Theoretical Statistics, STOR 655

Backgound and Preliminary Material

Andrew Nobel

January 2023

Order, Minima, and Maxima

Multiplication and Addition

Recall: For any numbers a, b
(1) If $a, b \geq 0$ or $a, b \leq 0$ then $a b \geq 0$
(2) If $a \geq 0$ and $b \leq 0$ or vice-versa then $a b \leq 0$
(3) If $a, b \geq 0$ then $a+b \geq 0$
(4) If $a, b \leq 0$ then $a+b \leq 0$.

Note: (1)-(4) continue to hold if we replace \leq and \geq by $<$ and $>$, respectively

The Usual Order Relation

Definition: For $a, b \in \mathbb{R}$ write $a \leq b$ if $(b-a) \geq 0$ and $a<b$ if $(b-a)>0$

Basic Properties

1. If $a \leq b$ and $b \leq a$ then $a=b$
2. If $a \leq b$ then $-b \leq-a$
3. If $a \leq b$ and $c \leq d$ then $a+c \leq b+d$
4. If $0 \leq a \leq b$ and $0 \leq c \leq d$ then $a c \leq b d$

Note: (2)-(4) continue to hold if we replace \leq by $<$

Maxima and Minima of Finite Sequences

Definition: Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$
$\checkmark \max \left\{a_{1}, \ldots, a_{n}\right\}$ is any element a_{j} such that $a_{i} \leq a_{j}$ for $i=1, \ldots, n$
$-\min \left\{a_{1}, \ldots, a_{n}\right\}$ is any element a_{j} such that $a_{i} \geq a_{j}$ for $i=1, \ldots, n$

Other Notation

$-\max _{1 \leq i \leq n} a_{i}$ or simply $\max _{i} a_{i}$
$-\min _{1 \leq i \leq n} a_{i}$ or simply $\min _{i} a_{i}$

Maxima and Minima, cont.

Basic Properties: Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $b_{1}, \ldots, b_{n} \in \mathbb{R}$ be finite sequences

1. If $a_{i} \leq b_{i}$ for each i, then $\max _{i} a_{i} \leq \max _{i} b_{i}$ and $\min _{i} a_{i} \leq \min _{i} b_{i}$
2. $\min _{i} a_{i} \leq a_{j} \leq \max _{i} a_{i}$ for $j=1, \ldots, n$
3. $-\min _{i} a_{i}=\max _{i}\left(-a_{i}\right)$ and $-\max _{i} a_{i}=\min _{i}\left(-a_{i}\right)$
4. If $c \geq 0$ and b are constants then $c \max _{i} a_{i}+b=\max _{i}\left(c a_{i}+b\right)$
5. $\max _{i}\left(a_{i}+b_{i}\right) \leq \max _{i} a_{i}+\max _{i} b_{i}$
6. $\min _{i}\left(a_{i}+b_{i}\right) \geq \min _{i} a_{i}+\min _{i} b_{i}$
7. $\max _{i} a_{i}-\max _{i} b_{i} \leq \max _{i}\left|a_{i}-b_{i}\right|$

Suprema and Infima

Definition: Let $A \subseteq \mathbb{R}$ be bounded. Recall that

- $\sup (A)=$ least upper bound for A
- $\inf (A)=$ greatest lower bound for A

Existence of sup and inf follows from construction of the real numbers.

Basic Properties and Conventions

1. If A is not bounded, then $\sup (A)=+\infty$ or $\inf (A)=-\infty$, or both
2. By convention $\sup (\emptyset)=-\infty$ and $\inf (\emptyset)=+\infty$
3. If $A \subseteq B$ then $\sup (A) \leq \sup (B)$ while $\inf (A) \geq \inf (B)$

Order Relations for Maxima and Minima of Functions

Fact: Let $f, g: \mathcal{X} \rightarrow \mathbb{R}$ be functions.
(1) $\inf _{x \in \mathcal{X}} f(x) \leq f\left(x_{0}\right) \leq \sup _{x \in \mathcal{X}} f(x)$ for every $x_{0} \in \mathcal{X}$
(2) $-\sup _{x \in \mathcal{X}} f(x)=\inf _{x \in \mathcal{X}}(-f(x))$
(3) $\sup _{x \in \mathcal{X}}\{f(x)+g(x)\} \leq \sup _{x \in \mathcal{X}} f(x)+\sup _{x \in \mathcal{X}} g(x)$
(4) If $\mathcal{X}_{0} \subseteq \mathcal{X}$ then $\sup _{x \in \mathcal{X}_{0}} f(x) \leq \sup _{x \in \mathcal{X}} f(x)$

Fact: If $h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ is any function

$$
\sup _{x \in \mathcal{X}} \inf _{y \in \mathcal{Y}} h(x, y) \leq \inf _{y \in \mathcal{Y}} \sup _{x \in \mathcal{X}} h(x, y)
$$

Argmax and Argmin

Definition: The argmax of a function $f: \mathcal{X} \rightarrow \mathbb{R}$ is the set of points $y \in \mathcal{X}$ where f is maximized

$$
\begin{aligned}
\underset{x \in \mathcal{X}}{\operatorname{argmax}} f(x) & =\{y \in \mathcal{X}: f(y) \geq f(x) \text { for all } x \in \mathcal{X}\} \\
& =\left\{y \in \mathcal{X}: f(y)=\max _{x \in \mathcal{X}} f(x)\right\}
\end{aligned}
$$

Similarly, the argmin of f is the set of points $y \in \mathcal{X}$ where f is minimized

$$
\begin{aligned}
\underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) & =\{y \in \mathcal{X}: f(y) \leq f(x) \text { for all } x \in \mathcal{X}\} \\
& =\left\{y \in \mathcal{X}: f(y)=\min _{x \in \mathcal{X}} f(x)\right\}
\end{aligned}
$$

Argmax and Argmin, cont.

Note that $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is a subset of \mathcal{X}

- $\max _{x \in \mathcal{X}} f(x)$ is the maximum value of $f(x)$ if this exists
- $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is the set of arguments x achieving the maximum value
- $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is non-empty iff $\max _{x \in \mathcal{X}} f(x)$ defined

Note that $\operatorname{argmin}_{x \in \mathcal{X}} f(x)$ is a subset of \mathcal{X}

- $\min _{x \in \mathcal{X}} f(x)$ is the minimum value of $f(x)$ if this exists
$-\operatorname{argmin}_{x \in \mathcal{X}} f(x)$ is the set of arguments x achieving the minimum value
$-\operatorname{argmin}_{x \in \mathcal{X}} f(x)$ is non-empty iff $\min _{x \in \mathcal{X}} f(x)$ defined

Matrix Algebra

Inner Product

Definition: The inner product of two vectors $u, v \in \mathbb{R}^{d}$ is given by

$$
\langle u, v\rangle=u^{t} v=\sum_{i=1}^{d} u_{i} v_{i}
$$

Basic Properties: Let $u, v, w \in \mathbb{R}^{d}$ and $a, b \in \mathbb{R}$

1. $\langle u, v\rangle=\langle v, u\rangle$
2. $\langle a u, b v\rangle=a b\langle u, v\rangle$
3. $\langle u+w, v\rangle=\langle u, v\rangle+\langle w, v\rangle$

Euclidean Norm

Definition: The Euclidean norm of a vector $u \in \mathbb{R}^{d}$ is

$$
\|u\|=\langle u, u\rangle^{1 / 2}=\left(u_{1}^{2}+\cdots+u_{d}^{2}\right)^{1 / 2}
$$

Basic Properties

1. $\|u\| \geq 0$ with equality if and only if $u=0$
2. For $a \in \mathbb{R},\|a u\|=|a| \| u| |$
3. $\|u+v\|^{2}=\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2}$
4. $|\langle u, v\rangle|=\left|u^{t} v\right| \leq\|u\|\|v\|$ (Cauchy-Schwarz inequality)
5. $\|u+v\| \leq\|u\|+\|v\|$ (triangle inequality)
6. $|\|u\|-\|v\|| \leq\|u-v\|$ (reverse triangle inequality)

Orthogonality and Projections

Definition: Vectors $u, v \in \mathbb{R}^{n}$ are orthogonal, written $u \perp v$, if $\langle u, v\rangle=0$

Defn: Let V be a subspace of \mathbb{R}^{n}. The projection of $u \in \mathbb{R}^{n}$ onto V is the vector $w \in V$ closest to u. Formally,

$$
\operatorname{proj}_{V}(u)=\underset{w \in V}{\operatorname{argmin}}\|u-w\|
$$

Fact: Let $V=\{\alpha v: \alpha \in \mathbb{R}\}$ be the 1-d subspace generated by $v \in \mathbb{R}^{n}$

1. $\operatorname{proj}_{V}(u)=\langle u, v\rangle v /\|v\|^{2}$
2. $\left(u-\operatorname{proj}_{V}(u)\right) \perp v$

Orthogonal Matrices

Vectors u_{1}, \ldots, u_{n} are orthonormal if $\left\langle u_{i}, u_{j}\right\rangle=\mathbb{I}(i=j)$ for $1 \leq i, j \leq n$

A matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^{t} A=I$. If A is orthogonal then

- $A^{-1}=A^{t}$
- $A A^{t}=I$
- the rows and columns of A are orthonormal
- the eigenvalues $\lambda_{i}(A) \in\{+1,-1\}$
- $\operatorname{det}(A) \in\{+1,-1\}$

Quadratic Forms

Each symmetric matrix $A \in \mathbb{R}^{n \times n}$ has an associated quadratic form $q_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
q_{A}(u)=u^{t} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} a_{i j} u_{j}
$$

- A is non-negative definite $(A \geq 0)$ if $u^{t} A u \geq 0$ for every u
- A is positive definite $(A>0)$ if $u^{t} A u>0$ for every $u \neq 0$

Fact: Let $A n \times n$ be symmetric.

- $A \geq 0$ iff all its eigenvalues are non-negative
- $A>0$ iff all its eigenvalues are positive

Trace of a Matrix

Definition: The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal elements

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

- $\operatorname{tr}(A)=$ sum of eigenvalues of A
- $\operatorname{tr}(A)=\operatorname{tr}\left(A^{t}\right)$
- If B is $n \times n$ then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Frobenius Norm

Definition: The Frobenius norm of a matrix $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}
$$

Basic Properties

- $\|A\|^{2}=\operatorname{tr}\left(A^{t} A\right)$
- $\|A\|=0$ if and only if $A=0$
- $\|b A\|=|b|| | A| |$
- $\|A+B\| \leq\|A\|+\|B\|$
- $\|A B\| \leq\|A\|\|B\|$

Rank of a Matrix

Definition: Let $A \in \mathbb{R}^{m \times n}$ be an $\mathrm{m} \times \mathrm{n}$ matrix

- row-space of $A=$ span of the rows of A (subspace of \mathbb{R}^{n})
- col-space of $A=$ span of the cols of A (subspace of \mathbb{R}^{m})
- $\operatorname{row}-\operatorname{rank}(A):=\operatorname{dim}$ of the row-space of A (at most n)
- $\operatorname{col}-\operatorname{rank}(A):=\operatorname{dim}$ of the col-space of $A($ at most $m)$

Fact: $\operatorname{row}-\operatorname{rank}(A)=\operatorname{col}-\operatorname{rank}(A)$

Definition: The rank of A is the common value of the row and column ranks

Basic Properties of the Rank

- If $A \in \mathbb{R}^{m \times n}$ then $\operatorname{rank}(A) \leq \min \{m, n\}$
- $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$
- $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)=\operatorname{rank}\left(A^{t} A\right)=\operatorname{rank}\left(A A^{t}\right)$
- $A \in \mathbb{R}^{n \times n}$ has at most $\operatorname{rank}(A)$ non-zero eigenvalues
- $A \in \mathbb{R}^{n \times n}$ is invertible iff $\operatorname{rank}(A)=n$, that is, A is of full rank

Outer Products

Definition: The outer product $u v^{t}$ of vectors $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ is an $m \times n$ matrix with entries

$$
\left(u v^{t}\right)_{i j}=u_{i} v_{j}
$$

- If $u, v \neq 0$ then $\operatorname{rank}\left(u v^{t}\right)=1$
- $\left\|u v^{t}\right\|=\|u\|\|v\|$
- If $m=n$ then $\operatorname{tr}\left(u v^{t}\right)=\langle u, v\rangle$

The Spectral Theorem

Spectral Theorem: If $A \in \mathbb{R}^{n \times n}$ is symmetric there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of A

Corollary: If $A \in \mathbb{R}^{n \times n}$ is symmetric then it can be expressed in the form

$$
A=\Gamma D \Gamma^{t}
$$

where $\Gamma \in \mathbb{R}^{n \times n}$ is orthogonal and $D=\operatorname{diag}\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right)$ has the eigenvalues of A on the diagonal, with all other values equal to zero

- $A^{k}=\Gamma D^{k} \Gamma^{t}$ for $k \geq 1$
- If $A \geq 0$ we may define $A^{\alpha}=\Gamma D^{\alpha} \Gamma^{t}$ for $\alpha>0$

Courant Fischer Theorem

Thm: Let $A \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$.

$$
\begin{aligned}
& \lambda_{1}(A)=\max _{v \neq 0} \frac{v^{t} A v}{v^{t} v}=\max _{v:\|v\|=1} v^{t} A v \\
& \lambda_{n}(A)=\min _{v \neq 0} \frac{v^{t} A v}{v^{t} v}=\min _{v:\|v\|=1} v^{t} A v \\
& \lambda_{i}(A)=\max _{V: \operatorname{dim}(V)=i} \min _{v \in V,\|v\|=1} v^{t} A v
\end{aligned}
$$

Continuous Functions and Compact Sets

Continuous Functions

Definition: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function. We say that f is

1. bounded if there exists $M<\infty$ such that $|f(x)| \leq M$ for all x.
2. continuous at $x \in \mathbb{R}^{d}$ if for every $\epsilon>0$ there exists $\delta>0$ such that $\|x-y\|<\delta$ implies $|f(x)-f(y)|<\epsilon$
3. continuous if it is continuous at every $x \in \mathbb{R}^{d}$
4. uniformly continuous if for every $\epsilon>0$ there exists $\delta>0$ such that $\|x-y\|<\delta$ implies $|f(x)-f(y)|<\epsilon$

Distinction

- Continuity: δ depends on ϵ and x
- Uniformly continuity: δ depends only on ϵ

Continuous Functions, cont.

Fact: A set $K \subseteq \mathbb{R}^{d}$ is compact iff it is closed and bounded

Fact: If $K \subseteq \mathbb{R}^{d}$ is compact and $f: K \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous and bounded on K

Definition: The support of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is

$$
\operatorname{supp}(f)=\overline{\{x: f(x) \neq 0\}}
$$

Note: $\operatorname{supp}(f)$ is closed by definition, and compact if it is bounded

Continuous Functions, cont.

Definition

1. $C_{b}\left(\mathbb{R}^{d}\right)=$ family of bounded continuous functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
2. $C_{o}\left(\mathbb{R}^{d}\right)=$ family of continuous functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with compact support

Fact

1. Every $f \in C_{o}\left(\mathbb{R}^{d}\right)$ is uniformly continuous
2. $C_{o}\left(\mathbb{R}^{d}\right) \subseteq C_{b}\left(\mathbb{R}^{d}\right)$
3. Every $f \in C_{b}\left(\mathbb{R}^{d}\right)$ is Borel measurable

Multivariate Calculus

Multivariate Differentiation: Total Derivative

Definition: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is differentiable at $x \in \mathbb{R}^{d}$ if there exists a matrix $A \in \mathbb{R}^{k \times d}$ such that

$$
\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(x)-A h\|}{\|h\|}=0
$$

which can be written in the equivalent form

$$
f(x+h)=f(x)+A h+o(\|h\|)
$$

The (unique) matrix A satisfying these conditions is called the total derivative of f at x , and denoted by $D f(x)$ or $\dot{f}(x)$

Total Derivatives

First Examples: Consider a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$

- If $d=k=1$ then $D f(x)=f^{\prime}(x)$ coincides with ordinary derivative
- If $f(x)=c$ is constant then $D f(x)=\mathbf{0}$ is the $k \times d$ zero matrix
- If $f(x)=B x$ is linear then $D f(x)=B$
- If $f(x)=x^{t} V x$ where $V \in \mathbb{R}^{d \times d}$ is symmetric then $D F(x)=2 x^{t} V$

Chain Rule: If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is differentiable at x and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{l}$ is differentiable at $f(x)$, then $g \circ f$ is differentiable at x and

$$
D(g \circ f)(x)=D g(f(x)) D f(x)
$$

Jacobians

Note that $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ can be written $f=\left(f_{1}, \ldots, f_{k}\right)$ where $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$

Definition: The Jacobian of f at x is the $k \times d$ matrix of partial derivatives

$$
J_{f}(x)=\left[\frac{\partial f_{i}}{\partial x_{j}}(x): 1 \leq i \leq k, 1 \leq j \leq d\right]
$$

Fact: Jacobians and Total Derivatives
(a) If f is differentiable at x then $J_{f}(x)$ exists and is equal to $D f(x)$
(b) If the Jacobian J_{f} exists and is continuous at x then f is differentiable at x and $J_{f}(x)=D f(x)$

Gradients and Hessians

Definition. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

- The gradient of f at x is the $d \times 1$ vector of partial derivatives

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \cdots, \frac{\partial f}{\partial x_{d}}(x)\right)^{t}
$$

When derivative $D f(x)$ exists, $\nabla f(x)$ exists and is equal to $D f(x)^{t}$

- The Hessian of f at x is the $d \times d$ matrix of second partial derivatives

$$
\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x): 1 \leq i, j \leq d\right]
$$

If the second partials are continuous, then $\nabla^{2} f(x)$ is symmetric

Multivariate Taylor's Theorem I

Fact: If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ has continuous partial derivatives $\partial f_{i} / \partial x_{j}$ at each point in \mathbb{R}^{d} then for every $x, h \in \mathbb{R}^{d}$

$$
f(x+h)=f(x)+\langle\nabla f(\tilde{x}), h\rangle
$$

where $\tilde{x}=x+\alpha h$ for some $\alpha \in[0,1]$. In particular, we have

$$
f(x+h)=f(x)+\langle\nabla f(\tilde{x}), h\rangle+o(\|h\|)
$$

Multivariate Taylor's Theorem II

Fact: If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ has continuous second partial derivatives $\partial^{2} f / \partial x_{i} \partial x_{j}$ at each point in \mathbb{R}^{d} then for every $x, h \in \mathbb{R}^{d}$

$$
f(x+h)=f(x)+\langle\nabla f(x), h\rangle+\frac{1}{2} h^{t} \nabla^{2} f(\tilde{x}) h
$$

where $\tilde{x}=x+\alpha h$ for some $\alpha \in[0,1]$. In particular, we have

$$
f(x+h)=f(x)+\langle\nabla f(x), h\rangle+\frac{1}{2} h^{t} \nabla^{2} f(x) h+o\left(\|h\|^{2}\right)
$$

