Machine Learning, STOR 565
 Overview of Matrix and Linear Algebra

Andrew Nobel

August, 2021

Vectors, Addition and Scalar Multiplication

Vectors $\mathbf{u} \in \mathbb{R}^{d}$ represented in column form by convention

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{d}
\end{array}\right]=\left(u_{1}, \ldots, u_{d}\right)^{t}
$$

Vector addition and scalar multiplication: for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}$ and $a \in \mathbb{R}$

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{d}+v_{d}
\end{array}\right] \quad \text { and } \quad a \mathbf{u}=\left[\begin{array}{c}
a u_{1} \\
\vdots \\
a u_{d}
\end{array}\right]
$$

Inner Product

Definition: The inner product of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}$ is given by

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{t} \mathbf{v}=\sum_{i=1}^{d} u_{i} v_{i}
$$

Basic Properties: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{d}$ and $a, b \in \mathbb{R}$

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$
2. $\langle a \mathbf{u}, b \mathbf{v}\rangle=a b\langle\mathbf{u}, \mathbf{v}\rangle$
3. $\langle\mathbf{u}+\mathbf{w}, \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{w}, \mathbf{v}\rangle$

Euclidean Norm

Definition: The Euclidean norm of a vector $\mathbf{u} \in \mathbb{R}^{d}$ is

$$
\|\mathbf{u}\|=\langle\mathbf{v}, \mathbf{u}\rangle^{1 / 2}=\left(u_{1}^{2}+\cdots+u_{d}^{2}\right)^{1 / 2}
$$

Basic Properties

1. $\|\mathbf{u}\| \geq 0$ with equality if and only if $x=0$
2. For $a \in \mathbb{R},\|a \mathbf{u}\|=|a|\|\mathbf{u}\|$
3. $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+2\langle\mathbf{u}, \mathbf{v}\rangle+\|\mathbf{v}\|^{2}$
4. $|\langle\mathbf{u}, \mathbf{v}\rangle|=\left|\mathbf{u}^{t} \mathbf{v}\right| \leq\|\mathbf{u}\|\|\mathbf{v}\|$ (Cauchy-Schwarz inequality)
5. $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$ (triangle inequality)
6. $|\|\mathbf{u}\|-\|\mathbf{v}\|| \leq\|\mathbf{u}-\mathbf{v}\|$ (reverse triangle inequality)

Orthogonality and Projections

Definition: Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ are orthogonal, written $\mathbf{u} \perp \mathbf{v}$, if $\langle\mathbf{u}, \mathbf{v}\rangle=0$

Defn: Let V be a subspace of \mathbb{R}^{n}. The projection of $\mathbf{u} \in \mathbb{R}^{n}$ onto V is the vector $\mathbf{w} \in V$ closest to \mathbf{u}. Formally,

$$
\operatorname{proj}_{V}(\mathbf{u})=\underset{\mathbf{w} \in V}{\operatorname{argmin}}\|\mathbf{u}-\mathbf{w}\|
$$

Fact: Let $V=\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\}$ be the 1 -d subspace generated by $\mathbf{v} \in \mathbb{R}^{n}$

1. $\operatorname{proj}_{V}(\mathbf{u})=\langle\mathbf{u}, \mathbf{v}\rangle \mathbf{v} /\|\mathbf{v}\|^{2}$
2. $\left(\mathbf{u}-\operatorname{proj}_{V}(\mathbf{u})\right) \perp \mathbf{v}$

Matrix Basics

Notation: $\mathbb{R}^{m \times n}$ denotes set of $m \times n$ matrices A with real entries

$$
\mathbf{A}=\left\{a_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

- Transpose of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is $\mathbf{A}^{t} \in \mathbb{R}^{n \times m}$ defined by $a_{i j}^{t}=a_{j i}$
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}^{t}=\mathbf{A}$
- If $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ then product $\mathbf{C}=\mathbf{A} \mathbf{B} \in \mathbb{R}^{m \times p}$ has entries

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

- In general, A B $\neq \mathbf{B A}$
- $(\mathbf{A B})^{t}=\mathbf{B}^{t} \mathbf{A}^{t}$

Determinants and Inverses

The determinant of an $n \times n$ matrix \mathbf{A} is denoted by $\operatorname{det}(\mathbf{A})$.

- $\operatorname{det}(\mathbf{A} \mathbf{B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$
- $\operatorname{det}(c \mathbf{A})=c^{n} \operatorname{det}(\mathbf{A})$
- $\operatorname{det}\left(\mathbf{A}^{t}\right)=\operatorname{det}(\mathbf{A})$

The inverse of \mathbf{A} is the unique matrix \mathbf{A}^{-1} such that

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

- \mathbf{A}^{-1} exists iff $\operatorname{det}(\mathbf{A}) \neq 0$.
- If \mathbf{A} and \mathbf{B} invertible, then $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

Eigenvalues and Eigenvectors

Each matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has n (possibly complex) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
For each eigenvalue λ_{i} there is a corresponding eigenvector $\mathbf{v}_{i} \neq 0$ s.t.

$$
\mathbf{A} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

- $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of the polynomial $p(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})$
- $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$
- Eigenvalues can be repeated
- If \mathbf{A} is symmetric then all of its eigenvalues are real

Orthogonal Matrices

Vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are orthonormal if $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=\mathbb{I}(i=j)$ for $1 \leq i, j \leq n$

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthogonal if $\mathbf{A}^{t} \mathbf{A}=\mathbf{I}$. If \mathbf{A} is orthogonal then

- $\mathbf{A}^{-1}=\mathbf{A}^{t}$
- $\mathbf{A ~ A}^{t}=\mathbf{I}$
- the rows and columns of A are orthonormal
- the eigenvalues $\lambda_{i}(\mathbf{A}) \in\{+1,-1\}$
- $\operatorname{det}(\mathbf{A}) \in\{+1,-1\}$

Quadratic Forms

Each symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an associated quadratic form $q_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
q_{A}(\mathbf{u})=\mathbf{u}^{t} \mathbf{A} \mathbf{u}=\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} a_{i j} u_{j}
$$

- \mathbf{A} is non-negative definite $(\mathbf{A} \geq 0)$ if $\mathbf{u}^{t} \mathbf{A} \mathbf{u} \geq 0$ for every \mathbf{u}
$-\mathbf{A}$ is positive definite $(\mathbf{A}>0)$ if $\mathbf{u}^{t} \mathbf{A} \mathbf{u}>0$ for every $\mathbf{u} \neq \mathbf{0}$

Fact: Let $\mathbf{A} n \times n$ be symmetric.

- $\mathbf{A} \geq 0$ iff all its eigenvalues are non-negative
- $\mathbf{A}>0$ iff all its eigenvalues are positive

Trace of a Matrix

Definition: The trace of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the sum of its diagonal elements

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

- $\operatorname{tr}(\mathbf{A})=$ sum of eigenvalues of \mathbf{A}
- $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{t}\right)$
- If \mathbf{B} is $n \times n$ then $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$

Frobenius Norm

Definition: The Frobenius norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$
\|\mathbf{A}\|=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}
$$

Basic Properties

- $\|\mathbf{A}\|^{2}=\operatorname{tr}\left(\mathbf{A}^{t} \mathbf{A}\right)$
- $\|\mathbf{A}\|=0$ if and only if $\mathbf{A}=0$
- $\|b \mathbf{A}\|=|b|| | \mathbf{A}| |$
- $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\|$
- $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$

Rank of a Matrix

Definition: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be an $m \times n$ matrix

- row-space of $\mathbf{A}=$ span of the rows of \mathbf{A} (subspace of \mathbb{R}^{n})
- col-space of $\mathbf{A}=$ span of the cols of \mathbf{A} (subspace of \mathbb{R}^{m})
- row-rank $(\mathbf{A}):=\operatorname{dim}$ of the row-space of \mathbf{A} (at most n)
- col-rank(A) := dim of the col-space of \mathbf{A} (at most m)

Fact: $\operatorname{row}-\operatorname{rank}(\mathbf{A})=\operatorname{col}-\operatorname{rank}(\mathbf{A})$

Definition: The rank of \mathbf{A} is the common value of the row and column ranks

Basic Properties of the Rank

- If $\mathbf{A} \in \mathbb{R}^{m \times n}$ then $\operatorname{rank}(\mathbf{A}) \leq \min \{m, n\}$
- $\operatorname{rank}(\mathbf{A B}) \leq \min \{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\}$
- $\operatorname{rank}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B})$
- $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{t}\right)=\operatorname{rank}\left(\mathbf{A}^{t} \mathbf{A}\right)=\operatorname{rank}\left(\mathbf{A} \mathbf{A}^{t}\right)$
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ has at most rank(A) non-zero eigenvalues
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible iff $\operatorname{rank}(\mathbf{A})=n$, that is, \mathbf{A} is of full rank

Outer Products

Definition: The outer product $\mathbf{u v}^{t}$ of vectors $\mathbf{u} \in \mathbb{R}^{m}$ and $\mathbf{v} \in \mathbb{R}^{n}$ is an $m \times n$ matrix with entries

$$
\left(\mathbf{u v}^{t}\right)_{i j}=u_{i} v_{j}
$$

- If $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ then $\operatorname{rank}\left(\mathbf{u v}^{t}\right)=1$
- $\left\|\mathbf{u} \mathbf{v}^{t}\right\|=\|\mathbf{u}\|\|\mathbf{v}\|$
- If $m=n$ then $\operatorname{tr}\left(\mathbf{u v}^{t}\right)=\langle\mathbf{u}, \mathbf{v}\rangle$

The Spectral Theorem

Spectral Theorem: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of \mathbf{A}.

Spectral Decomposition: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then \mathbf{A} can be expressed as

$$
\mathbf{A}=\boldsymbol{\Gamma} \mathbf{D} \boldsymbol{\Gamma}^{t}
$$

where $\boldsymbol{\Gamma} \in \mathbb{R}^{n \times n}$ is orthogonal and $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right)$.

Corollary: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then for $k \geq 1$ we have

$$
\mathbf{A}^{k}=\boldsymbol{\Gamma} \mathbf{D}^{k} \boldsymbol{\Gamma}^{t}
$$

Courant Fischer Theorem

Thm: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_{1}(\mathbf{A}) \geq \cdots \geq \lambda_{n}(A)$.

$$
\begin{aligned}
& \lambda_{1}(\mathbf{A})=\max _{\mathbf{v} \neq 0} \frac{\mathbf{v}^{t} \mathbf{A} \mathbf{v}}{\mathbf{v}^{t} \mathbf{v}}=\max _{\mathbf{v}:\|\mathbf{v}\|=1} \mathbf{v}^{t} \mathbf{A} \mathbf{v} \\
& \lambda_{n}(\mathbf{A})=\min _{\mathbf{v} \neq 0} \frac{\mathbf{v}^{t} \mathbf{A} \mathbf{v}}{\mathbf{v}^{t} \mathbf{v}}=\min _{\mathbf{v}:\|\mathbf{v}\|=1} \mathbf{v}^{t} \mathbf{A} \mathbf{v} \\
& \lambda_{i}(\mathbf{A})=\max _{V: \operatorname{dim}(V)=i} \min _{\mathbf{v} \in V,\|\mathbf{v}\|=1} \mathbf{v}^{t} \mathbf{A} \mathbf{v}
\end{aligned}
$$

