
STOR 565 Homework

A. Calculus and Elementary Inequalities

1. By graphing the functions f(x) = 1+x and g(x) = ex, argue informally that 1+x ≤ ex for

every number x, and find one value of x where equality holds. Deduce from this inequality

that log y ≤ y − 1 for every y > 0.

2. Let x = x1, . . . , xn be a univariate sample of n numbers. It is a standard, and important,

fact that the quantity h(a) =
∑

(xi−a)2 is minimized when (and only when) a is the sample

mean m(x) = n−1
∑n

i=1 xi. Here we show this in two different ways.

a. Take a derivative of h to find the number a that minimizes or maximizes the function

h, and then take another derivative to show that the number you found minimizes the

function.

b. Consider the expression for h. Add and subtract m(x) inside the parentheses, expand

the square, and take the sum of these terms. Note that one of the sums is zero, and one

of the terms does not depend on a. Use this to show that the sample mean minimizes

h(a).

c. Use what you’ve shown above to find the following

argmin
a∈R

1

n

n∑
i=1

(xi − a)2 and min
a∈R

1

n

n∑
i=1

(xi − a)2

3. (Inequalities from Calculus) Use calculus to establish the following inequalities.

a. (1 + u/3)3 ≥ 1 + u for every u ≥ 0

b. x+ x−1 ≥ 2 for x ≥ 1

4. Inequalities for log(1 + x) and log(1− x) from Taylor’s theorem.

a. Expand the function h(v) = log v in a third order Taylor series around the point v = 1.

(Thus you will be expressing h(1 + x) in terms of x, h(1), h
′
(1), h

′′
(1), and h

′′′
(u) for

some u between 1 and 1 + x. Note that x may be negative.)

b. By examining the final term in the series, show that log(1 + x) ≥ x− x2/2 for x ≥ 0.
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c. By examining the final term in the series, show that log(1 − x) ≤ −x − x2/2 for

0 ≤ x < 1.

5. Let h(u) = (1 + u) log(1 + u) − u. (This function appears in Bennett’s exponential

inequality for sums of independent, bounded random variables.)

a. By considering the first few terms of the Taylor expansion of h(·) around zero, show

that for every u ≥ 0

h(u) ≥ u2

2 + 2u

b. (Optional) Use calculus to establish the stronger bound that for every u ≥ 0

h(u) ≥ u2

2 + 2u/3

6. Show that xy ≤ 3x2 + y2/3 for x, y ≥ 0.

7. Show that |ea − eb| ≤ eb e|a−b| |a− b|.

8. Let a1, . . . , an be real numbers. Show that n−1
∑n

k=1 |ak| ≤ (n−1
∑n

k=1 a
2
k)

1/2.

9. Let a1, . . . , an and b1, . . . , bn be numbers in the interval [−1, 1]. Establish the inequality

|a1 · · · an − b1 · · · bn| ≤
n∑
i=1

|ai − bi|

Hint: Use induction and the fact that a1a2 − b1b2 = (a1 − b1)a2 + b1(a2 − b2).

10. Show that for each number u ∈ R we have

min(u, 1− u) = u I(u < 1/2) + (1− u) I(u ≥ 1/2)

Hint: Consider separately the cases u < 1/2 and u ≥ 1/2.

11. Find the gradient and Hessian of the function f : R2 → R defined by

f(x) = x21x2 + 3x1 − 5x2 + 1

12. Let f : Rd → R be defined by f(x) = xtAx where A ∈ Rd×d is symmetric.
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a. Show that the gradient of f is given by ∇f(x) = 2Ax.

b. Show that the Hessian of f is given by ∇2f(x) = 2A.

13. Use calculus to show that for u ∈ (0, 1)

u2

2(1− u)
≥ − log(1− u)− u
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B. Linear Algebra and Matrices

1. Let 〈u,v〉 = utv =
∑d

i=1 ui vi be the usual inner product in Rd. Recall that the norm

of a vector u ∈ Rd is defined by ||u|| = 〈u,u〉1/2. Use this definition, and the definition of

vector sums and scalar multiplication to establish the following.

a. Show that 〈u,v〉 = 〈v,u〉

b. Show that 〈au, bv〉 = ab 〈u,v〉

c. Show that 〈u + w,v〉 = 〈u,v〉+ 〈w,v〉

d. Show that ||u|| = 0 if and only if u = 0.

e. Use the definition of the norm to show that ||u + v||2 = ||u||2 + 2〈u,v〉+ ||v||2.

f. Use this equation and the Cauchy Schwarz inequality to establish the triangle inequal-

ity for the vector norm, namely ||u + v|| ≤ ||u||+ ||v||.

g. The standard Euclidean distance between two vectors u,v ∈ Rd is defined by d(u,v) =

||u−v||. Establish that d(u,v) ≤ d(u,w)+d(w,v) for any vectors u,v, z ∈ Rd. Draw

a picture illustrating this result.

2. Let X ∈ Rn×p be the data matrix associated with n samples x1, . . . ,xn ∈ Rp such that∑n
i=1 xi = 0. Answer the following. You may use arguments from class, but clearly explain

your work.

a. Define the sample covariance matrix S in terms of X. What are the dimensions of S?

b. Show that S = n−1
∑n

i=1 xix
t
i

c. Show that S is symmetric and non-negative definite

d. Let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 be the eigenvalues of S. Show that
∑p

k=1 λk = n−1||X||2

e. Show that if p > n then rank(S) < p and S is not invertible. Hint: recall that

rank(S) = rank(XtX) = rank(X) ≤ min(n, p).

f. For any vector v ∈ Rp we have n−1
∑n

i=1〈xi,v〉2 = vtSv.

3. Let u = (u1, . . . , ud)
t be a vector in Rd.

a. Show that ||u|| ≤ |u1|+ · · ·+ |ud|. Hint: use the fact that for a, b ≥ 0 one has a ≤ b if

and only if a2 ≤ b2. Give an examples with d = 2 where the bound holds with equality,

and where one has strict inequality.
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b. Use the Cauchy-Schwarz inequality to get the upper bound |u1|+ · · ·+ |ud| ≤ ||u|| d1/2.

Find an example where the bound holds with equality.

4. Let a1, . . . , an be positive numbers. Use the Cauchy-Schwartz inequality for inner prod-

ucts to show that n2 ≤ (
∑n

k=1 ak)(
∑n

k=1 a
−1
k ). Hint: Begin with the identity 1 = a

1/2
k a

−1/2
k

which holds for k = 1, . . . , n.

5. (Norms of outer products) Let u ∈ Rk and v ∈ Rl be vectors. Find an expression relating

the Frobenius norm of the outer product ||uvt|| to the Euclidean norms of the vectors ||u||

and ||v||.

6. Show that if v1,v2 are eigenvectors of a symmetric matrix A with different eigenvalues,

then v1,v2 are orthogonal. Hint: Begin by taking transposes to show that vt1Av2 and

vt2Av1 are equal; then use the definition of an eigenvector and simplify.

7. Recall that the Frobenius norm of a matrix A ∈ Rm×n is given by ||A|| =
√∑m

i=1

∑n
j=1 a

2
ij ,

the square root of the sum of the squares of the entries of the matrix. Establish the following

properties of the Frobenius norm for matrices.

(a) ||A|| = 0 if and only if A = 0

(b) ||bA|| = |b| ||A||

(c) ||A||2 =
∑m

i=1 ||ai·||2 =
∑n

j=1 ||a·j ||2. Here ai· denotes the ith row of A, and a·j denotes

the jth column of A.

(d) ||AB|| ≤ ||A|| ||B||. Hint: Use Cauchy-Schwarz.

8. Recall that the trace of an n× n matrix A = {aij} is the sum of its diagonal elements,

that is tr(A) =
∑n

i=1 aii.

a. Show that tr(A) = tr(At).

b. Let A be an n× p matrix, and let B be a p× n matrix. Note that if n 6= p then AB

and BA are square matrices with different dimensions. Nevertheless, use the fact that

(AB)ii =
∑p

j=1 aij bji to establish the important identity tr(AB) = tr(BA).

5



c. By applying the identity above multiple times, show that if A, B, and C are square

matrices of the same dimension then

tr(ABC) = tr(BCA) = tr(CAB)

Show that if A, B, and C are symmetric then, in addition, we have tr(ABC) =

tr(ACB). Note that this equality is not true in general.

d. Suppose that B = {bij} is an m× n matrix. By considering (BtB)ii, show that

tr(BtB) =

m∑
i=1

n∑
j=1

b2ij

which is the square of the Frobenius norm ||B||2 of B.

9. Suppose that v1, . . . ,vk are orthogonal vectors in Rn. Show that ||
∑k

i=1 vi||2 =
∑k

i=1 ||vi||2.

Interpret this in terms of the Pythagorean formula relating the length of the hypotenuse of

a right triangle to the lengths of the other edges.

10. Let A and B be invertible n× n matrices. Argue that (AB)−1 = B−1A−1.

11. Let A be an n×n matrix. Show that if A has rank n then Ax = 0 if and only if x = 0.

Hint: If A has rank n then its columns are linearly independent.

12. Let A ∈ Rd×d be symmetric. The spectral theorem tells us that there is an orthonormal

basis v1, . . . , vd for Rd such that each vi is an eigenvector of A.

a. Show that the d× d matrix Γ = [v1, . . . , vd] is orthogonal, that is ΓtΓ = Id. Note that

this implies ΓΓt = Id, though you do not need to show this.

b. Let D = diag(λ1, . . . , λd) be the d × d diagonal matrix with Dii equal to the ith

eigenvalue of A and all other entries equal to zero. Show that AΓ = ΓD.

c. Conclude from the expression above that A can be written in the form A = ΓDΓt

13. Recall that any symmetric matrix A ∈ Rd×d can be written in the form A = ΓDΓt,

where Γ ∈ Rd×d is an orthogonal matrix and D = diag(λ1, . . . , λd) is a diagonal matrix

with Dii equal to the ith eigenvalue of A and all other entries equal to zero. Suppose that

A is non-negative definite, so that each λi ≥ 0. Define A1/2 = ΓD1/2Γt where D1/2 =

diag(λ
1/2
1 , . . . , λ

1/2
d ). Show that A1/2 is symmetric and satisfies A1/2A1/2 = A.

6



14. Let A,B ∈ Rm×n be a matrices.

a. Show that A = B iff Ax = Bx for all x ∈ Rn.

b. Let v1, . . . , vn be a basis for Rn. Show that if Avi = Bvi for 1 ≤ i ≤ n then Ax = Bx

for all x ∈ Rn.

15. (Non-negative definite matrices) Recall that a symmetric matrix A ∈ Rd×d is non-

negative definite (written A ≥ 0) if utAu ≥ 0 for every vector u ∈ Rd, and is positive

definite (written A > 0) if utAu > 0 for every non-zero vector u ∈ Rd.

a. Show that if a matrix A ≥ 0 then its diagonal entries are non-negative. Hint: Let u

be a standard basis vector having one component equal to 1 and all other components

equal to 0.

b. Show that if A ≥ 0 then all its eigenvalues are non-negative.

c. It is tempting to think that if A ≥ 0 then all its entries are non-negative, but this is

not the case. Consider the matrix

A =

 1 −1

−1 1


Show that A is non-negative definite, but not positive definite. What is the rank of

A?

d. Modify the (1, 1) entry of A to produce a positive definite matrix B. What is the rank

of B?

16. Let UDVt be the singular value decomposition of an m × n matrix A with rank r,

where U, D, and V are as given in class. Describe the matrices U, D, and V in detail (you

may repeat what is in the notes), and establish the identity A =
∑r

i=1 σi(A)uiv
t
i. Here ui

and vi are the ith columns of U and V, respectively.

17. More on the SVD. Let A be an m× n matrix with real valued entries.

a. Show that a number λ is a non-zero eigenvalue of AAt if and only if it is a non-zero

eigenvalue of AtA.
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b. Let A =
∑r

j=1 σj(A)uj v
t
j be the SVD expansion of A. Show that for each 1 ≤ d ≤ r

we have ∥∥∥∥∥∥
d∑
j=1

σj(A)uj v
t
j

∥∥∥∥∥∥
F

=

d∑
j=1

σj(A)2

Hint: It may be helpful to use the identity ‖B‖F = tr(BtB)

18. Define hyperplanes Hi = {x : xtui = ci} for 1 ≤ i ≤ m where u1, . . . , um ∈ Rn

are linearly independent, and c1, . . . , cm ∈ R. What can you say about the intersection

∩mi=1Hi? Hint: Consider the linear equation Ux = c where U has rows ut1, . . . , u
t
m and

c = (c1, . . . , cm)t.

19. Let u, v ∈ Rd. Show that the set H = {x : ||x − u|| = ||x − v||} of points equidistant

from u and v is a hyperplane. In particular, find a direction vector w and offset b such that

H = {x : xtw = b}. (Hint: square each norm in the definition of H and simplify.) Show

that H is orthogonal to the line connecting u and v, and note that u and v are equally far

from H. Thus, H is the perpendicular bisector of line connecting u and v.

20. Let u1 = (−1, 2, 0)t and u2 = (2, 4, 3)t. Find the projections of u1 and u2 onto v where:

a. v = (0, 1, 0)t

b. v = (1, 1, 1)t

c. v = (1, 0,−1)t

21. Let v1,v2 ∈ Rd be orthonormal vectors with span V = {αv1 + βv2 : α, β ∈ R}. For

u ∈ Rd define the projection of u onto V to be the vector v ∈ V that is closest to u,

projV (u) = argmin
v∈V

||u− v||.

Show that projV (u) = 〈u,v1〉v1 + 〈u,v2〉v2. Hint: Adapt the argument used in class for

the projection onto a one-dimensional subspace.

22. Measuring the variability of a set of vectors. Let x1, . . . ,xn ∈ Rp be a sample of

n p-dimensional vectors. We can measure the extent to which a vector u ∈ Rp acts as

representative for the sample through the sum of squares

S(u) :=
n∑
i=1

||xi − u||2.
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a. Show that S(u) is minimized when u is equal to the centroid

x =
1

n

n∑
i=1

xi.

If the general case seems difficult, consider first the case when p = 1.

Consider the two variance-type quantities

V1 =
1

n

n∑
i=1

||xi − x||2 and V2 =
1

2n2

n∑
i=1

n∑
j=1

||xi − xj ||2.

Note that V1 and V2 are non-negative.

b. Carefully describe V1 and V2 in plain English.

c. Give necessary and sufficient conditions under which V1 = 0.

d. Give necessary and sufficient conditions under which V2 = 0.

e. Show that
n∑
i=1

n∑
j=1

xti xj = (

n∑
i=1

xi)
t (

n∑
j=1

xj) = n2 ||x||2

f. Using the identity from part e., and some additional calculations, show that

V1 = V2 =
1

n

n∑
i=1

||xi||2 − ||x||2

23. Let x1 = (−1, 2, 0) and x2 = (2, 4, 3). Find the projections of x1 and x2 onto u0 where:

a. u0 = (0,1,0)

b. u0 = (1,0,-1)

24. Consider the 3× 3 matrix A below:

A =


1 1 3

0 1 2

1 0 1


a. What is rank(A)?

b. What is det(A)?

c. Calculate the eigenvalues and corresponding eigenvectors of A. (Note: in this example

the number of non-zero eigenvalues is less than the rank of the matrix.)

9



C. Probability

1. Let X,Y be random variables and let a, b > 0. Define events

A = {|X| ≥ a} B = {|Y | ≥ b} C = {|X + Y | ≥ a+ b}

a. Argue that if a > |X| and b > |Y | then a+ b > |X + Y |.

b. Conclude that Ac ∩Bc ⊆ Cc.

c. Show using Boolean algebra that C ⊆ A ∪B.

d. Conclude using the properties of probability that P(C) ≤ P(A) + P(B).

e. Reason similarly to show that P(|XY | ≥ a) ≤ P(|X| ≥ a/b) + P(|Y | ≥ b).

2. Let P be a probability measure on a set X . Recall that if A and B are subsets of X and

P (B) > 0, then the conditional probability of A given B is defined by

P (A |B) =
P (A ∩B)

P (B)

Show the following.

a. If A and B are disjoint then P (A ∪B |C) = P (A |C) + P (B |C)

b. P (Ac |B) = 1− P (A |B)

c. If A ⊆ B then P (A |C) ≤ P (B |C)

3. Let X be a set and let A,B be subsets of X . Recall that the indicator function of A is

defined by

IA(x) =

 1 if x ∈ A

0 if x ∈ Ac

a. Show that IAc = 1− IA.

b. Show that IA − IB = IBc − IAc .

c. Show that IA∩B = IA IB.

d. Let u, v ∈ {0, 1}. Show that I(u 6= v) = |I(u = 1) − I(v = 1)|. Hint: Consider

separately the cases I(u 6= v) = 0 and I(u 6= v) = 1.

4. Let A,B,C be events in a random experiment with probability measure P . Carefully

show the following.
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a. max(P (A), P (B)) ≤ P (A ∪B).

b. P (A) ≤ P (A ∪B) + P (Bc).

c. P (A |B ∩ C) ≥ P (A ∩B |C).

d. P (A |B ∩ C) ≥ P (A |C)P (B |A ∩ C).

5. Let (X,Y ) be a discrete random pair with joint probability mass function p(x, y). Recall

from the lecture notes that we may define E(Y |X) = ϕ(X) where ϕ(x) =
∑

y y p(y|x).

Establish the following.

a. If Y ≥ 0 then E(Y |X) ≥ 0

b. E(aY + b|X) = aE(Y |X) + b

c. E{E(Y |X) } = EY

6. Let X1, . . . Xn be independent and identically distributed random variables. Calculate

E[X1|X1+ . . .+Xn = x]. (Hint: Consider E[Sn|X1+ . . .+Xn = x] where Sn = X1+ . . .+Xn

and use symmetry.)

7. LetX,Y be non-negative random variables with joint density function f(x, y) = y−1 e−x/y e−y

for x, y ≥ 0.

a. Find the marginal density f(y) of Y

b. Find the conditional density f(x | y) of X given Y = y

c. Find E[X |Y = y]

d. Find E[X |Y ]

8. Let X be a discrete random variable taking values in a finite (or countably infinite) set

X , and having probability mass function p(x) = P(X = x). Let h : X → [a, b] be any

function.

a. Write down the sum for Eh(X).

b. Show that Eh(X) = a if p(x) > 0 only when h(x) = a.

c. Establish the reverse implication: if Eh(X) = a then p(x) > 0 only when h(x) = a.

Hint: Assume to the contrary that p(x′) > 0 for some x′ ∈ X with h(x′) 6= a. As h

takes values in [a, b], we have h(x′) > a. Use this to show Eh(X) > a.
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d. Following the arguments above, show that Eh(X) = b if and only if p(x) > 0 implies

h(x) = b.

9. Let (X,Y ) ∈ X ×Y be a jointly distributed pair. Assume that X and Y are finite. Recall

that X and Y are independent if P(X = x, Y = y) = P(X = x)P(Y = y).

a. Show that if X and Y are independent then P(X = x |Y = y) does not depend on y.

b. Let y ∈ Y be fixed. Show that if P(Y = y |X = x) does not depend on x then it is

equal to P(Y = y).

c. Suppose that for each y ∈ Y the conditional probability P(Y = y |X = x) does not

depend on x. Show that X and Y are independent.
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D. Order

1. Let {a1, . . . , an} and {b1, . . . , bn} be two sequences of numbers. Rigorously establish the

following inequalities.

a. min{ai}+ min{bi} ≤ min{ai + bi} ≤ min{ai}+ max{bi}

b. −min{ai} = max{−ai} and −max{ai} = min{−ai}

c. max{ai} −max{bi} ≤ max{|ai − bi|}

Use part (b) to find a chain of inequalities like that in part (a) for maxima

2. In each case below find minx∈X f(x), argminx∈X f(x), maxx∈X f(x), and argmaxx∈X f(x).

Indicate when the min or the max do not exist. It may help to sketch the functions.

a. f(x) = sinx with X = [0, 2π] and X = [0, π]

b. f(x) = x2 with X = [−2, 2], X = (−2, 2], X = (−2, 2)

c. f(x) = min(x, 1) with X = [0, 2] and X = (−2, 2]

3. Let U1, . . . , Um be random variables. Find an inequality relating E(min1≤j≤m Uj) and

min1≤j≤m EUj . Hint: Begin by noting that min1≤j≤m Uj ≤ Uk for each k.

4. (Saddle points and minimax) Let X and Y be sets and let f : X×Y → R be any function.

a. Show that, with no further assumptions,

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y) (1)

This simple fact plays an important role in optimization, where it implies the weak duality

property of the Lagrange dual problem, and in game theory, where it has connections with

Nash equilibria. A pair (x̃, ỹ) ∈ X × Y is called a saddle point for f if

f(x̃, y) ≤ f(x̃, ỹ) ≤ f(x, ỹ) for every x ∈ X and y ∈ Y

b. Show that if (x̃, ỹ) is a saddle point for f then

f(x̃, ỹ) = inf
x∈X

f(x, ỹ) and f(x̃, ỹ) = sup
y∈Y

f(x̃, y)

To see how these inequalities explain the use of the terminology “saddle point”, assume

that f is nice and smooth, and sketch what it will look like in a neighborhood around

the point (x̃, ỹ).
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c. Show that the existence of a saddle point implies equality in inequality (1) above.

d. Evaluate both sides of (1) when X = [0, 1], Y = [−1, 1], and f(x, y) = x2y.

5. Let a1, . . . , an be real numbers, and let b1, . . . , bn be positive. Show that

min
1≤i≤n

ai
bi
≤ a1 + · · ·+ an

b1 + · · ·+ bn
≤ max

1≤i≤n

ai
bi
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E. Convexity

1. Show that the following subsets of Rd are convex.

a. The emptyset

b. The hyperplane H = {x : xtu = b}

c. The halfspace H+ = {x : xtu > b}

d. The ball B(x0, r) = {x : ||x− x0|| ≤ r}

2. Let C1, . . . , Cn ⊆ Rd be convex. Show that the intersection ∩ni=1Ci is convex.

3. Recall that the convex hull of a set A ⊆ Rd, denoted conv(A), is the intersection of all

convex sets C containing A. Show that conv(A) is equal to the set of all convex combinations∑k
i=1 αi xi, where k ≥ 1 is finite, x1, . . . , xk ∈ A, and the coefficients αi are non-negative

and sum to one.

4. (Set sums and scaler products) Given sets A,B ⊆ Rd and a constant α ∈ R define the

set sum and set scaler product as follows:

A+B = {x+ y : x ∈ A and y ∈ B} αA = {αx : x ∈ A}

a. (Optional) Show that if A is open then A+B is open regardless of whether B is open.

b. Show that if A and B are convex, then so is A+B.

c. If A is convex is A+B necessarily convex?

d. Show by example that, in general, 2A 6= A+A.

d. Show that if A is convex then αA+ βA = (α+ β)A for all α, β ≥ 0.

5. Identify the extreme points (if any) of the following convex sets.

a. The hyperplane H = {x : xtu = b}

b. The halfspace H+ = {x : xtu > b}

c. The closed ball B(x0, r) = {x : ||x− x0|| ≤ r}

6. Let f : C → R be a strictly convex function defined on a convex set C ⊆ Rn. Show that

argmaxx∈Cf(x) is contained in the set of extreme points of C.
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7. (Operations on convex functions that produce new convex functions) Let C ⊆ Rd be a

convex set and let f1, . . . , fn : C → R be convex functions. Use the definition of convexity

to establish the following.

a. If a1, . . . , an are non-negative then g(x) =
∑n

i=1 ai fi(x) is convex on C.

b. The function g(x) = max1≤i≤n fi(x) is convex on C.

c. If h : R → R is convex and increasing then g(x) = h(f(x)) is convex on C. (Recall

that h is increasing if u ≤ v implies h(u) ≤ h(v)).

8. Define what it means for a function to be strictly convex. Define the notion of a global

minima. Show that the global minima of a strictly convex function is necessarily unique.

9. Let hα : R → [0,∞) be defined by hα(x) = |x|α where α > 0 is fixed. Sketch hα(x) for

α = 1/2, 1, 2. For which values of α is hα(x) convex? Justify your answer.

10. Let f : Rn → R be a convex function. For γ ∈ R the γ-level set of f is defined to be

the set of points x where f(x) is less than or equal to γ. Formally,

Lγ(f) = {x : f(x) ≤ γ}

a. Draw some level sets for the convex functions f(x) = x2 and f(x) = e−x. Note that

Lγ(f) may be empty.

b. Show that for each γ the level set Lγ(f) is convex. Hint: If Lγ(f) is empty then it is

trivially convex. Otherwise, use the definition of a convex set.

11. Let a1, . . . , an and b1, . . . , bn be positive constants.

a. Use Jensen’s inequality to establish the Arithmetic-Geometric mean inequality

1

n

n∑
i=1

ai ≥

(
n∏
i=1

ai

)1/n

.

b. Establish the inequality

(Πn
k=1ak)

1/n + (Πn
k=1bk)

1/n ≤ (Πn
k=1(ak + bk))

1/n

Hint: First divide the LHS by the RHS.
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12. Use the second derivative condition to establish whether the following functions are

convex or concave. In each case, sketch the function.

a. The function f(x) = ex on (−∞,∞).

b. The function f(x) =
√
x on (0,∞).

c. The function f(x) = 1/x on (0,∞).

d. The function f(x) = log x on (0,∞).

Now letX > 0 be a positive random variable. Write out the conclusion of Jensen’s inequality

for each of the functions above.

13. Define the function f(x) = x log x for x ∈ (0,∞)

a. Sketch the function f(x) and show that it is convex.

b. Find the minimum and argmin of f(x).

b. Let X > 0 be a random variable. What can you say about the relationship between

E(X logX) and EX logEX?

14. Let f1, . . . , fk : Rp → R be convex functions.

a. Show that for each number t the set Lt = {x :
∑k

j=1 fj(x) ≤ t} is convex. Hint: Use

results from the previous homework.

b. Show that for each t the sets {β ∈ Rp :
∑p

j=1 β
2
j ≤ t} and {β ∈ Rp :

∑p
j=1 |βj | ≤ t}

are convex.

15. Show that the Lagrange dual function, defined by

L̃(λ) = min
w,b

L(w, b, λ)

is concave. Hint: Argue that the dual function is the minimum of linear (hence concave)

functions, and is therefore concave. The SVM dual problem is given by the program

max L̃(λ) s.t.

n∑
i=1

λi yi = 0 and λ1, . . . , λn ≥ 0

Carefully define the constraint set for λ in this problem and argue that this set is convex.

(Note that there are n+1 constraints.) Thus the dual problem seeks to maximize a concave

function over a convex set.
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16. Show that the following functions f, g, h : [0, 1] → R used to define impurity measures

for growing trees are concave.

a. m(p) = min(p, 1− p)

b. g(p) = p(1− p)

c. h(p) = −p log p− (1− p) log(1− p), with the convention that 0 log 0 = 0

Which of these functions is strictly concave?
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F. Statistics

1. Let X,X ′ be independent random variables with the same distribution. Show that

Var(X) = 1
2E(X −X ′)2

2. In this problem we find an upper bound on the variance of a random variable with values

in a finite interval. Let X be a random variable taking values in the finite interval [0, c].

You may assume that X is discrete, though this is not necessary for this problem.

a. Show that EX ≤ c and EX2 ≤ cEX.

b. Recall that Var(X) = EX2 − (EX)2. Use the inequalities above to show that

Var(X) ≤ c2[u(1− u)] where u =
EX
c
∈ [0, 1].

c. Use this inequality and simple calculus to show that Var(X) ≤ c2/4 if X ∈ [0, c].

d. Use this result to show that if X is a random variable taking values in an interval [a, b]

with −∞ < a < b <∞ then Var(X) ≤ (b− a)2/4

e. It turns out that the general bound cannot be improved. To see this, show that the

variance of the random variable X ∈ [a, b] with P(X = a) = P(X = b) = 1/2 is equal

to the bound you found above.

3. The empirical cumulative distribution function (CDF) of a sample x = x1, . . . , xm is

defined by

Fx(t) = m−1
m∑
i=1

I(xi ≤ t)

The sum in the definition counts the number of data points that are less than or equal to t,

so Fx(t) is the fraction of data points that are less then or equal to t. Suppose that x has

four points: -3, -1, -1, and 5.

a. Find the following values of the empirical CDF by using the formula above: Fx(−4),

Fx(0), Fx(−1), Fx(6)

b. Sketch the empirical CDF for this data set as a function of t.

c. For what values of t is Fx(t) = 0?

d. For what values of t is Fx(t) = 1?
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4. Let r(x, y) be the sample correlation of a bivariate data set (x, y) = (x1, y1), . . . , (xn, yn).

a. Let ax+ b denote the data set ax1 + b, . . . , axn + b and define cy + d similarly. Show

that r(ax+ b, cy + d) = r(x, y) if a, c > 0.

b. Use the Cauchy-Schwarz inequality to show that r(x, y) is always between −1 and +1.

5. Show that if f(x) is bounded and X ∼ Poiss(λ) then E[λf(X + 1)] = E[Xf(X)]. Here

Poiss(λ) denotes the usual Poisson distribution with pmf p(k) = e−λλk/k! for k ≥ 0.

6. Let X be a standard normal random variable and let Y = X2.

a. Use the cdf method to find the density of Y .

b. Show that one of the events {Y ≤ 1} and {X ≤ 1} is contained in the other.

c. Show that X,Y are not independent.

d. What is Cov(X,Y )?
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G. Normal and Multinormal Distributions

1. Let X have a N (µ, σ2) distribution. Show that EX = µ.

2. Chi-squared distribution. A random variable X has a chi-squared distribution with k ≥ 1

degrees of freedom, written X ∼ χ2
k, if X has the same distribution as Z2

1 + · · ·+Z2
k where

Z1, . . . , Zk are iid ∼ N (0, 1).

a. Find EX and Var(X) whenX ∼ χ2
k. You may use the fact that EZ4 = 3 if Z ∼ N (0, 1).

b. If X ∼ χ2
k and Y ∼ χ2

l are independent, what is the distribution of X + Y ?

3. Let Γ(x) be the standard Gamma function, defined for x > 0. Show that if Z ∼ N (0, 1)

then for each p ≥ 1

E|Z|p =
2p/2√
π

Γ((1 + p)/2)

Deduce from this fact and Stirling’s approximation that ||Z||p := (E|Z|p)1/p = O(p1/2).

4. Show that if Y ∼ N (0, σ2) and c > 0 then E{|Y |I(|Y | > c)} ≤ σ exp{−c2/2σ2}

5. Let U1, U2 be uncorrelated random variables with mean zero and variance one. Define

U = (U1, U2)
t. Let X = (X1, X2)

t be a random vector with components

X1 = aU1 + b U2 and X2 = cU1 + dU2

a. Find E[U ].

b. What is Var(U)?

c. Find EX.

d. Find the matrix Var(X) by directly calculating each entry using the definitions of X1

and X2.

e. Find A such that X = AU .

f. Find Var(X) using the formula for Var(AU).

g. In terms of a, b, c and d, when is A invertible?

6. Let X ∈ Rk be a random vector and A ∈ Rr×k. Use the definition of expected value,

variance, and linear algebra to establish the following.
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a. E(AX) = AEX

b. Var(X) is symmetric and non-negative definite

c. Var(X)ij = Cov(Xi, Xj)

d. Var(AX) = AVar(X)At

7. Let X ∼ Nk(µ,Σ) and let Y = AX + b where A ∈ Rl×k and b ∈ Rl.

a. Find EY and Var(Y ).

b. Argue carefully that Y is multinormal and find its distribution.

c. Fix v ∈ Rl. Find the distribution of U = 〈v, Y 〉.

8. Let X ∼ Nd(µ,Σ) and let Y = Σ1/2Z + µ where Z ∼ Nd(0, I).

(a) Show that EY = EX and that Var(Y ) = Var(X).

(b) Fix v ∈ Rd. Find the distributions of the random variable vtX.

9. Show that if X ∼ Nd(µ,Σ) and U = XTAX then EU = tr(AΣ) + µTAµ. (It may be

helpful to use the fact that tr(UV ) = tr(V U).)

10. (Bivariate normal distribution). Let X = (X1, X2)
t ∼ N2 with

EX1 = µ1, EX2 = µ2, Var(X1) = σ21, Var(X2) = σ22, Corr(X1, X2) = ρ ∈ [−1, 1]

a. Find µ = EX and Σ = Var(X) in terms of the quantities above.

b. Find the determinant of Σ and conclude that Σ is invertible if and only if ρ ∈ (−1, 1).

c. Find Σ−1 when ρ ∈ (−1, 1).

d. Write down the density f(x) of X in the case ρ ∈ (−1, 1).

11. Let U and V be independent N (0, 1) random variables. Define Y = V and let

X =

 U if UV ≥ 0

−U if UV < 0

a. Let A ⊆ [0,∞) be a Borel set. Show that P(X ∈ A) = P(U ∈ A). Hint: Begin with

the decomposition P(X ∈ A) = P(X ∈ A,UV ≥ 0) + P(X ∈ A,UV < 0).
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b. Carry out a similar analysis for sets A ⊆ (−∞, 0). Use this and the previous step to

show that X has a N (0, 1) distribution.

c. Show that XY = |UV | ≥ 0 and that Corr(X,Y ) = 2/π < 1. Conclude from these

facts that X and Y are not jointly normal.

d. Show that X2 and Y 2 are independent.

12. Let A be a k×p random matrix with independent entries Aij ∼ N (0, 1), and let x ∈ Rp

be a fixed vector.

a. Show that the random variables Ui := (Ax)i are independent with mean zero and

variance ||x||2. Conclude that E||Ax||2 = k ||x||2.

b. Let Z = (Z1, . . . , Zk)
t be a random vector with Zi = Ui/||x||. Show that Z ∼ Nk(0, I),

where I is the k × k identity matrix.
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H. Concentration Type Inequalities

1. State and prove Markov’s probability inequality and Chebyshev’s probability inequality.

2. Let X ≥ 0 be a random variable with EX = 10 and EX2 = 120.

a. Find an upper bound on P(X ≥ 14) using Markov’s inequality.

b. Let 0 < c < 10. Find an upper bound on P(X ≥ c) using Markov’s inequality. Note

that the bound is greater than one, and therefore uninformative. Argue informally

that this is not a shortcoming of Markov’s inequality, that is, P(X ≥ c) may be equal

to one.

c. Find an upper bound on P(X ≥ 14) involving EX2.

d. Find an upper bound on P(X ≥ 14) using Chebyshev’s inequality. How does this

bound compare to those above?

3. Let X be a random variable with Var(X) = 3. Use Chebyshev’s inequality to find upper

bounds on P(|X − EX| > 1) and P(|X − EX| > 2). Comment on the potential usefulness

of these bounds.

4. Recall that the moment generating function of a random variable X is defined by

MX(s) = EesX for all s such that the expectation is finite. Find the moment generat-

ing function (MGF) of the following distributions.

a. Poisson(λ)

b. N (0, 1)

5. (The weak law of large numbers). Let U1, U2, . . . , U be iid random variables with finite

variance, and let X = n−1
∑n

i=1 Ui be the average of U1, . . . , Un.

a. Find EX in terms of EU .

b. Find Var(X) in terms of Var(U).

c. Use these calculations and Chebyshev’s inequality to establish that

P

(∣∣∣∣∣ 1

n

n∑
i=1

Ui − EU

∣∣∣∣∣ ≥ t
)
≤ Var(U)

nt2
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d. What can you conclude from the inequality above when t is fixed and n tends to

infinity?

6. Let X and Y be independent random variables with moment generating functions MX(s)

and MY (s), respectively. Show that S = X + Y has moment generating function MS(s) =

MX(s)MY (s).

7. (Hoeffding’s MGF Bound) Let X be a discrete random variable with probability mass

function p(·). Assume that a ≤ X ≤ b and that EX = 0. Let MX(s) = EesX be the

moment generating function of X and define ϕ(s) := logMX(s).

a. Show that

ϕ′(s) =
E[XesX ]

EesX
and ϕ′′(s) =

E[X2esX ]

EesX
− (ϕ′(s))2

b. Verify that ϕ(0) = ϕ′(0) = 0

Now fix t > 0 and let U be a new random variable having the “exponentially tilted”

probability mass function

q(x) =
p(x)etx

EetX

c. Verify that q(·) is a probability mass function, that is, q(x) ≥ 0 and
∑

x q(x) = 1.

d. Argue that a ≤ U ≤ b. This follows from the fact that U has the same possible values

as X, only with different probabilities.

e. Show that E(U) = ϕ′(t) and that Var(U) = ϕ′′(t).

f. Using the variance bound for bounded random variables, conclude from (c) and (d)

that ϕ′′(t) ≤ (b− a)2/4.

g. Use the second order Taylor series expansion of ϕ around s = 0 and what you’ve shown

above to establish that ϕ(s) ≤ s2(b− a)2/8 for s > 0.

h. Exponentiating the inequality in (g) gives Hoeffding’s MGF bound.

8. Let X1, . . . , Xn be iid Uniform(−θ, θ) random variables.

a. Use Chebyshev’s inequality to find a bound on P(
∑n

i=1Xi ≥ t) for t ≥ 0 .

b. Use Hoeffding’s inequality to find a bound on P(
∑n

i=1Xi ≥ t) for t ≥ 0 .
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9. Let X be a non-negative random variable such that EX2 is finite. Show that for each

0 < λ < 1 we have the inequality

P(X ≥ λEX) ≥ (1− λ)2
(EX)2

EX2

Hint: Use the Cauchy-Schwartz inequality and the identity X = X I(X ≥ c) +X I(X < c).

10. Let X1, . . . , Xn be independent Bernoulli random variables with EXi = pi. Let S =

X1 + · · ·+Xn and let µ = ES =
∑n

i=1 pi. Use Chernoff’s bound and a MGF computation

to show that for all t > µ

P(S > t) ≤ exp{t− µ− t log(t/µ)}

How does this bound compare to Hoeffding’s inequality?

11. Let X ∼ χ2
k have a chi-squared distribution with k degrees of freedom.

(a) Show that if Z is standard normal and s < 2 then E exp{sZ2} = (1− 2s)−1/2.

(b) Show that the MGF of X is equal to ϕX(s) = (1− 2s)−k/2.

(c) Use the Chernoff bound to establish that for 0 ≤ ε ≤ 1,

P (X ≤ (1− ε)k) ≤ exp

{
−k

4
(ε2 − ε3)

}

12. Independent Copies. Let X,X ′ be independent random variables with the same distri-

bution. In this case we say that X ′ is an independent copy of X.

(a) Show that Var(X) = 1
2E(X −X ′)2

(b) Argue formally or informally that E(X ′ |X) = EX

(c) Using the result of part (b) and Jensen’s inequality for conditional expectations, show

that E|X−EX| ≤ E|X−X ′|. This is a key step in establishing a number of important

bounds in empirical process theory.

13. Let X1, . . . , Xn ∈ X be i.i.d. and let G be a family of function g : X → [−c, c]. Define

f(xn1 ) = sup
g∈G

∣∣∣n−1 n∑
i=1

g(xi) − Eg(X)
∣∣∣

Find the difference coefficients c1, . . . , cn of f , and use these to establish concentration

bounds for the random variable f(Xn
1 ).
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14. Let X1, . . . , Xn ∈ Rd be independent random vectors such that EXi = 0 and ||Xi|| ≤

ci/2 with probability one, where ||u|| = (utu)1/2 is the ordinary Euclidean norm. Let

α = (1/4)
∑n

i=1 c
2
i .

(a) Show that E||
∑n

i=1Xi|| ≤
√
α.

(b) Use the bounded difference inequality and the inequality in part (a) to show that for

all t ≥
√
α

P

(
||

n∑
i=1

Xi|| > t

)
≤ exp

{
−(t−

√
α)2

2α

}

15. Let X be a random variable satisfying the concentration type inequality P(|X| > t) ≤

a e−b t
2

for all t ≥ 0, where a ≥ 1 and b ≥ 0. Show that

E|X| ≤
√

1 + log a

b
.

Hint: Note that for s ≥ 0 we have EX2 ≤ s+
∫∞
s P(X2 ≥ t) dt. Use Cauchy-Schwartz.

16. Let X1, . . . , Xn be iid ∼ Bern(p). Note that |Xi − p| ≤ max(p, 1− p).

(a) Use Bernstein’s inequality to get an upper bound on P(n−1
∑n

i=1Xi−p ≥ t) for t ≥ 0.

(b) Argue that one can restrict attention to t ∈ [0, 1 − p]. Using this fact and the bound

in part (a) show that if p ≥ 1/2 then for all t ≥ 0

P

(
1

n

n∑
i=1

Xi − p ≥ t

)
≤ exp

{
−3nt2

8p(1− p)

}

(c) Compare the bound in part (b) to a naive inequality based on the central limit theorem

and tail bounds for the standard normal distribution.

17. Let X1, . . . , Xn be random variables with moment generating functions MXi(s) ≤M(s)

for each s ≥ 0.

(a) Using the argument in class for Gaussian random variables, show that

Emax(X1, . . . , Xn) ≤ inf
s:s>0

log n+ logM(s)

s
.

Suppose now that U1, . . . , Un are Gamma(α, β) random variables.

(b) Show that the moment generating function of Ui is M(s) = (1− s β)−α.
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(c) Using the bound from part (a) and an appropriate choice of s, which can be found by

inspection, show that

Emax(U1, . . . , Un) ≤ 2β log n

1− n−1/α
.

18. Let U1, . . . , Un be independent Uniform(0, θ) random variables. Find E [max1≤j≤n Uj ].
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I. Classification

1. Let (X,Y ) be a jointly distributed pair with X ∈ X and Y ∈ {0, 1}. Suppose that X is

finite and that (X,Y ) has joint probability mass function p(x, y).

a. Express the prior probabilities π0 = P(Y = 0) and π1 = P(Y = 1) in terms of p(x, y).

b. Express the class conditional probability mass function p0(x) = P(X = x |Y = 0) in

terms of p(x, y) and the prior probabilities.

c. Show that the marginal pmf of X can be written as p(x) = π0 p0(x) + π1 p1(x) where

p1(x) = P(X = x |Y = 1).

e. Use Bayes rule to show that η(x) := P (Y = 1 |X = x) = π1p1(x)/p(x)

2. Consider a classification problem in which the predictor X is uniformly distributed on

the unit interval [0, 1] and the response Y ∈ {0, 1} as usual. For x ∈ [0, 1] let η(x) = P(Y =

1 |X = x). Specify the Bayes rule φ∗ and the Bayes risk R∗ in each of the following cases.

a. η(x) = 1/3 for all x

b. η(x) = x

c. η(x) ∈ {0, 1} for all x

In each of the cases above, find the prior probability π1 = P(Y = 1), or indicate why this is

not possible without more information.

3. Let (X,Y ) ∈ R2×{0, 1} be a random predictor-response pair. Suppose that the predictor

X is a pair (X1, X2) where X1, X2 ∈ [0, 1] are independent, X1 is uniform on [0, 1], and X2

has density g(x2) = 3x22 for 0 ≤ x2 ≤ 1. Suppose that η(x1, x2) = (x1 + x2)/2.

a. Find the Bayes rule φ∗ for this problem and identify its decision boundary.

b. Find the unconditional density of X

c. Find the Bayes risk associated with (X,Y )

d. Find the prior probability that Y = +1.

e. Find the class-conditional density of X given Y = 1.

4. Suppose that you are given access to a database consisting of many email messages that

have been labeled as spam or normal. You decide to construct a simple classification rule,
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the only feature being whether or not the word “meeting” appears somewhere in the email.

Using relative frequencies to estimate probabilities you find the following:

P̂ (spam) = .3 P̂ (‘meeting’ present | spam) = .01 P̂ (‘meeting’ present | normal) = .04

Using this information, calculate a simple classification rule for spam detection. What can

you say about the error rate of your rule on the database?

5. Argue as carefully as you can that if the Bayes risk R∗ for a pair (X,Y ) is equal to 1/2

then Y is independent of X.

6. Consider the labeled data set (−2, 1), (−1, 1), (0, 0), (1, 1), (2, 0) ∈ R× {0, 1}.

a. Sketch the 1-nearest neighbor rule for this dataset by drawing a line and indicating

which points are assigned to zero and which are assigned to one.

b. Sketch the 3-nearest neighbor rule for this dataset by drawing a line and indicating

which points are assigned to zero and which are assigned to one.

7. Let (X,Y ) ∈ R× {0, 1} be a random predictor-response pair. Suppose that Y has prior

probabilities π1 = P(Y = 1) and π0 = P(Y = 0), and that X is continuous with marginal

density f and class conditional densities f0 and f1. Let η(x) = P(Y = 1 |X = x) as usual.

a. Show that the Bayes rule φ∗ can be written in the form

φ∗(x) =


1 if log η(x)

1−η(x) ≥ 0

0 otherwise

b. Find a simple expression for the Bayes rule φ∗(x) in terms of π1f1(x) and π0f0(x).

Suppose that f1 is N (µ1, σ
2) and that f0 is N (µ0, σ

2) where µ1 > µ0.

c. Using the results above, find an expression for the Bayes rule φ∗(x) in terms of the

parameters π0, π1, µ0, µ1, and σ2.

d. What is the form of the rule in part (b) when π1 = 1/2? Explain why this makes

intuitive sense.

e. Suppose for simplicity that µ1 = u and µ0 = −u for some u > 0. What form does the

Bayes rule take when u increases (tends to infinity), and in particular, how does the

rule depend on π1 versus π0? A informal but clear answer is fine.
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8. Consider the setting of linear discriminant analysis in which the class-conditional densi-

ties f0 and f1 have the multivariate normal form fk = N (µk,Σk).

a. Using the expression for the multivariate normal density, show that the discriminant

functions δk(x) = log(πk fk(x)) have the form

δk(x) = −1

2
xtΣ−1k x+ 〈x,Σ−1k µk〉 −

1

2

[
log(2π)dπ−2k det(Σk) + µtkΣ

−1
k µk

]
b. Show that when Σ0 = Σ1 = Σ the decision boundary B = {x : δ1(x) = δ0(x)} has the

form

B = {x : xt Σ−1(µ1 − µ0) + (c0 − c1) = 0}

where c0, c1 are real valued constants, and argue that this set is a hyperplane.

9. Let (X,Y ) be a jointly distributed pair with X ∈ Rd and Y ∈ {0, 1}. Suppose that

we have added a zeroth component to the vector X that is always equal to 1, so that the

augmented vector X ∈ Rd+1. The logistic regression method for binary classification is

based on the assumption that

log
P(Y = 1 |X = x)

P(Y = 0 |X = x)
= log

η(x)

1− η(x)
= 〈β, x〉 (2)

for some vector β ∈ Rd+1 of coefficients. In words, equation (2) says that the conditional

log-odds ratio of Y = 1 vs. Y = 0 is linear in the feature vector x.

a. Show, by inverting the relation (2), that

η(x) = η(x : β) =
e〈β,x〉

1 + e〈β,x〉
=

1

1 + e−〈β,x〉

Here we write η(x : β) to remind ourselves that η depends on β.

b. Equation (2) is sometimes written in the form logit(η(x)) = 〈β, x〉, where logit(u) =

log[u/(1 − u)] for 0 < u < 1 is the logistic (or logit) function. Sketch the logistic

function.

Given a data set Dn = (x1, y1), . . . , (xn, yn) ∈ Rd+1×{0, 1} logistic regression estimates the

coefficient vector β in (2) by maximizing the conditional log likelihood function

`(β) = log
n∏
i=1

Pβ(Y = yi |X = xi)

where Pβ(Y = 1 |X = x) = η(x : β) and Pβ(Y = 0 |X = x) = 1− η(x : β).
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c. Use the expression for η(x : β) in (a) to show that the conditional log likelihood

function can be written in the form

`(β) =
n∑
i=1

[
yi〈β, xi〉 − log(1 + e〈β,xi〉)

]
d. Show that ∇`(β) =

∑n
i=1 xi [yi − η(xi : β)]. Hint: Evaluate the partial derivative

∂`(β)/∂βj for a fixed index j between 1 and d.

10. Let Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1} be a data set for classification and let

γ = {A1, . . . , AK} be a partition of X . Define the histogram classification rule φ̂γ based on

γ. Show that φ̂γ minimizes the training error Rn(φ) over all classification rules φ that are

constant on the cells of γ, meaning φ(u) = φ(v) if u, v are in the same cell of γ.

11. Recall that the Bayes Rule φ∗ for a jointly distributed pair (X,Y ) with response Y ∈

{0, 1} is defined by

φ∗(x) = argmax
k=0,1

P(Y = k |X = x)

a. How would you modify this definition in the case where the response takes values in

the finite set {0, 1, . . . ,K}, that is, each feature vector x is associated with one of K

possible outcomes?

b. Show that in the binary case Y ∈ {0, 1} the Bayes Rule has the form

φ∗(x) =

 1 if η(x) ≥ 1/2

0 otherwise

12. Let Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1} be iid observations for a classification

problem. Recall that the empirical risk of a fixed classification rule φ : X → {0, 1} is

defined by

R̂n(φ) =
1

n

n∑
i=1

I(φ(Xi) 6= Yi)

and that the risk of φ is R(φ) = P(φ(X) 6= Y ).

a. Show that E[R̂n(φ)] = R(φ)

b. Show that Var(R̂n(φ)) = n−1R(φ)(1−R(φ)) ≤ 1/(4n)

c. Argue carefully that nR̂n(φ) has a Bin(n,R(φ)) distribution
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d. Use Chebyshev’s inequality to show that for t ≥ 0

P(|R̂n(φ)−R(φ)| ≥ t) ≤ R(φ)(1−R(φ))

n t2
≤ 1

4n t2

e. Use Hoeffding’s inequality to show that for t ≥ 0

P(|R̂n(φ)−R(φ)| ≥ t) ≤ 2 exp{−2nt2}

13. Consider a classification problem in which you have access to a test set containing

m = 120 iid observations (Xi, Yi) ∈ X × {0, 1}. You would like to use the test set to

assess the risk of a given rule φ using the empirical risk R̂m(φ). Chebyshev’s inequality and

Hoeffding’s inequality provide bounds on P(|R̂m(φ) − R(φ)| ≥ t) for t ≥ 0. Compute and

compare these probability bounds, with m = 120, at the following values of t: 1/20, 1/11,

1/9, and 1/5.

14. Consider a classification problem in which you would like to assess the risk of a given

rule φ using its empirical risk R̂m(φ) on a test data set Dm. In particular, you wish to

determine the size n of the test set necessary to conclude that

P(|R̂n(φ)−R(φ)| ≥ δ) ≤ ε

Use Chebyshev’s and Hoeffding’s inequalities to find suitable values for n as a function of

δ and ε. How do the resulting quantities depend on δ and ε? Generally speaking, which

inequality permits you to use a smaller test set?

15. Let Dn and Dm be independent training and test sets, respectively. Suppose that the

rule φ̂n(x) = φn(x : Dn) is derived from the training set.

a. Define the test set error R̂m(φ̂n).

b. Show that E[R̂m(φ̂n) |Dn] = R(φ̂n)

c. What is ER̂m(φ̂n)? Compare this to your answer above.

16. Let Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1} be a data set for classification. For each

region A ⊆ X let |A| denote the number of points xi in A and let p(A) = |A|−1
∑

xi∈A yi be

the fraction of points xi ∈ A labeled 1. Suppose that the region A can be expressed as the

disjoint union A = A1 ∪A2 of two other regions.
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a. Using the definition, show that

p(A) =
|A1|
|A|

p(A1) +
|A2|
|A|

p(A2)

b. Show that |A| = |A1| + |A2|. Conclude from this and part (a) that for any concave

function f : [0, 1]→ R

f(p(A))− |A1|
|A|

f(p(A1))−
|A2|
|A|

f(p(A2)) ≥ 0

This establishes that the impurity differences defined in the lecture for the misclassi-

fication, Gini, and entropy impurity measures are non-negative.

c. Let m(p) = min(p, 1− p). Show that |A|m(p(A)) is the number of misclassifications if

every point in A is assigned to the majority class.

d. Consider two partitions γ1 and γ2 of X that are identical except that a cell A of γ1 is

split into two cells A1 and A2 in γ2. What can you say about the training error of the

corresponding histogram classification rules (based on majority voting in cells)?

17. Let Dn = (x1, y1), . . . , (xn, yn) ∈ Rp × {±1} be sequence of labeled pairs. Show that

the constraint set

C := {w, b : yi(x
t
iw − b) ≥ 1 for i = 1, . . . , n}

appearing in the primal SVM optimization problem is convex. To make things a bit more

formal, treat the elements of C as vectors v = (w1, . . . , wp, b)
t ∈ Rp+1. Hint: Show that C

is the intersection of n sets, one for each i, and then show that each of these sets is convex.

18. Write down the primal problem, with optimal value p∗, and argue using the previous

question and results from a previous homework that the primal problem is a convex program.

Now consider the Lagrangian L : Rp × R× Rn+, which is defined by

L(w, b, λ) :=
1

2
||w||2 −

n∑
i=1

λi {yi(wtxi − b)− 1}

Establish that

max
λ≥0

L(w, b, λ) =


||w||2 if yi(x

t
iw − b) ≥ 1 for i = 1, . . . , n

+∞ otherwise

To see why this is true, note that if one of the constraints yi(x
t
iw − b) ≥ 1 is not satisfied,

then one can increase the corresponding λi to make the Lagrangian arbitrarily large. Using

the last display above, argue informally that the primal problem can be written as

p∗ = min
w,b

max
λ≥0

L(w, b, λ)
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J. Regression

1. Let (x, y) ∈ Rp ×R be a fixed predictor-response pair, and define a function f : Rp → R

by f(β) = (y − xtβ)2.

a. Show that f is convex.

b. Now let Dn = (x1, y1), . . . , (xn, yn) be n predictor-response pairs. What can you say

about the convexity of the sum of squares g(β) =
∑n

i=1(yi − xtiβ)2?

c. Fix λ ≥ 0 and define the penalized performance criterion

hα(β) =

n∑
i=1

(yi − xtiβ)2 + λ

p∑
j=1

|βj |α

Argue that hα is convex if α ≥ 1. Hint: Recall that a sum of convex functions is

convex.

2. Consider a data set with design matrix X ∈ Rn×p and response vector y ∈ Rn. Fix λ > 0

and define the penalized loss R̂n,λ(β) = ||y−Xβ||2 + λ ||β||2. Following the calculus based

arguments for OLS, show that R̂n,λ(β) has unique minimizer β̂λ = (XtX + λIp)
−1Xty.

3. Let (X,Y ) ∈ Rp × R be a jointly distributed pair following the signal plus noise model

Y = f(X) + ε where ε is independent of X, Eε = 0, and Var(ε) = σ2.

a. Find simple expressions for EY and Var(Y ).

b. Argue that E(Y |X) = f(X). Thus f is the regression function of Y based on X.

c. Show that ϕ = f minimizes the risk R(ϕ) = E(ϕ(X) − Y )2 over prediction rules

ϕ : Rp → R. What is the minimum value of R(ϕ)?

4. Let (X1, Y1), . . . , (Xn, Yn) ∈ X × R be iid observations from the signal plus noise model

Y = f(X) + ε where ε ∼ N (0, σ2).

a. Define the empirical risk R̂n(ϕ) of a rule ϕ : Rp → R.

b. Assuming that Var(ϕ(X)) <∞, find the expectation and variance of R̂n(ϕ). You may

use the fact that Eε3 = 0 and Eε4 = 3σ4 under our normality assumption.
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c. What does Chebyshev’s inequality tell you in this setting? What sort of assumptions

could you make to control the size of the upper bound?

d. Can you apply Hoeffding’s inequality in this case? If so, what is the bound?

5. Let x1, . . . ,xn ∈ Rp+1 be fixed vectors with initial component equal to one 1. Suppose

that we observe responses y1, . . . , yn ∈ R generated from the linear model yi = βtxi + εi,

where β ∈ Rp+1 is an unknown coefficient vector and ε1, . . . , εn are iid ∼ N (0, σ2).

a. Argue that y1, . . . , yn are independent and that yi ∼ N (xtiβ, σ
2).

b. Find the joint likelihood L(β) of y1, . . . , yn.

c. Find the log likelihood `(β) of y1, . . . , yn and show that maximizing `(β) over β is

equivalent to minimizing the empirical risk R̂n(β) = n−1
∑n

i=1(yi − xtiβ)2 over β.

d. Define the response vector y and design matrix X associated with the data above,

giving the dimensions of each. Show carefully that R̂n(β) = n−1||y −Xβ||2.

6. Let y and X be the response vector and design matrix, respectively, associated with

observations (xi, yi) of the previous problem. Recall from class that the OLS coefficient

β̂ = (XtX)−1Xty

a. Show that y = Xβ + ε with ε ∼ Nn(0, σ2I). Conclude that y ∼ Nn(Xβ, σ2I).

b. Show that β̂ = β + (XtX)−1Xtε.

c. Find Eβ̂ and Var(β̂).

d. Argue that β̂ ∼ Np+1(β, σ
2(XtX)−1), and conclude that β̂j ∼ N (βj , σ

2(XtX)−1jj ).

e. Use the distribution of β̂j to find a 95% confidence interval for βj .

7. Let y and X be the response vector and design matrix, respectively, associated with

observations (x1, y1), . . . , (xn, yn) ∈ Rp × R.

a. Show that XtX + λIp is symmetric and positive definite if λ > 0. Conclude that

XtX + λIp is invertible if λ > 0.

b. Find a simple relationship between the eigenvalues of XtX + λIp and those of XtX.

8. Let β̂λ be the minimizer of R̂n,λ(β) = ||y −Xβ||2 + λ ||β||2.
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a. Show that β̂0 is the usual OLS estimator (when the rank of X is equal to p).

b. Show that ||y − Xβ̂λ||2 ≤ ||y − Xβ||2 for every β such that ||β|| ≤ ||β̂λ||. Hint:

Assume the stated inequality fails to hold and show that this implies that β̂λ is not

the minimizer of R̂n,λ(β).
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