Theoretical Statistics, STOR 655 Backgound and Preliminary Material

Andrew Nobel

January 2023

Order, Minima, and Maxima

Multiplication and Addition

Recall: For any numbers a, b

- (1) If $a, b \ge 0$ or $a, b \le 0$ then $ab \ge 0$
- (2) If $a \ge 0$ and $b \le 0$ or vice-versa then $ab \le 0$
- (3) If $a, b \ge 0$ then $a + b \ge 0$
- (4) If $a, b \leq 0$ then $a + b \leq 0$.

Note: (1)-(4) continue to hold if we replace \leq and \geq by < and >, respectively

The Usual Order Relation

Definition: For $a, b \in \mathbb{R}$ write $a \leq b$ if $(b-a) \geq 0$ and a < b if (b-a) > 0

Basic Properties

- 1. If $a \leq b$ and $b \leq a$ then a = b
- 2. If $a \leq b$ then $-b \leq -a$
- 3. If $a \leq b$ and $c \leq d$ then $a + c \leq b + d$
- 4. If $0 \le a \le b$ and $0 \le c \le d$ then $ac \le bd$

Note: (2)-(4) continue to hold if we replace \leq by <

Maxima and Minima of Finite Sequences

Definition: Let $a_1, \ldots, a_n \in \mathbb{R}$

- $\max\{a_1, \ldots, a_n\}$ is any element a_j such that $a_i \leq a_j$ for $i = 1, \ldots, n$
- $\min\{a_1, \ldots, a_n\}$ is any element a_j such that $a_i \ge a_j$ for $i = 1, \ldots, n$

Other Notation

- \blacktriangleright max_{1 \le i \le n} a_i or simply max_i a_i
- \blacktriangleright min_{1 \le i \le n} a_i or simply min_i a_i

Maxima and Minima, cont.

Basic Properties: Let $a_1, \ldots, a_n \in \mathbb{R}$ and $b_1, \ldots, b_n \in \mathbb{R}$ be finite sequences

1. If $a_i \leq b_i$ for each *i*, then $\max_i a_i \leq \max_i b_i$ and $\min_i a_i \leq \min_i b_i$

2.
$$\min_i a_i \leq a_j \leq \max_i a_i$$
 for $j = 1, \ldots, n$

3. $-\min_i a_i = \max_i (-a_i)$ and $-\max_i a_i = \min_i (-a_i)$

4. If $c \ge 0$ and b are constants then $c \max_i a_i + b = \max_i (c a_i + b)$

5.
$$\max_i(a_i + b_i) \leq \max_i a_i + \max_i b_i$$

6. $\min_i(a_i + b_i) \geq \min_i a_i + \min_i b_i$

7.
$$\max_i a_i - \max_i b_i \leq \max_i |a_i - b_i|$$

Suprema and Infima

Definition: Let $A \subseteq \mathbb{R}$ be bounded. Recall that

- sup(A) = least upper bound for A
- $\inf(A) =$ greatest lower bound for A

Existence of \sup and \inf follows from construction of the real numbers.

Basic Properties and Conventions

- 1. If A is not bounded, then $\sup(A) = +\infty$ or $\inf(A) = -\infty$, or both
- 2. By convention $\sup(\emptyset) = -\infty$ and $\inf(\emptyset) = +\infty$
- 3. If $A \subseteq B$ then $\sup(A) \leq \sup(B)$ while $\inf(A) \geq \inf(B)$

Order Relations for Maxima and Minima of Functions

Fact: Let $f, g : \mathcal{X} \to \mathbb{R}$ be functions.

(1)
$$\inf_{x \in \mathcal{X}} f(x) \leq f(x_0) \leq \sup_{x \in \mathcal{X}} f(x)$$
 for every $x_0 \in \mathcal{X}$
(2) $-\sup_{x \in \mathcal{X}} f(x) = \inf_{x \in \mathcal{X}} (-f(x))$
(3) $\sup_{x \in \mathcal{X}} \{f(x) + g(x)\} \leq \sup_{x \in \mathcal{X}} f(x) + \sup_{x \in \mathcal{X}} g(x)$
(4) If $\mathcal{X}_0 \subseteq \mathcal{X}$ then $\sup_{x \in \mathcal{X}_0} f(x) \leq \sup_{x \in \mathcal{X}} f(x)$

Fact: If $h : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is any function

$$\sup_{x \in \mathcal{X}} \inf_{y \in \mathcal{Y}} h(x, y) \leq \inf_{y \in \mathcal{Y}} \sup_{x \in \mathcal{X}} h(x, y)$$

Argmax and Argmin

Definition: The *argmax* of a function $f : \mathcal{X} \to \mathbb{R}$ is the set of points $y \in \mathcal{X}$ where *f* is maximized

$$\begin{aligned} \underset{x \in \mathcal{X}}{\operatorname{argmax}} f(x) &= \left\{ y \in \mathcal{X} : f(y) \ge f(x) \text{ for all } x \in \mathcal{X} \right\} \\ &= \left\{ y \in \mathcal{X} : f(y) = \max_{x \in \mathcal{X}} f(x) \right\} \end{aligned}$$

Similarly, the *argmin* of f is the set of points $y \in \mathcal{X}$ where f is minimized

$$\begin{aligned} \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) &= \left\{ y \in \mathcal{X} : f(y) \le f(x) \text{ for all } x \in \mathcal{X} \right\} \\ &= \left\{ y \in \mathcal{X} : f(y) = \min_{x \in \mathcal{X}} f(x) \right\} \end{aligned}$$

Argmax and Argmin, cont.

Note that $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is a subset of \mathcal{X}

- $\max_{x \in \mathcal{X}} f(x)$ is the maximum value of f(x) if this exists
- $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is the set of arguments x achieving the maximum value
- $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is non-empty iff $\max_{x \in \mathcal{X}} f(x)$ defined

Note that $\operatorname{argmin}_{x \in \mathcal{X}} f(x)$ is a subset of \mathcal{X}

- $\min_{x \in \mathcal{X}} f(x)$ is the minimum value of f(x) if this exists
- $\operatorname{argmin}_{x \in \mathcal{X}} f(x)$ is the set of arguments x achieving the minimum value
- $\operatorname{argmin}_{x \in \mathcal{X}} f(x)$ is non-empty iff $\min_{x \in \mathcal{X}} f(x)$ defined

Matrix Algebra

Inner Product

Definition: The *inner product* of two vectors $u, v \in \mathbb{R}^d$ is given by

$$\langle u, v \rangle = u^t v = \sum_{i=1}^d u_i v_i$$

Basic Properties: Let $u, v, w \in \mathbb{R}^d$ and $a, b \in \mathbb{R}$

1.
$$\langle u, v \rangle = \langle v, u \rangle$$

2. $\langle au, bv \rangle = ab \langle u, v \rangle$
3. $\langle u + w, v \rangle = \langle u, v \rangle + \langle w, v \rangle$

Euclidean Norm

Definition: The *Euclidean norm* of a vector $u \in \mathbb{R}^d$ is

$$||u|| = \langle u, u \rangle^{1/2} = (u_1^2 + \dots + u_d^2)^{1/2}$$

Basic Properties

- 1. $||u|| \ge 0$ with equality if and only if u = 0
- 2. For $a \in \mathbb{R}$, ||a u|| = |a| ||u||

3.
$$||u+v||^2 = ||u||^2 + 2\langle u,v \rangle + ||v||^2$$

4. $|\langle u, v \rangle| = |u^t v| \le ||u|| ||v||$ (Cauchy-Schwarz inequality)

5. $||u + v|| \le ||u|| + ||v||$ (triangle inequality)

6. $|||u|| - ||v||| \le ||u - v||$ (reverse triangle inequality)

Orthogonality and Projections

Definition: Vectors $u, v \in \mathbb{R}^n$ are orthogonal, written $u \perp v$, if $\langle u, v \rangle = 0$

Defn: Let V be a subspace of \mathbb{R}^n . The *projection* of $u \in \mathbb{R}^n$ onto V is the vector $w \in V$ closest to u. Formally,

$$\operatorname{proj}_{V}(u) = \operatorname*{argmin}_{w \in V} ||u - w||$$

Fact: Let $V = \{ \alpha v : \alpha \in \mathbb{R} \}$ be the 1-d subspace generated by $v \in \mathbb{R}^n$

- 1. $\operatorname{proj}_V(u) = \langle u, v \rangle v / ||v||^2$
- **2.** $(u \operatorname{proj}_V(u)) \perp v$

Orthogonal Matrices

Vectors u_1, \ldots, u_n are orthonormal if $\langle u_i, u_j \rangle = \mathbb{I}(i=j)$ for $1 \le i, j \le n$

A matrix $A \in \mathbb{R}^{n \times n}$ is *orthogonal* if $A^t A = I$. If A is orthogonal then

 $\blacktriangleright A^{-1} = A^t$

 $\blacktriangleright A A^t = I$

- the rows and columns of A are orthonormal
- the eigenvalues $\lambda_i(A) \in \{+1, -1\}$

▶
$$det(A) \in \{+1, -1\}$$

Quadratic Forms

Each symmetric matrix $A \in \mathbb{R}^{n \times n}$ has an associated *quadratic form* $q_A : \mathbb{R}^n \to \mathbb{R}$ defined by

$$q_A(u) = u^t A u = \sum_{i=1}^n \sum_{j=1}^n u_i a_{ij} u_j$$

A is non-negative definite $(A \ge 0)$ if $u^t A u \ge 0$ for every u

• A is positive definite (A > 0) if $u^t A u > 0$ for every $u \neq 0$

Fact: Let $A \ n \times n$ be symmetric.

- $A \ge 0$ iff all its eigenvalues are non-negative
- A > 0 iff all its eigenvalues are positive

Trace of a Matrix

Definition: The *trace* of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal elements

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

• tr(A) = sum of eigenvalues of A

$$\blacktriangleright \operatorname{tr}(A) = \operatorname{tr}(A^t)$$

• If B is $n \times n$ then tr(AB) = tr(BA)

Frobenius Norm

Definition: The *Frobenius norm* of a matrix $A \in \mathbb{R}^{m \times n}$ is

$$||A|| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$$

Basic Properties

- $\blacktriangleright ||A||^2 = \operatorname{tr}(A^t A)$
- ||A|| = 0 if and only if A = 0
- $\blacktriangleright ||bA|| = |b| ||A||$
- $\blacktriangleright ||A + B|| \le ||A|| + ||B||$
- $\blacktriangleright ||AB|| \leq ||A|| \, ||B||$

Rank of a Matrix

Definition: Let $A \in \mathbb{R}^{m \times n}$ be an m x n matrix

- row-space of A = span of the rows of A (subspace of \mathbb{R}^n)
- ▶ col-space of A = span of the cols of A (subspace of \mathbb{R}^m)
- row-rank $(A) := \dim \text{ of the row-space of } A \text{ (at most } n)$
- $\operatorname{col-rank}(A) := \operatorname{dim} \operatorname{of} \operatorname{the} \operatorname{col-space} \operatorname{of} A$ (at most m)

Fact: row-rank(A) = col-rank(A)

Definition: The rank of A is the common value of the row and column ranks

Basic Properties of the Rank

• If
$$A \in \mathbb{R}^{m \times n}$$
 then $\operatorname{rank}(A) \le \min\{m, n\}$

▶
$$rank(AB) \le min{rank(A), rank(B)}$$

▶
$$rank(A + B) \le rank(A) + rank(B)$$

▶
$$rank(A) = rank(A^t) = rank(A^tA) = rank(AA^t)$$

A
$$\in \mathbb{R}^{n \times n}$$
 has at most rank(A) non-zero eigenvalues

•
$$A \in \mathbb{R}^{n \times n}$$
 is invertible iff rank $(A) = n$, that is, A is of full rank

Outer Products

Definition: The *outer product* uv^t of vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ is an $m \times n$ matrix with entries

$$(uv^t)_{ij} = u_i v_j$$

- If $u, v \neq 0$ then $\operatorname{rank}(uv^t) = 1$
- $\blacktriangleright ||uv^t|| = ||u|| \, ||v||$
- If m = n then $\operatorname{tr}(uv^t) = \langle u, v \rangle$

The Spectral Theorem

Spectral Theorem: If $A \in \mathbb{R}^{n \times n}$ is symmetric there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A

Corollary: If $A \in \mathbb{R}^{n \times n}$ is symmetric then it can be expressed in the form

 $A = \Gamma D \Gamma^t$

where $\Gamma \in \mathbb{R}^{n \times n}$ is orthogonal and $D = \text{diag}(\lambda_1(A), \dots, \lambda_n(A))$ has the eigenvalues of A on the diagonal, with all other values equal to zero

•
$$A^k = \Gamma D^k \Gamma^t$$
 for $k \ge 1$

• If $A \ge 0$ we may define $A^{\alpha} = \Gamma D^{\alpha} \Gamma^t$ for $\alpha > 0$

Courant Fischer Theorem

Thm: Let $A \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$.

$$\lambda_1(A) = \max_{v \neq 0} \frac{v^t A v}{v^t v} = \max_{v:||v||=1} v^t A v$$

$$\lambda_n(A) = \min_{v \neq 0} \frac{v^t A v}{v^t v} = \min_{v: ||v|| = 1} v^t A v$$

$$\lambda_i(A) = \max_{V:\dim(V)=i} \min_{v \in V, ||v||=1} v^t A v$$

Continuous Functions and Compact Sets

Continuous Functions

Definition: Let $f : \mathbb{R}^d \to \mathbb{R}$ be a function. We say that f is

- 1. *bounded* if there exists $M < \infty$ such that $|f(x)| \le M$ for all x.
- 2. *continuous at* $x \in \mathbb{R}^d$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $||x y|| < \delta$ implies $|f(x) f(y)| < \epsilon$
- 3. *continuous* if it is continuous at every $x \in \mathbb{R}^d$
- 4. *uniformly continuous* if for every $\epsilon > 0$ there exists $\delta > 0$ such that $||x y|| < \delta$ implies $|f(x) f(y)| < \epsilon$

Distinction

- Continuity: δ depends on ϵ and x
- Uniformly continuity: δ depends only on ϵ

Continuous Functions, cont.

Fact: A set $K \subseteq \mathbb{R}^d$ is compact iff it is closed and bounded

Fact: If $K \subseteq \mathbb{R}^d$ is compact and $f : K \to \mathbb{R}$ is continuous, then f is uniformly continuous and bounded on K

Definition: The *support* of a function $f : \mathbb{R}^d \to \mathbb{R}$ is

$$\operatorname{supp}(f) = \overline{\{x: f(x) \neq 0\}}$$

Note: supp(f) is closed by definition, and compact if it is bounded

Continuous Functions, cont.

Definition

- 1. $C_b(\mathbb{R}^d)$ = family of bounded continuous functions $f: \mathbb{R}^d \to \mathbb{R}$
- 2. $C_o(\mathbb{R}^d) =$ family of continuous functions $f : \mathbb{R}^d \to \mathbb{R}$ with compact support

Fact

- 1. Every $f \in C_o(\mathbb{R}^d)$ is uniformly continuous
- **2.** $C_o(\mathbb{R}^d) \subseteq C_b(\mathbb{R}^d)$
- 3. Every $f \in C_b(\mathbb{R}^d)$ is Borel measurable

Multivariate Calculus

Multivariate Differentiation: Total Derivative

Definition: A function $f : \mathbb{R}^d \to \mathbb{R}^k$ is *differentiable* at $x \in \mathbb{R}^d$ if there exists a matrix $A \in \mathbb{R}^{k \times d}$ such that

$$\lim_{h \to 0} \frac{||f(x+h) - f(x) - Ah||}{||h||} = 0$$

which can be written in the equivalent form

$$f(x+h) = f(x) + Ah + o(||h||)$$

The (unique) matrix A satisfying these conditions is called the *total derivative* of f at x, and denoted by Df(x) or $\dot{f}(x)$

Total Derivatives

First Examples: Consider a function $f : \mathbb{R}^d \to \mathbb{R}^k$

- ▶ If d = k = 1 then Df(x) = f'(x) coincides with ordinary derivative
- If f(x) = c is constant then Df(x) = 0 is the $k \times d$ zero matrix

• If
$$f(x) = Bx$$
 is linear then $Df(x) = B$

▶ If
$$f(x) = x^t V x$$
 where $V \in \mathbb{R}^{d \times d}$ is symmetric then $DF(x) = 2x^t V$

Chain Rule: If $f : \mathbb{R}^d \to \mathbb{R}^k$ is differentiable at x and $g : \mathbb{R}^k \to \mathbb{R}^l$ is differentiable at f(x), then $g \circ f$ is differentiable at x and

$$D(g \circ f)(x) = Dg(f(x)) Df(x)$$

Jacobians

Note that $f : \mathbb{R}^d \to \mathbb{R}^k$ can be written $f = (f_1, \dots, f_k)$ where $f_i : \mathbb{R}^d \to \mathbb{R}$

Definition: The *Jacobian* of f at x is the $k \times d$ matrix of partial derivatives

$$J_f(x) = \left[\frac{\partial f_i}{\partial x_j}(x) : 1 \le i \le k, 1 \le j \le d\right]$$

Fact: Jacobians and Total Derivatives

- (a) If f is differentiable at x then $J_f(x)$ exists and is equal to Df(x)
- (b) If the Jacobian J_f exists and is continuous at x then f is differentiable at x and J_f(x) = Df(x)

Gradients and Hessians

Definition. Let $f : \mathbb{R}^d \to \mathbb{R}$

The gradient of f at x is the $d \times 1$ vector of partial derivatives

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \cdots, \frac{\partial f}{\partial x_d}(x)\right)^{t}$$

When derivative Df(x) exists, $\nabla f(x)$ exists and is equal to $Df(x)^t$

The *Hessian* of f at x is the $d \times d$ matrix of second partial derivatives

$$abla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x) : 1 \le i, j \le d \right]$$

If the second partials are continuous, then $\nabla^2 f(x)$ is symmetric

Fact: If $f : \mathbb{R}^d \to \mathbb{R}^k$ has continuous partial derivatives $\partial f_i / \partial x_j$ at each point in \mathbb{R}^d then for every $x, h \in \mathbb{R}^d$

$$f(x+h) = f(x) + \langle \nabla f(\tilde{x}), h \rangle$$

where $\tilde{x} = x + \alpha h$ for some $\alpha \in [0, 1]$. In particular, we have

$$f(x+h) = f(x) + \langle \nabla f(\tilde{x}), h \rangle + o(||h||)$$

Multivariate Taylor's Theorem II

Fact: If $f : \mathbb{R}^d \to \mathbb{R}$ has continuous second partial derivatives $\partial^2 f / \partial x_i \partial x_j$ at each point in \mathbb{R}^d then for every $x, h \in \mathbb{R}^d$

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2}h^t \nabla^2 f(\tilde{x})h$$

where $\tilde{x} = x + \alpha h$ for some $\alpha \in [0, 1]$. In particular, we have

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2}h^t \nabla^2 f(x)h + o(||h||^2)$$