df(x)



Gradients and Hessians

Definition. Let f : R? - R

» The gradient of f at x is the d x 1 vector of partial derivatives

Vi@ = (@ ,%u))t

When derivative D f(x) exists, V f(x) exists and is equal to D f(z)*

» The Hessian of f at x is the d x d matrix of second partial derivatives

o f
axiam]—

Vif(z) = [ (z) :1sm‘§d}

If the second partials are continuous, then V2 f(z) is symmetric



Multivariate Taylor’s Theorem |

Fact: If f : R? — R* has continuous partial derivatives df;/9x; at each point
in R? then for every z, h € R?

fle+h) = fz) + (VI(@),h)
where Z = = + ah for some a € [0, 1]. In particular, we have

fle+h) = f(z) + (VF(@),h) + o(|hl])



Multivariate Taylor’s Theorem Il

Fact: If f : R? — R has continuous second partial derivatives 8° f /9z;0z; at
each point in R? then for every z, h € R?

1
fle+h) = f2) + (Vf(2),h) + Sh'Vf(@)h
where & = = + ah for some « € [0, 1]. In particular, we have

Fla+h) = )+ (VF@),B) + SV f@)h + ol Al)



