Machine Learning, STOR 565 Overview of Matrix and Linear Algebra

Andrew Nobel

August, 2021

Vectors, Addition and Scalar Multiplication

Vectors $\mathbf{u} \in \mathbb{R}^d$ represented in column form by convention

$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_d \end{bmatrix} = (u_1, \dots, u_d)^t$$

Vector addition and scalar multiplication: for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$ and $a \in \mathbb{R}$

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_d + v_d \end{bmatrix} \quad \text{and} \quad a\mathbf{u} = \begin{bmatrix} au_1 \\ \vdots \\ au_d \end{bmatrix}$$

Inner Product

Definition: The *inner product* of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$ is given by

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^t \mathbf{v} = \sum_{i=1}^d u_i v_i$$

Basic Properties: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ and $a, b \in \mathbb{R}$

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

2.
$$\langle a\mathbf{u}, b\mathbf{v} \rangle = ab \langle \mathbf{u}, \mathbf{v} \rangle$$

3. $\langle \mathbf{u} + \mathbf{w}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle$

Euclidean Norm

Definition: The *Euclidean norm* of a vector $\mathbf{u} \in \mathbb{R}^d$ is

$$||\mathbf{u}|| = \langle \mathbf{v}, \mathbf{u} \rangle^{1/2} = (u_1^2 + \dots + u_d^2)^{1/2}$$

Basic Properties

- 1. $||\mathbf{u}|| \ge 0$ with equality if and only if x = 0
- 2. For $a \in \mathbb{R}$, $||a \mathbf{u}|| = |a| ||\mathbf{u}||$

3.
$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + ||\mathbf{v}||^2$$

4. $|\langle \mathbf{u}, \mathbf{v} \rangle| = |\mathbf{u}^t \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$ (Cauchy-Schwarz inequality)

5. $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ (triangle inequality)

6. $|||\mathbf{u}|| - ||\mathbf{v}||| \le ||\mathbf{u} - \mathbf{v}||$ (reverse triangle inequality)

Orthogonality and Projections

Definition: Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal, written $\mathbf{u} \perp \mathbf{v}$, if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Defn: Let V be a subspace of \mathbb{R}^n . The *projection* of $\mathbf{u} \in \mathbb{R}^n$ onto V is the vector $\mathbf{w} \in V$ closest to \mathbf{u} . Formally,

$$\mathsf{proj}_V(\mathbf{u}) = \operatorname*{argmin}_{\mathbf{w} \in V} ||\mathbf{u} - \mathbf{w}||$$

Fact: Let $V = \{ \alpha \mathbf{v} : \alpha \in \mathbb{R} \}$ be the 1-d subspace generated by $\mathbf{v} \in \mathbb{R}^n$

- 1. $\operatorname{proj}_V(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{v} / ||\mathbf{v}||^2$
- 2. $(\mathbf{u} \text{proj}_V(\mathbf{u})) \perp \mathbf{v}$

Matrix Basics

Notation: $\mathbb{R}^{m \times n}$ denotes set of $m \times n$ matrices **A** with real entries

$$\mathbf{A} = \{a_{ij} : 1 \le i \le m, 1 \le j \le n\}$$

• Transpose of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is $\mathbf{A}^t \in \mathbb{R}^{n \times m}$ defined by $a_{ij}^t = a_{ji}$

• $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}^t = \mathbf{A}$

▶ If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ then product $C = A B \in \mathbb{R}^{m \times p}$ has entries

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

 $\blacksquare In general, AB \neq BA$

 $\triangleright (\mathbf{A} \mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t$

Determinants and Inverses

The determinant of an $n \times n$ matrix **A** is denoted by det(**A**).

$$\blacktriangleright \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B})$$

 $\blacktriangleright \det(c\mathbf{A}) = c^n \det(\mathbf{A})$

$$\blacktriangleright \det(\mathbf{A}^t) = \det(\mathbf{A})$$

The *inverse* of A is the unique matrix A^{-1} such that

$$\mathbf{A}^{-1} \mathbf{A} = \mathbf{A} \mathbf{A}^{-1} = \mathbf{I}$$

•
$$\mathbf{A}^{-1}$$
 exists iff $\det(\mathbf{A}) \neq 0$.

• If A and B invertible, then $(AB)^{-1} = B^{-1}A^{-1}$

Eigenvalues and Eigenvectors

Each matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has *n* (possibly complex) *eigenvalues* $\lambda_1, \ldots, \lambda_n$

For each eigenvalue λ_i there is a corresponding *eigenvector* $\mathbf{v}_i \neq 0$ s.t.

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

• $\lambda_1, \ldots, \lambda_n$ are the roots of the polynomial $p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A})$

$$\blacktriangleright \det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$$

- Eigenvalues can be repeated
- If A is symmetric then all of its eigenvalues are real

Orthogonal Matrices

Vectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are orthonormal if $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \mathbb{I}(i = j)$ for $1 \le i, j \le n$

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is *orthogonal* if $\mathbf{A}^t \mathbf{A} = \mathbf{I}$. If \mathbf{A} is orthogonal then

 $\blacktriangleright \mathbf{A}^{-1} = \mathbf{A}^t$

 $\blacktriangleright \mathbf{A} \mathbf{A}^t = \mathbf{I}$

the rows and columns of A are orthonormal

• the eigenvalues $\lambda_i(\mathbf{A}) \in \{+1, -1\}$

$$\blacktriangleright \det(\mathbf{A}) \in \{+1, -1\}$$

Quadratic Forms

Each symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an associated *quadratic form* $q_A : \mathbb{R}^n \to \mathbb{R}$ defined by

$$q_A(\mathbf{u}) = \mathbf{u}^t \mathbf{A} \mathbf{u} = \sum_{i=1}^n \sum_{j=1}^n u_i a_{ij} u_j$$

• A is non-negative definite $(A \ge 0)$ if $u^t A u \ge 0$ for every u

• A is positive definite (A > 0) if $u^t A u > 0$ for every $u \neq 0$

Fact: Let $\mathbf{A} \ n \times n$ be symmetric.

- $A \ge 0$ iff all its eigenvalues are non-negative
- ► A > 0 iff all its eigenvalues are positive

Trace of a Matrix

Definition: The *trace* of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the sum of its diagonal elements

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

• tr(A) = sum of eigenvalues of A

$$\blacktriangleright \operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}^t)$$

• If **B** is
$$n \times n$$
 then $tr(AB) = tr(BA)$

Frobenius Norm

Definition: The *Frobenius norm* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$||\mathbf{A}|| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$$

Basic Properties

- $\blacktriangleright ||\mathbf{A}||^2 = \mathsf{tr}(\mathbf{A}^t \mathbf{A})$
- $||\mathbf{A}|| = 0 \text{ if and only if } \mathbf{A} = 0$
- $\blacktriangleright ||b\mathbf{A}|| = |b| ||\mathbf{A}||$
- $\blacktriangleright ||\mathbf{A} + \mathbf{B}|| \le ||\mathbf{A}|| + ||\mathbf{B}||$
- $\blacktriangleright ||\mathbf{A}\mathbf{B}|| \le ||\mathbf{A}|| \, ||\mathbf{B}||$

Rank of a Matrix

Definition: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be an m x n matrix

- row-space of A = span of the rows of A (subspace of \mathbb{R}^n)
- col-space of A = span of the cols of A (subspace of \mathbb{R}^m)
- row-rank(A) := dim of the row-space of A (at most n)
- $\operatorname{col-rank}(\mathbf{A}) := \operatorname{dim} \operatorname{of} \operatorname{the} \operatorname{col-space} \operatorname{of} \mathbf{A} (\operatorname{at} \operatorname{most} m)$

Fact: $row-rank(\mathbf{A}) = col-rank(\mathbf{A})$

Definition: The rank of A is the common value of the row and column ranks

Basic Properties of the Rank

• If
$$\mathbf{A} \in \mathbb{R}^{m \times n}$$
 then $\operatorname{rank}(\mathbf{A}) \le \min\{m, n\}$

▶
$$rank(AB) \le min{rank(A), rank(B)}$$

$$rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$$

$$rank(\mathbf{A}) = rank(\mathbf{A}^t) = rank(\mathbf{A}^t\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^t)$$

▶
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$
 has at most rank (\mathbf{A}) non-zero eigenvalues

▶
$$A \in \mathbb{R}^{n \times n}$$
 is invertible iff rank $(A) = n$, that is, A is of full rank

Outer Products

Definition: The *outer product* \mathbf{uv}^t of vectors $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$ is an $m \times n$ matrix with entries

$$(\mathbf{uv}^t)_{ij} = u_i v_j$$

- If $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ then $rank(\mathbf{u}\mathbf{v}^t) = 1$
- $\blacktriangleright ||\mathbf{u}\mathbf{v}^t|| = ||\mathbf{u}|| \, ||\mathbf{v}||$
- If m = n then $tr(\mathbf{uv}^t) = \langle \mathbf{u}, \mathbf{v} \rangle$

The Spectral Theorem

Spectral Theorem: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of \mathbf{A} .

Spectral Decomposition: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then \mathbf{A} can be expressed as

 $\mathbf{A} = \boldsymbol{\Gamma} \, \mathbf{D} \, \boldsymbol{\Gamma}^t$

where $\Gamma \in \mathbb{R}^{n \times n}$ is orthogonal and $\mathbf{D} = \text{diag}(\lambda_1(A), \dots, \lambda_n(A))$.

Corollary: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then for $k \ge 1$ we have

 $\mathbf{A}^k = \mathbf{\Gamma} \mathbf{D}^k \mathbf{\Gamma}^t$

Courant Fischer Theorem

Thm: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_1(\mathbf{A}) \geq \cdots \geq \lambda_n(A)$.

$$\lambda_1(\mathbf{A}) = \max_{\mathbf{v} \neq 0} \frac{\mathbf{v}^t \mathbf{A} \mathbf{v}}{\mathbf{v}^t \mathbf{v}} = \max_{\mathbf{v}: ||\mathbf{v}||=1} \mathbf{v}^t \mathbf{A} \mathbf{v}$$

$$\lambda_n(\mathbf{A}) = \min_{\mathbf{v} \neq 0} rac{\mathbf{v}^t \mathbf{A} \mathbf{v}}{\mathbf{v}^t \mathbf{v}} = \min_{\mathbf{v}: ||\mathbf{v}||=1} \mathbf{v}^t \mathbf{A} \mathbf{v}$$

$$\lambda_i(\mathbf{A}) \ = \ \max_{V: \dim(V) = i} \ \ \min_{\mathbf{v} \in V, ||\mathbf{v}|| = 1} \mathbf{v}^t \mathbf{A} \mathbf{v}$$