
STOR 655 Homework 2022

A. Calculus and Real Analysis

1. Show that 1+x ≤ ex for every real number x. First sketch the picture. Then use calculus

to rigorously establish the result. Deduce that log x ≤ x− 1 for every x > 0.

2. Show that (1 + u/3)3 ≥ 1 + u for every u ≥ 0.

3. Recall that if f : X → R is a real-valued function then the argmax of f is the set of

points in x at which f is maximized,

arg max
x∈X

f(x) =

{
x ∈ X : f(x) = sup

u∈X
f(u)

}
.

The argmin of f is similarly defined.

(a) Let f : X → R be defined on a set X ⊆ R by f(x) = x2. Identify the value of

sup
x∈X

f(x) and arg max
x∈X

f(x)

in each of the following cases: X = [−2, 2], X = (−2, 2], X = (−2, 2), and X = (−3, 2].

(b) LetA be a bounded subset of Rd. Identify the values of infx f(x), supx f(x), arg minx f(x),

and arg maxx f(x) for the function f : Rd → R defined by

f(x) = inf
y∈A
||x− y||.

4. How you can obtain inequalities for log(1 + x) and log(1− x) from Taylor’s theorem.

(a) Expand the function h(v) = log v in a third order Taylor series around the point v = 1.

(Thus you will be expressing h(1 + x) in terms of x, h(1), h
′
(1), h

′′
(1), and h

′′′
(u) for

some u between 1 and 1 + x. Note that x may be negative.)

(b) By examining the final term in the series, use part (a) to show that log(1+x) ≥ x−x2/2

for x ≥ 0.

(c) By examining the final term in the series, use part (a) to show that log(1 − x) ≤

−x− x2/2 for 0 ≤ x < 1.

1



5. Let h(u) = (1 + u) log(1 + u) − u. (This function appears in Bennett’s exponential

inequality for sums of independent, bounded random variables.)

(a) By considering the first few terms of Taylor expansion of the function h(·) around zero,

show that for every u ≥ 0

h(u) ≥ u2

2 + 2u

(b) (Optional) Use calculus to establish the stronger bound that for every u ≥ 0

h(u) ≥ u2

2 + 2u/3

6. Show that xy ≤ 3x2 + y2/3 for x, y ≥ 0.

7. Show that if d ≥ 3 then
∫
Rd ||u||−2 e−||u||

2
du = c

∫∞
0 e−r

2
rd−3dr <∞.

8. Show that |ea − eb| ≤ eb e|a−b| |a− b|.

9. Let {a1, . . . , an} and {b1, . . . , bn} be two sequences of numbers. Rigorously establish the

following inequalities.

(a) min{ai}+ min{bi} ≤ min{ai + bi} ≤ min{ai}+ max{bi}

(b) −min{ai} = max{−ai} and −max{ai} = min{−ai}

(c) max{ai} −max{bi} ≤ max{|ai − bi|}

Use part (b) to find a chain of inequalities like that in part (a) for maxima

10. (Saddle points and minimax) Let X and Y be sets and let f : X × Y → R be any

function.

a. Show that, with no further assumptions,

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y) (1)

This simple fact plays an important role in optimization, where it implies the weak duality

property of the Lagrange dual problem, and in game theory, where it has connections with

Nash equilibria. A pair (x̃, ỹ) ∈ X × Y is called a saddle point for f if

f(x̃, y) ≤ f(x̃, ỹ) ≤ f(x, ỹ) for every x ∈ X and y ∈ Y
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b. Show that if (x̃, ỹ) is a saddle point for f then

f(x̃, ỹ) = inf
x∈X

f(x, ỹ) and f(x̃, ỹ) = sup
y∈Y

f(x̃, y)

To see how these inequalities explain the use of the terminology “saddle point”, assume

that f is nice and smooth, and sketch what it will look like in a neighborhood around

the point (x̃, ỹ).

c. Show that the existence of a saddle point implies equality in inequality (1) above.

d. Evaluate both sides of (1) when X = [0, 1], Y = [−1, 1], and f(x, y) = x2y.

11. For each k = 1, . . . ,K let {ak(n) : n ≥ 1} be a sequence of real numbers. Find an

inequality or equality relating

lim sup
n→∞

max
1≤k≤K

ak(n) and max
1≤k≤K

lim sup
n→∞

ak(n)

Find an inequality or equality relating

lim inf
n→∞

max
1≤k≤K

ak(n) and max
1≤k≤K

lim inf
n→∞

ak(n)

12. Let a1, . . . , an be real numbers. Show that n−1
∑n

k=1 |ak| ≤ (n−1
∑n

k=1 a
2
k)

1/2.

13. Let a1, . . . , an and b1, . . . , bn be positive constants.

a. Use Jensen’s inequality to establish the Arithmetic-Geometric mean inequality

1

n

n∑
i=1

ai ≥

(
n∏
i=1

ai

)1/n

.

b. Establish the inequality

(Πn
k=1ak)

1/n + (Πn
k=1bk)

1/n ≤ (Πn
k=1(ak + bk))

1/n

Hint: First divide the LHS by the RHS.

14. Let ||u|| = 〈u, u〉1/2 be the usual Euclidean norm on Rd. Establish the following.

(a) ||u|| ≥ 0 with equality iff u = 0

(b) ||u+ v||2 = ||u||2 + 2〈u, v〉+ ||v||2
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(c) Cauchy-Schwartz inequality |〈u, v〉| = |utv| ≤ ||u|| ||v||

(d) ||u+ v|| ≤ ||u||+ ||v|| Hint: square the left side and use Cauchy-Schwartz

(e) | ||u|| − ||v|| | ≤ ||u− v|| (reverse triangle inequality)

15. Let x = (x1, . . . , xd)
t ∈ Rd and let ||x|| be the Euclidean (`2) norm of x. Show that for

1 ≤ i ≤ d,

|xi| ≤ ||x|| ≤ |x1|+ · · ·+ |xd|.

Use the inequalities to show that if X ∈ Rd is a random vector then E||X|| <∞ if and only

if E|Xi| <∞ for 1 ≤ i ≤ d.

16. Show that ||x||∞ = limp↗∞ ||x||p. For 0 ≤ p ≤ 1 define ||x|p =
∑d

i=1 |xi|p. Show that

||x||0 = limp↘0 ||x||p.

17. Establish the following linear algebra facts from class. Let A,B ∈ Rn×n.

(a) If A is a projection matrix then all of its eigenvalues are zero or one.

(b) If A is a projection matrix then rank(A) = tr(A).

(c) If A is a symmetric projection matrix then Av is orthogonal to v −Av for every v.

(d) tr(A+B) = tr(A) + tr(B)

(e) tr(AB) = tr(BA)

(f) If A > 0 then A−1 > 0.

18. Show that if Q ∈ Rn×n is orthogonal then ||Qx|| = ||x|| for every x. What does this

tell you about the real eigenvalues of Q? Let A ∈ Rn×n be symmetric. Use the spectral

decomposition of A to show that

sup
x:xT x= 1

xTAx = λn

where λn is the largest eigenvalue of A. Deduce from this that

sup
x 6=0

xTAx

xTx
= λn.

Find a vector for which the inequality is satisfied with equality.

19. Show that if u, v ∈ Rn are orthogonal then ||u||2 + ||v||2 ≤
√

2||u+ v||2.
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20. Let A(t) = {Ai,j(t) : 1 ≤ i, j ≤ n} be a matrix whose entries are differentiable functions

of a real number t. Define the entry-wise derivative

A′(t) = {A′i,j(t) : 1 ≤ i, j ≤ n}

(a) Show that the entry-wise derivate obeys the usual product rule, that is,

[A(t)B(t)]′ = A(t)B′(t) + A′(t)B(t)

21. Let f : Rd → R be a function. Give the definition of what it means for f to be (i)

continous and (ii) uniformly continuous.

22. Give a simple example of a family of functions gn : R→ [0, 1] such that gn(x)→ g(x) = 1

for each x ∈ R but supx∈R |gn(x) − g(x)| = 1 for each n. Optional: Find an example like

that above with functions gn : [0, 1]→ [0, 1].

23. Let A ⊂ Rd be non-empty. Define the function f : Rd → [0,∞), representing the

minimum distance from x to the set A, by

f(x) := inf
y∈A
||x− y||

Show that f(x) is Lipschitz with constant 1, that is, |f(x) − f(y)| ≤ ||x − y|| for every

x, y ∈ Rd.

24. Let X ⊆ Rd and let f1, f2, . . . , f : X → R. Suppose that fn converges uniformly to f in

the sense that

sup
x∈X
|fn(x)− f(x)| → 0 as n→∞.

For each n ≥ 1 let xn ∈ arg max fn, which we assume to be non-empty.

(a) Show that supx f(x) is finite and that f(xn)→ supx∈X f(x).

(b) Show that if f is continuous and X is compact, then d(xn, arg max f) → 0, where

d(x,K) = infu∈K ||x− u||.

25. Let f : Rd → R be a function. Show that the following are equivalent.

a f is upper semicontinuous (as defined in the lecture notes) on Rd
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b for every x0 ∈ Rd and every ε > 0 there is a δ > 0, possibly depending on x, such that

||x− x0|| < δ implies f(x) ≤ f(x0) + ε

c the super-level sets {x : f(x) ≥ α} are closed for every α ∈ R

26. Show that if f1, f2, . . . : Rd → R are u.s.c. then so is g(x) = infn fn(x).

27. Suppose that f : Rd → R is upper semicontinuous at v. Show that supu∈B(v,δ) f(u) ↘

f(v) as δ → 0, where B(v, δ) is the open ball of radius δ centered at v.

28. Let (S, d) be a metric space, and let N(S, ε) be the covering number of S under the

metric d(., .) at radius ε.

(a) What can you say about the limit of N(S, ε) as ε→ 0? [Consider the case where S is

finite and S is infinite.]

(b) Now let S0 ⊆ S be a subset of S. By definition, an ε-cover of S0 contains of balls

of radius ε centered at points in S0, and N(S0, ε) is the size of the smallest such

cover. Consider instead general ε-covers of S0 that are centered at points in S, so that

centers need not be in S0. Let Ñ(S0, ε) be the smallest such general cover. Find a

simple relationship between N(S0, ε) and Ñ(S0, ε).

29. Let a1, . . . , an and b1, . . . , bn be numbers in the interval [−1, 1]. Establish the inequality

|a1 · · · an − b1 · · · bn| ≤
n∑
i=1

|ai − bi|

Hint: Use induction and the fact that a1a2 − b1b2 = (a1 − b1)a2 + b1(a2 − b2).

B. The Normal Distribution

1. Let U ∼ Nd(µ,Σ) and let V = Σ1/2Y + µ where Y ∼ Nd(0, I).

(a) Show that EU = EV and that Var(U) = Var(V ).

(b) Fix v ∈ Rd. Find the distributions of the random variables 〈v, U〉 and 〈v, V 〉. Note

that these distributions are the same. Thus U
d
= V .
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2. Give a simple example of random vectors X,Y ∈ R2 such that Cov(X,Y ) 6= Cov(Y,X).

3. Let X ∼ N (0, σ2). Establish the identity

E exp{aX2 + bX} =
1√

1− 2aσ2
exp

{
σ2b2

2(1− 2aσ2)

}
Hint: Write the expectation as an integral. Combine terms in the exponent and complete

the square. Remove the constant factor and perform a simple change of variables to evaluate

the remaining integral.

4. Let X ∼ Nd(µ,Σ), and let A ∈ Rk×d and B ∈ Rl×d be matrices. Show that the random

vectors Y = AX and Z = BX are independent if and only if AΣBT = 0. You may appeal

to the general independence result from class.

5. Show that if X ∼ Nd(µ,Σ) and U = XTAX then EU = tr(AΣ) + µTAµ. (It may be

helpful to use the fact that tr(UV ) = tr(V U).)

6. (Stein’s Lemma) Let X ∼ N (0, 1) and let f be a continuously differentiable real-valued

function such that E|f ′(X)| <∞.

(a) Assuming that f is zero outside a finite interval (a, b), use integration-by-parts to

establish that E[Xf(X)] = Ef ′(X).

(b) Extend the identity above to the case X ∼ N (0, σ2)

(c) Show that if X ∼ N (µ, σ2) then E[(X − µ)f(X)] = σ2 Ef ′(X)

7. (Stein’s Lemma for Covariance) Let X,Y ∈ R be non-degenerate jointly normal random

variables with mean zero, and let f be a continuously differentiable real-valued function

satisfying appropriate integrability conditions.

a. Argue that we can write X = aZ1 + bZ2 and Y = bZ1 + cZ2 where Z1, Z2 are inde-

pendent standard normal random variables, and a, b, c are real constants.

b. Find Cov(X,Y ) in terms of a, b, c.

c. Show that Cov(f(X), Y ) = Ef ′(X) Cov(X,Y ). Hint: Use the representations of X

and Y in terms of Z1 and Z2. Apply Stein’s identity after appropriate conditioning.

d. Give some thought to what integrability conditions are needed for the covariance iden-

tity in part c.
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8. (Bivariate normal distribution). Let X = (X1, X2)t ∼ N2 with

EX1 = µ1, EX2 = µ2, Var(X1) = σ2
1, Var(X2) = σ2

2, Corr(X1, X2) = ρ ∈ [−1, 1]

(a) Find µ = EX and Σ = Var(X) in terms of the quantities above.

(b) Find the determinant of Σ and conclude that Σ is invertible if and only if ρ ∈ (−1, 1).

(c) Find Σ−1 when ρ ∈ (−1, 1).

(d) Write down the density f(x) of X in the case ρ ∈ (−1, 1).

9. Let Φ(x) and φ(x) be the cumulative distribution function and density, respectively, of the

standard normal distribution. In this problem, you are asked to find a useful approximation

to 1− Φ(x) when x is large. Note that for x > 0,

1− Φ(x) = Φ(−x) =

∫ −x
−∞

1

t
· t φ(t) dt

(a) Apply integration-by-parts to the last integral above. Use the resulting expression

establish the upper bound 1− Φ(x) ≤ x−1 φ(x) for x > 0.

(b) Apply the same steps to the integral appearing in the integration-by-parts. Use this

to establish the lower bound

1− Φ(x) ≥ (
1

x
− 1

x3
)φ(x) for x > 0.

(c) Conclude that as x→∞ (1− Φ(x)) = φ(x)
x (1 + o(1))

10. Let Γ(x) be the standard Gamma function, defined for x > 0. Show that if Z ∼ N (0, 1)

then for each p ≥ 1

E|Z|p =
2p/2√
π

Γ((1 + p)/2)

Deduce from this fact and Stirling’s approximation that ||Z||p := (E|Z|p)1/p = O(p1/2).

11. Let X1, . . . , Xn be independent standard normal random variables. Here we identify

upper and lower bounds for the expectation of Kn := max1≤i≤n |Xi|.

(a) Using the bound from class and the fact that Kn = maxi(Xi,−Xi) show that EKn ≤

(2 log 2n)1/2.
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(b) Let Φ() be the CDF of the standard normal. Show that

Kn = Φ−1

(
1

2
+

1

2
max

1≤i≤n
Vi

)
where V1, . . . , Vn are independent Uniform(0, 1) random variables.

(c) Show that Φ−1(u) is convex on [1/2, 1). Apply Jensen’s inequality to the expression

in (b) to obtain the bound EKn ≥ Φ−1 (1− 1/(2n+ 2)).

(d) Show that Φ−1(1− t−1)/(2 log t)1/2 → 1 as t→∞.

(e) Conclude from (a), (c), and (d) that EKn/(2 log n)1/2 → 1 as n→∞.

12. Extreme value theory for the Gaussian. Let an and bn be the extreme value scaling

and centering constants for the maximum Mn of n independent standard Gaussian random

variables.

(a) Fix x ∈ R and let xn = x/an + bn. Show that nφ(xn)/xn → e−x as n tends to infinity.

[In your calculations, identify and pay careful attention to the leading order terms.]

(b) Using the result of part (a) and the standard Gaussian tail bound from an earlier

homework, show that n(1− Φ(xn))→ e−x.

(c) Use part (b) and the lemma from lecture to show that as n tends to infinity

P(an(Mn − bn) ≤ x)→ G(x) = e−e
−x

(d) Show that G(x) is the CDF of − log V where V ∼ Exp(1).

13. Establish the following facts about the Gaussian mean width w(K) of a bounded set

K ⊆ Rn.

(a) If K1 ⊆ K2 then w(K1) ≤ w(K2)

(b) w(K) ≥ 0

(c) If A ∈ Rn×n is orthogonal then w(AK) = w(K)

(d) For each u ∈ Rn, w(K + u) = w(K)

(e) w(K) = w(conv(K))

(f)
√

2/π diam(K) ≤ w(K) ≤ n1/2 diam(K)

(g) w(K) ≤ 2E supx∈K〈x, V 〉 with V ∼ Nn(0, I)
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14. Read the statement and proof of the basic Gaussian comparison lemma in the on-

line notes. Fill in the necessary details for equation (1.3), which makes use of Gaussian

integration-by-parts. Write out a proof of the Gaussian comparison lemma in the case

n = 1, following the proof of the general result. As n = 1, you will not need the conditioning

argument, but you will need to exchange the operations of expectation and differentiation.

Provide sufficient conditions on G and its derivatives to justify this exchange of limit oper-

ations, and show as carefully as you can why these conditions are sufficient. (You need not

worry about finding the most general sufficient conditions; any reasonable conditions will

do.)

15. Carefully verify that the Gaussian comparison lemma holds for the quadratic function

G(x) = xtAx, where A is a symmetric matrix.

16. Let X1, . . . , Xn be independent random variables with Xi ∼ N (θi, 1). Suppose that we

wish to simultaneously test the hypotheses H0,i : θi = 0 vs. H1,i : θi 6= 0 for 1 ≤ i ≤ n.

Consider a simple threshold test in which we reject H0,i if |Xi| > τ and accept H0,i otherwise.

Using the asymptotic results on Gaussian extreme values, find a value of the threshold

τ , depending on n, so that the family-wise error rate of the test under the global null

θ1 = · · · = θn = 0 is (approximately) controlled at 5%.

17. Use the general versions of Stein’s Lemma given in class to show that if Y ∼ Nn(θ, I)

and g : Rn → Rn is a sufficiently nice function then E[(Y − θ)T g(Y )] = E[∇T g(Y )].

18. In class we established a risk bound for the James-Stein estimator for observations

Y ∼ Nn(θ, I). By looking over the proof, establish an analogous bound in the case Y ∼

Nn(θ, σ2I) with σ > 0 known.

19. Show that if Y ∼ N (0, σ2) and c > 0 then E{|Y |I(|Y | > c)} ≤ σ exp{−c2/2σ2}

C. Convex Sets and Functions

1. Let {Cλ : λ ∈ Λ} be convex sets. Show that the intersection C = ∩λ∈ΛCλ is convex.

2. Show that the following subsets of Rd are convex.
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a. The emptyset

b. The hyperplane H = {x : xtu = b}

c. The halfspace H+ = {x : xtu > b}

d. The ball B(x0, r) = {x : ||x− x0|| ≤ r}

3. Show that if f1, . . . , fk are convex functions defined on the same set, and w1, . . . , wk are

non-negative, then f =
∑k

j=1wj fj is convex.

4. Let {fλ : λ ∈ Λ} be convex functions defined on a common set C. Show that the

supremum f = supλ∈Λ fλ is convex.

5. Recall that the convex hull of a set A ⊆ Rd, denoted conv(A), is the intersection of all

convex sets C containing A. Show that conv(A) is equal to the set of all convex combinations∑k
i=1 αi xi, where k ≥ 1 is finite, x1, . . . , xk ∈ A, and the coefficients αi are non-negative

and sum to one.

6. Identify the extreme points (if any) of the following convex sets.

a. The hyperplane H = {x : xtu = b}

b. The halfspace H+ = {x : xtu > b}

c. The closed ball B(x0, r) = {x : ||x− x0|| ≤ r}

7. Let f : C → R be a strictly convex function defined on a convex set C ⊆ Rn. Show that

argmaxx∈Cf(x) is contained in the set of extreme points of C.

8. (Set sums and scaler products) Given sets A,B ⊆ Rd and a constant α ∈ R define the

set sum and set scaler product as follows:

A+B = {x+ y : x ∈ A and y ∈ B} αA = {αx : x ∈ A}

a. (Optional) Show that if A is open then A+B is open regardless of whether B is open.

b. Show that if A and B are convex, then so is A+B.

c. If A is convex is A+B necessarily convex?

d. Show by example that, in general, 2A 6= A+A.
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d. Show that if A is convex then αA+ βA = (α+ β)A for all α, β ≥ 0.

9. Let f be a convex function defined on a convex set C. Show that for each α ∈ R the

level set L(α) = {x : f(x) ≤ α} is convex.

10. Let X ∈ R be an integrable random variable with CDF F (x), and for 0 < p < 1 let

hp(x, θ) = p(x− θ)+ + (1− p)(θ − x)+.

(a) Show that for each fixed p and x, hp(x, θ) is a convex function of θ.

(b) Show that, under reasonable assumptions on F , the quantity Ehp(X, θ) is minimized

by the pth quantile F−1(p) of X. Clearly state any assumptions that you make.

(c) What does the result of part (b) tell you in the special case p = 1/2.

11. Let f be a convex function on an open interval I ⊆ R and let a < b < c be in I.

(a) Show that
f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b
.

(Hint: express b as a convex combination of a and c and then apply the definition of

convexity.)

(b) Draw a picture illustrating this result. Interpret the result in terms of the slopes of

chords of the function f .

(c) Let L∗(b) = supa<b L(a, b) and U∗(b) = infc>b U(c, b). Using equation (??) above,

argue carefully that L∗(b) ≤ U∗(b) and that both quantities are finite.

(d) Argue that for every c ∈ I with c > b the inequality f(c) ≥ f(b) + (c− b)L∗(b) holds.

Argue that for every a ∈ I with a < b the inequality f(a) ≥ f(b) + (a− b)U∗(b) holds.

D. Statistics

1. Establish the following relations for random vectors X and Y of appropriate dimension.

(a) E(AX) = AEX

(b) Var(AX) = AVar(X)At
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(c) Cov(X,Y ) = Cov(Y,X)t

(d) Var(X + Y ) = Var(X) + Var(Y ) + Cov(X,Y ) + Cov(Y,X)

(e) If X,Y are independent, then Cov(X,Y ) = 0

2. Let X,Y be non-negative random variables defined on the same probability space.

(a) Show that EX =
∫∞

0 P(X > t) dt. Hint: Use the identity x =
∫∞

0 I(x > t) dt in the

integral for EX.

(b) Let g : [0,∞) → R be a function with g(0) = 0 having a continuous, non-negative

derivative g′(x). Argue that g(x) is non-negative and use the proof from part (a) to

show that Eg(X) =
∫∞

0 P(X > t) g′(t) dt

(c) (Optional.) Show that Cov(g(X), g(Y )) =
∫∞

0

∫∞
0 H(s, t) g′(s) g′(t) ds dt where

H(s, t) = P(X > s, Y > t)− P(X > s)P(Y > t)

3. Let U, V,W be random variables. Carefully establish the following inequalities.

(a) P(|U + V | > a+ b) ≤ P(|U | > a) + P(|V | > b) for every a, b ≥ 0.

(b) P(|U V | > a) ≤ P(|U | > a/b) + P(|V | > b) for every a, b > 0.

4. Let X1, X2, . . . , X and Y1, Y2, . . . , Y be d-dimensional random vectors defined on the

same probability space such that Xn → X in probability and Yn → Y in probability. Show

that (Xn + Yn)→ (X + Y ) in probability.

5. Let F1, F2, . . . , F be one dimensional CDFs. Show that if F (x) is continuous, and

Fn(x) → F (x) as n tends to infinity for every x ∈ R, then supx∈R |Fn(x) − F (x)| → 0

as n tends to infinity. [Hint: Mimic the arguments for the Glivenko-Cantelli theorem given

in class.] What are the implications of this fact for the central limit theorem?

6. Establish the Glivenko-Cantelli theorem for an i.i.d. sequence X1, X2, . . . of discrete ran-

dom variables taking values in a countable set S ⊆ R. [Hint: The case when S is finite can

be handled by a direct appeal to the LLN. If S is infinite, split S into a finite set S0 and

an infinite set S1 with probability at most ε. Apply the LLN to handle S0, and argue that

any residual error arising from S1 is comparable to ε.]
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7. Let X be a real-valued random variable with CDF F (x). For 0 < p < 1 define the

quantile function

ϕ(p) = inf{x : F (x) ≥ p}

(a) Use the right-continuity of F to show that ϕ(p) ≤ x if and only if p ≤ F (x).

A number M = M(X) is said to be a median of X if P (X > M) ≤ 1/2 and P (X < M) ≤

1/2. Note that X may have more than one median.

(b) Show that M = M(X) always exists and that M(X) is unique if F is monotone

increasing.

8. Establish the following relations for stochastic order symbols

(a) op(1) = Op(1)

(b) Op(1) +Op(1) = Op(1)

(c) Op(1) + op(1) = Op(1)

(d) op(1) + op(1) = op(1)

(e) Op(1)Op(1) = Op(1)

(f) Op(1)op(1) = op(1)

9. Show directly (without appealing to results about weak convergence) that ifX1, X2, . . . , X ∈

Rd are random vectors such that Xn → X in probability then Xn = Op(1).

10. Let U and V be independent N (0, 1) random variables. Define Y = V and let

X =

 U if UV ≥ 0

−U if UV < 0

(a) Let A ⊆ [0,∞) be a Borel set. Show that P(X ∈ A) = P(U ∈ A). Hint: Begin with

the decomposition P(X ∈ A) = P(X ∈ A,UV ≥ 0) + P(X ∈ A,UV < 0).

(b) Carry out a similar analysis for sets A ⊆ (−∞, 0). Use this and the previous step to

show that X has a N (0, 1) distribution.

(c) Show that XY = |UV | ≥ 0 and that Corr(X,Y ) = 2/π < 1. Conclude from these

facts that X and Y are not jointly normal.

(d) Show that X2 and Y 2 are independent.
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11. Let X1, X2, . . . and Y1, Y2, . . . be two sequences of random variables defined on the same

probability space such that Xn ∼ N (0, 1) and Yn ∼ N (0, n) are independent. Show that

Xn = oP (Yn).

12. Let X1, X2, . . . ∈ Rd be random vectors, possibly defined on different probability spaces,

such that Xn ⇒ c where c ∈ Rd is constant. Show that Xn → c in probability. Hint: Note

that for δ > 0, I(||x− c|| > δ) ≤ fδ(x) where fδ(x) = δ−1||x− c|| ∧ 1.

13. Let X ∼ Nn(0, I) and Y ∼ Nn(0, I) be independent multinormal random variables. For

0 ≤ θ ≤ π/2 define random vectors

X(θ) = X sin θ + Y cos θ

Ẋ(θ) = X cos θ − Y sin θ

(a) Show that for each θ, X(θ) and Ẋ(θ) have the same distribution as X.

(b) Show that for each θ, X(θ) and Ẋ(θ) are independent.

14. Concentration for norms of Gaussian random vectors. Let Y ∼ Nd(0,Σ) and consider

the random variable U = ||Y ||.

(a) Show that U = F (X) in distribution, where X ∼ Nd(0, I) and F (x) = ||Σ1/2x||

(b) Show that F Lipschitz with constant

L ≤ sup
u∈Rd

||Σ1/2u||
||u||

(c) Find a bound on the right hand side of the inequality above involving the largest

eigenvalue of Σ.

(d) Find a concentration inequality for U .

15. Explain and prove the relation op(Op(1)) = op(1) for random variables.

16. Let X1, . . . , Xn be i.i.d. Exp(1) random variables.

(a) Write down the joint density of X = (X1, . . . , Xn) using indicator functions to capture

the fact that the variables Xi are positive.

15



(b) For 1 ≤ k ≤ n define the random variable Yk = X1 + · · ·+Xk. Use the general change

of variables formula to find the density of Y = (Y1, . . . , Yn).

17. Let Wn ∼ χ2
n be a chi-squared random variable with n degrees of freedom, and let χ2

n,α

be the upper 1− α percentile of the χ2
n distribution.

(a) Following the arguments in class, find EWn and Var(Wn), and show that

Wn − EWn

Var(Wn)1/2
⇒ N (0, 1)

(b) Use part (a) of the problem to establish the (non-stochastic) relation

χ2
n,α − n√

n
→
√

2zα

where zα is the 1 − α upper percentile of the standard normal. Hint: If the desired

result fails to hold, then there is a subsequence {nk} along which the centered and

scaled percentiles converge to a number greater than, or less than,
√

2zα. Use this to

get a contradiction.

18. Let X1, X2, . . . ∈ Rd be i.i.d. random vectors with EXi = µ and Var(Xi) > 0. Let

T 2
n = (n− 1)(Xn − µ)tS−1

n (Xn − µ)

be Hotelling’s T 2 statistic, where Sn = n−1
∑n

i=1(Xi −Xn)(Xi −Xn)t. Show as carefully

as you can that T 2
n ⇒ χ2

d.

19. Let the sample correlation coefficient rn of a bivariate data set be defined as in class.

Show that 1 ≤ rn ≤ 1.

20. Let X be a random variable with a finite variance and let Y = min(X, c) for some

constant c. Show that the variance of Y exists and is less that or equal the variance of X.

[Hint: By considering Y − c, show that the assertion is valid for every c if it is valid for

c = 0. For the case c = 0, express X in terms of Y and Z = max(X, 0), and then consider

the covariance of Y and Z.]

21. Let X1, X2, . . . , X ∈ R be i.i.d. random variables and let F be a family of functions

f : R→ [0, 1]. We say that a uniform law of large numbers holds for F if

sup
f∈F

∣∣∣∣∣n−1
n∑
i=1

f(Xi)− Ef(X)

∣∣∣∣∣ → 0 wp1 as n→∞ (2)
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a. Show carefully that the Glivenko-Cantelli theorem proved in class is a special case of

(2) in which F = {I(−∞,t] : t ∈ R} is the family of indicator functions of left-infinite

closed intervals in R.

b. Use the Glivenko-Cantelli theorem to establish a uniform law of large numbers for the

family F = {I(a,b] : a, b ∈ R}

c. Show that (2) does not hold when the distribution of X has a density and F contains

the indicator function of every open subset of R.

22. Let X1, X2, . . . , X ∈ R be i.i.d. with finite fourth moment, mean µ, variance σ2, and

kurtosis equal to zero. Assume that µ is known. Let

θ̂n =
1

n+ 2

n∑
i=1

(Xi − µ)2

be an estimator of σ2 based on X1, . . . , Xn.

a. If the Xi are normally distributed, what is the minimum mean squared error of an

unbiased estimator θ̃n of σ2 based on X1, . . . , Xn.

b. Show that θ̂n is biased, and find its bias.

c. Find a simple expression for the mean squared error of θ̂n. Compare this to the lower

bound you found in part (a).

23. Let X be a non-negative random variable such that EX2 is finite. Show that for each

0 < λ < 1 we have the inequality

P(X ≥ λEX) ≥ (1− λ)2 (EX)2

EX2

Hint: Use the Cauchy-Schwartz inequality and the identity X = X I(X ≥ c) +X I(X < c).

24. 1. Let X1, . . . , Xn be independent Bernoulli random variables with EXi = pi. Let

S = X1+· · ·+Xn and let µ = ES =
∑n

i=1 pi. Use Chernoff’s bound and a MGF computation

to show that for all t > µ

P(S > t) ≤ exp{t− µ− t log(t/µ)}

How does this bound compare to Hoeffding’s inequality?
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25. Let S(xn1 : A) = |{A ∩ {x1, . . . , xn} : A ∈ A}| be the shatter coefficient of a family

A ⊆ 2X . Show that for every sequence x1, . . . , xm+n ∈ X we have the sub-multiplicative

relation

S(xm+n
1 : A) ≤ S(xm1 : A) · S(xm+n

m+1 : A).

26. Let X ∼ χ2
k have a chi-squared distribution with k degrees of freedom.

(a) Using an identity from a previous homework, or a direct argument, show that if Z is

standard normal and s < 2 then E exp{sZ2} = (1− 2s)−1/2.

(b) Show that the MGF of X is equal to ϕX(s) = (1− 2s)−k/2.

(c) Use the Chernoff bound and result of Problem 5 above to establish that for 0 ≤ ε ≤ 1,

P (X ≥ (1 + ε)k) ≤ exp

{
−k

4
(ε2 − ε3)

}

27. Let X be a random variable and G a sigma-field such that (i) E(X | G) = 0 and (ii)

U ≤ X ≤ U + c with probability one for some c > 0 where U is G-measurable. Show that

E
[
esX | G

]
≤ es2c2/8 with probability one.

28. Let Hi(x
i
1) := E[ f(Xn

1 ) |Xi
1 = xi1 ] be defined as in the proof of McDiarmid’s inequality.

Show carefully that

sup
u,u′

[Hi(x
i−1
1 , u) − Hi(x

i−1
1 , u′) ] ≤ ci,

where ci is the i’th difference coefficient of f . Note carefully how your argument depends

on the independence of X1, . . . , Xn.

29. Independent Copies. Let X,X ′ be independent random variables with the same distri-

bution. In this case we say that X ′ is an independent copy of X.

(a) Show that Var(X) = 1
2E(X −X ′)2

(b) Argue formally or informally that E(X ′ |X) = EX

(c) Using the result of part (b) and Jensen’s inequality for conditional expectations, show

that E|X−EX| ≤ E|X−X ′|. This is a key step in establishing a number of important

bounds in empirical process theory.
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Let X1, . . . , Xn ∈ X be i.i.d. and let G be a family of function g : X → [−c, c]. Define

f(xn1 ) = sup
g∈G

∣∣∣n−1
n∑
i=1

g(xi) − Eg(X)
∣∣∣

Find the difference coefficients c1, . . . , cn of f , and use these to establish concentration

bounds for the random variable f(Xn
1 ).

30. Let X1, . . . , Xn ∈ Rd be independent random vectors such that EXi = 0 and ||Xi|| ≤

ci/2 with probability one, where ||u|| = (utu)1/2 is the ordinary Euclidean norm. Let

α = (1/4)
∑n

i=1 c
2
i .

(a) Show that E||
∑n

i=1Xi|| ≤
√
α.

(b) Use the bounded difference inequality and the inequality in part (a) to show that for

all t ≥
√
α

P

(
||

n∑
i=1

Xi|| > t

)
≤ exp

{
−(t−

√
α)2

2α

}

31. Let X be a random variable satisfying the concentration type inequality P(|X| > t) ≤

a e−b t
2

for all t ≥ 0, where a ≥ 1 and b ≥ 0. Show that

E|X| ≤
√

1 + log a

b
.

Hint: Note that for s ≥ 0 we have EX2 ≤ s+
∫∞
s P(X2 ≥ t) dt. Use Cauchy-Schwartz.

32. Let X1, . . . , Xn be random variables with moment generating functions ϕXi(s) ≤ ϕ(s)

for each s ≥ 0.

(a) Using the argument in class for Gaussian random variables, show that

Emax(X1, . . . , Xn) ≤ inf
s>0

log n+ logϕ(s)

s
.

Suppose now that U1, . . . , Un are Gamma(α, β) random variables.

(b) Show that the moment generating function of Ui is ϕ(s) = (1− s β)−α.

(c) Using the bound from part (a) and an appropriate choice of s, which can be found by

inspection, show that

Emax(U1, . . . , Un) ≤ 2β log n

1− n−1/α
.
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33. Let U1, . . . , Un be independent Uniform(0, θ) random variables. Find E [max1≤j≤n Uj ].

34. Let V ⊆ Rn be a finite set of vectors v = (v1, . . . , vn)t with L = maxv∈V ||v||2, and let

ε1, . . . , εn be independent Rademacher (sign) variables.

(a) Use Hoeffding’s MGF inequality to bound the moment generating functions of the

random variables
∑n

i=1 εivi in terms of the constant L.

(b) Show that

E

[
max
v∈V

n∑
i=1

εivi

]
≤
√

2L2 log |V |

35. Let X be a set, and let C ⊆ 2X be a (possibly infinite) family of sets C ⊆ X . Let

X1, . . . , Xn ∈ X be i.i.d. with distribution µ and define

∆(Xn
1 ) = sup

C∈C

∣∣∣n−1
n∑
i=1

I(Xi ∈ C) − µ(C)
∣∣∣

(a) By carefully adapting the argument for the Symmetrization inequality proved in class,

establish directly that

E∆(Xn
1 ) ≤ 2E sup

C∈C

∣∣∣n−1
n∑
i=1

εi I(Xi ∈ C)
∣∣∣ (3)

where ε1, . . . , εn are independent Rademacher (sign) variables. (The idea here is to

repeat the arguments in the proof in this special case, not to appeal to the general

result. Show your work.) The quantity on the right, without the leading factor of

two, is sometimes called the expected Rademacher complexity of C with respect to

X1, . . . , Xn.

(b) Show that the Rademacher complexity can be bounded as follows

E sup
C∈C

∣∣∣ n∑
i=1

εi I(Xi ∈ C)
∣∣∣ ≤ √

2n logES(Xn
1 : C)

where S(xn1 : C) = |{C ∩ {x1, . . . , xn} : C ∈ C}| is the shatter coefficient of the family

C. [Hint: First condition on the observations X1, . . . , Xn.]

(c) Combine the bounds above with the bounded difference inequality to get a high prob-

ability bound on ∆(Xn
1 ).

36. Show that if U ∼ χ2
n with n ≥ 3 then EU−1 = 1/(n− 2).
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37. Recall that the Lp-norm of a random variable X is defined by ‖X‖p = (E|X|p)1/p.

Establish Lyapunov’s inequality: If 1 ≤ p ≤ q then ‖X‖p ≤ ‖X‖q. [Hint: Apply Hölder’s

inequality with an appropriate choice of conjugate exponents to |X|p · 1.]

38. (Incomplete beta function) Let Bin(n, p) denote the binomial distribution with param-

eters n ≥ 1 and p ∈ [0, 1]. Show that for each 1 ≤ k ≤ n and each p ∈ [0, 1] that the

following identity holds:

P (Bin(n, p) ≥ k) =
n!

(k − 1)!(n− k)!

∫ p

0
uk−1(1− u)n−kdu

Hint: Fix 1 ≤ k ≤ n. Let f(p) and g(p) be, respectively, the left- and right-hand sides of

the equation. Show that f, g are equal when p = 0. Then show that f ′(p) = g′(p) for each

p ∈ (0, 1].

39. (Variational characterization of the expected value) Let X be a random variable with

finite variance.

(a) Show that EX = arg mina∈R E(X − a)2

(b) Show that Var(X) = mina∈R E(X − a)2

40. (Variational characterization of the median) Let X be a random variable with density

f and finite expectation, and let M be a median of X. We wish to establish that

M = arg min
a∈R

E|X − a|

or equivalently that

E|X −M | ≤ E|X − a| for all a ∈ R.

a. Replacing X by X −M , we may assume without loss of generality that M = 0. Let

a > 0. Express the difference E|X − a| − E|X| as a sum of integrals over the disjoint

intervals (−∞, 0], (0, a], and (a,∞). By carefully considering each integral, show that

E|X − a| − E|X| ≥ a {P(X ≤ 0)− P(0 < X ≤ a)− P(X > a) } .

Use the definition of the median and the fact that a ≥ 0 to conclude that the right

side of the inequality above is non-negative. [A similar argument can be carried out

for a ≤ 0, but you do not need to do this.]
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b. Suppose now that X has finite variance. Using the variational characterization of the

median with a = EX and Jensen’s inequality, show that |EX −M | ≤
√

Var(X).

41. Let X be a random variable taking values in the finite interval [0, c].

(a) Show that EX ≤ c and EX2 ≤ cEX.

(b) Use these inequalities to show that

Var(X) ≤ c2[u(1− u)] where u =
EX

c
∈ [0, 1].

(c) Use the result of part (b) to show that Var(X) ≤ c2/4.

(d) Show that this bound is achieved, that is, find a random variable X ∈ [0, c] for which

Var(X) = c2/4. Hint: put the probability mass of X at the endpoints of the interval.

(e) Use the result in (c) to bound the variance of a random variable X taking values in

an interval [a, b] with −∞ < a < b <∞.

42. Let X, Y , and Z be random variables defined on the same probability space, and assume

that EX2 and EY 2 are finite. Define the conditional covariance of Y and Y given Z by

Cov(X,Y |Z) = E(XY |Z)− E(X |Z)E(Y |Z).

Note that the conditional covariance is a random variable and can be expressed as a function

of Z. Use conditioning arguments to establish the following identity, sometimes called the

law of total covariance

Cov(X,Y ) = E (Cov(X,Y |Z)) + Cov (E(X |Z),E(Y |Z)) .

43. Consider the assertion op(Op(1)) = op(1). Provide a rigorous interpretation of the as-

sertion in terms of stochastic sequences, treating the equality as a containment relationship.

Establish the assertion as carefully as you can.

44. Let G be a finite family of functions g : X → [−c, c] and let X1, . . . , Xn ∈ X be iid. Use

the union bound and Hoeffding’s inequality to find an upper bound on

P

(
max
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− Eg(X1)

∣∣∣∣∣ ≥ t
)
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45. Let X1, . . . , Xn be iid ∼ Bern(p). Note that |Xi − p| ≤ max(p, 1− p).

(a) Use Bernstein’s inequality to get an upper bound on P(n−1
∑n

i=1Xi−p ≥ t) for t ≥ 0.

(b) Argue that one can restrict attention to t ∈ [0, 1 − p]. Using this fact and the bound

in part (a) show that if p ≥ 1/2 then for all t ≥ 0

P

(
1

n

n∑
i=1

Xi − p ≥ t

)
≤ exp

{
−3nt2

8p(1− p)

}

(c) Compare the bound in part (b) to a naive inequality based on the central limit theorem

and tail bounds for the standard normal distribution.

46. Let X1, . . . , Xn ∈ Rd be independent random vectors such that EXi = 0 and ||Xi|| ≤

ci/2 with probability one, where ||u|| = (utu)1/2 is the ordinary Euclidean norm. Let

α = (1/4)
∑n

i=1 c
2
i .

(a) Show that E||
∑n

i=1Xi|| ≤
√
α.

(b) Use the bounded difference inequality and the inequality in part (a) to show that for

all t ≥
√
α

P

(
||

n∑
i=1

Xi|| > t

)
≤ exp

{
−(t−

√
α)2

2α

}

47. Let X and Y be independent random variables with Y > 0. Find equalities or inequal-

ities relating the following quantities (you may assume all expecations are finite).

(a) E(X/Y ) and EX/EY

(b) EY 3 and EY EY 2

(c) E(Y log Y ) and EY logEY

(d) E(Y log Y ) and EY (E log Y )

48. LetX1, . . . , Xn be independent with EX = 0 and |Xi| ≤ c. Show that if t ≥ n−1
∑n

i=1 Var(Xi),

then

P

(
1

n

n∑
i=1

Xi ≥ t

)
≤ exp

{
−nt

2 + 2c/3

}
Compare this bound to the one obtained from Hoeffding’s inequality in two cases: (i)

Var(Xi) = 1 and (ii) Var(Xi) = i−1.
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49. Let U1 and U2 be independent random variables with mean zero and variance one,

and let U3 = U1 + 3U2 and U4 = 2U1 − U2. Define random vectors X = (U1, . . . , U4)t,

Y = (U1, U2)t, and Z = (U3, U4)t. Note that X = (Y t, Zt)t. Find the following

(a) Var(X)

(b) Var(Y )

(c) Var(Z)

(d) Cov(Y,Z)

(e) Cov(Z, Y )

Note that the matrices in (b) - (e) correspond to block submatrices of the variance ma-

trix you found in (a). Which matrices correspond to diagonal blocks, and which matrices

correspond to off-diagonal blocks? Discuss.

50. (Bin packing) For n ≥ 1 let fn : [0, 1]n → {0, 1, 2, . . .} be the bin packing function for

n objects, that is, fn(x1, . . . , xn) is the minimum number of length-1 bins needed to hold

objects of length x1, . . . , xn.

a. Carefully find the difference coefficients c1, . . . , cn of fn.

b. Let X1, . . . , Xn ∈ [0, 1] be independent. Find a bound on P(fn(Xn
1 ) − Efn(Xn

1 ) ≥ t)

when t ≥ 0.

c. Now let x1, x2, . . . ∈ [0, 1] and define an = fn(xn1 ). Is the sequence {an : n ≥ 1}

subadditive? Justify your answer.

d. What can you say about the limiting behavior of Efn(Xn
1 ) if X1, X2, . . . ∈ [0, 1] is

stationary. Justify your answer.

51. Let X1, . . . , Xn be independent Bernoulli random variables with EXi = pi. Let S =

X1 + · · ·+Xn and let µ = ES =
∑n

i=1 pi. Use Chernoff’s bound and a MGF computation

to show that for all t > µ

P(S > t) ≤ exp{t− µ− t log(t/µ)}

How does this bound compare to Hoeffding’s inequality?

52. (Hoeffding’s MGF Bound) Let X be a discrete random variable with pmf p(·). Assume

that a ≤ X ≤ b for a, b finite, and that EX = 0. Let MX(s) = EesX be the moment

generating function of X and define ϕ(s) := logMX(s).
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a. Show that

ϕ′(s) =
E[XesX ]

EesX
and ϕ′′(s) =

E[X2esX ]

EesX
− (ϕ′(s))2

b. Verify that ϕ(0) = ϕ′(0) = 0

Now fix t > 0 and let U be a new random variable having the “exponentially tilted” pmf

q(x) =
p(x)etx

EetX

c. Verify that q(·) is a pmf and that a ≤ U ≤ b

d. Show that E(U) = ϕ′(t) and that Var(U) = ϕ′′(t).

e. Using the variance bound for bounded random variables, conclude from (c) and (d)

that ϕ′′(t) ≤ (b− a)2/4.

f. Argue that for s > 0, ϕ(s) ≤ s2(b − a)2/8. Exponentiating gives Hoeffding’s MGF

bound.

53. Carefully reproduce the arguments in class for Bennett’s inequality, including the basic

MGF bound, and including the details of the Chernoff bound.

54. Let X be a random variable satisfying the concentration type inequality P(|X| > t) ≤

a e−b t
2

for all t ≥ 0, where a ≥ 1 and b ≥ 0. Show that

E|X| ≤
√

1 + log a

b
.

Hint: Begin by showing that for s ≥ 0, EX2 ≤ s+
∫∞
s P(X2 ≥ t) dt. Use Cauchy-Schwartz.

55. Let X1, . . . , Xn be random variables with moment generating functions MXi(s) ≤M(s)

for each s ≥ 0.

(a) Using the argument in class for Gaussian random variables, show that

Emax(X1, . . . , Xn) ≤ inf
s>0

log n+ logM(s)

s
.

Suppose now that U1, . . . , Un are Gamma(α, β) random variables. Note that the moment

generating function of Ui is M(s) = (1− s β)−α.

(b) Using the bound from part (a) and an appropriate choice of s, which can be found by

inspection, show that

Emax(U1, . . . , Un) ≤ 2β log n

1− n−1/α
.
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56. Concentration for norms of Gaussian random vectors. Let Y ∼ Nd(0,Σ) and consider

the random variable U = ||Y ||.

(a) Show that U = F (X) in distribution, where X ∼ Nd(0, I) and F (x) = ||Σ1/2x||

(b) Show that F is Lipschitz with constant

L ≤ sup
u∈Rd\{0}

||Σ1/2u||
||u||

(c) Express the right hand side of the inequality above in terms of the eigenvalues of Σ.

(d) Find a concentration inequality for U .

57. Let Φ : R→ (0, 1) be the CDF of the standard normal, and let Φ−1 : (0, 1)→ R be it’s

inverse function, equivalently, the percentile function of the standard normal.

(a) Find the limit of Φ−1(α) as α→ 0 and α→ 1.

To simplify notation in what follows, let s(t) =
√

2 log t for t ≥ 1.

(b) Use bounds on Φ(s) to show that

lim
t→∞

tΦ(s(t)) = 0.

(c) Use bounds on Φ(s) to show that for every δ ∈ (0, 1)

lim
t→∞

tΦ(δ s(t)) =∞.

(d) Combine the bounds from (b) and (c) to show that

lim
t→∞

Φ−1(1− t−1)√
2 log t

= 1

58. Let X1, . . . , Xn be independent standard normal random variables. Here we identify

upper and lower bounds for the expectation of Kn := max1≤i≤n |Xi|.

(a) Using the MGF-based bound from class and the fact that Kn = maxi(Xi,−Xi) show

that EKn ≤ (2 log 2n)1/2.

(b) Let Φ−1 be the inverse CDF (percentile function) of the standard normal. Show that

Kn = Φ−1

(
1

2
+

1

2
max

1≤i≤n
Vi

)
where V1, . . . , Vn are independent Uniform(0, 1) random variables.
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(c) Show that Φ−1(u) is convex on [1/2, 1). Apply Jensen’s inequality to the expression

in (b) to obtain the bound EKn ≥ Φ−1 (1− 1/(2n+ 2)).

(d) Conclude from (a), (c), and the previous problem that EKn/
√

2 log n→ 1 as n→∞.

59. Extreme value theory for the Gaussian. Let an and bn be the extreme value scaling

and centering constants for the maximum Mn of n independent standard Gaussian random

variables.

(a) Fix x ∈ R and let xn = x/an + bn. Show that nφ(xn)/xn → e−x as n tends to infinity.

[In your calculations, identify and pay careful attention to the leading order terms.]

(b) Using the result of part (a) and the standard Gaussian tail bound from an earlier

homework, show that n(1− Φ(xn))→ e−x.

(c) Use part (b) and the lemma from lecture to show that as n tends to infinity

P(an(Mn − bn) ≤ x)→ G(x) = e−e
−x

(d) Show that G(x) is the CDF of − log V where V ∼ Exp(1).

60. Let Mn be the maximum of n iid N (0, 1) random variables. Use the Gaussian extreme

value theorem to establish the following limiting results.

a. P(Mn ≥
√

2 log n)→ 0 as n→∞

b. Mn/
√

2 log n→ 1 in probability as n→∞

61. Let V ⊆ Rn be a finite set of vectors v = (v1, . . . , vn)t with L = maxv∈V ||v||2, and let

ε1, . . . , εn be independent Rademacher (sign) variables.

(a) Use Hoeffding’s MGF inequality to bound the moment generating functions of the

random variables
∑n

i=1 εivi in terms of the constant L.

(b) Show that

E

[
max
v∈V

n∑
i=1

εivi

]
≤
√

2L2 log |V |

62. Let X and Y be random variables, possibly defined on different probability spaces, with

CDFs F and G, respectively. We say that Y is stochastically larger than X, written Y
d
≥ X

if G(x) ≤ F (x) for each x ∈ R. Explain the intuition behind the definition.
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(a) Suppose that X,Y are jointly distributed with X ∼ F , Y ∼ G, and Y ≥ X with

probability one. Show that Y
d
≥ X.

Let X be a random variable with CDF F . Recall that if F is continuous, then F (X)
d
=

U(0, 1).

(b) Show that in general, F (X)
d
≥ U(0, 1) even if F is not continuous. Hint: Let ϕ be

the percentile function of F . Argue that F (ϕ(u)) ≥ u for 0 < u < 1, and recall that

X
d
= ϕ(U) where U ∼ U(0, 1).

63. Independent Copies. Let X,X ′ be independent random variables with the same distri-

bution. In this case we say that X ′ is an independent copy of X.

(a) Show that Var(X) = 1
2E(X −X ′)2

(b) Argue formally or informally that E(X ′ |X) = EX

(c) Using the result of part (b) and Jensen’s inequality for conditional expectations, show

that E|X−EX| ≤ E|X−X ′|. This is a key step in establishing a number of important

bounds in empirical process theory.

64. LetX1, . . . , Xn be iid Rademacher (sign) variables with P(Xi = 1) = P(Xi = −1) = 1/2.

(a) Using the variance bound from an earlier HW, show that Xi has maximum variance

among all random variables supported on [−1, 1].

(b) Identify the common moment generating function MX(s) of the Xi, which is a simple

sum of exponentials.

(c) Establish the bound MX(s) ≤ es2/2. Hint: Expand the exponentials in MX(s), cancel

identical terms, and examine the coefficients of the remaining terms.

(d) Use the MGF bound in part (c) and Chernoff’s probability bound to find an upper

bound on P(
∑n

i=1Xi ≥ t) for t ≥ 0.

(e) Use Hoeffding’s inequality to bound the probability in part (d) and compare the bound

you found there. Comment.

65. Let p and q be pmfs on {0, 1} with p(0) = p(1) = 1/2 and q(0) = (1 − ε)/2, q(1) =

(1 + ε)/2 where ε ∈ (0, 1). Show that
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(a) KL(p : q) = −1
2 log(1− ε2) ≤ ε2 when ε ≤ 1√

2

(b) KL(q : p) = 1
2 log(1− ε2) + ε

2 log(1−ε
1+ε)

66. (Pinsker’s inequality) Pinsker’s inequality relates the L1 distance between two density

function to their Kullback-Liebler divergence. It has many uses in statistics and probability.

Here we derive Pinsker’s inequality from a numerical inequality and Cauchy-Schwartz.

(a) Show that for x ≥ 0 one has the inequality

(x− 1)2 ≤
(

4 + 2x

3

)
(x log x− x+ 1)

Hint: Let g(x) be the difference between the right- and left-hand sides of the inequality.

Expand g(x) in a third order Taylor series around x = 1.

(b) Let f and g be probability density functions. Establish Pinsker’s inequality∫
|f(x)− g(x)| dx ≤

√
2KL(f : g)

Hint: Note that the left hand side can be written as
∫
|f/g−1| g dx. Apply the square

root form of the inequality above to the integrand and then apply Cauchy-Schwarz.

67. Let X be a finite set and let p and q be pmfs on X .

a. Show that KL(p : q) is infinite if and only if there is some x ∈ X with q(x) = 0 and

p(x) > 0. (This simple relation does not hold when X is infinite.)

Let f : X → R be any function on X . Define a new pmf on X by “exponentially tilting” q

according to f as follows

qf (x) =
ef(x) q(x)

Eq(ef )

where Cf =
∑

x∈X e
f(x) q(x) > 0 is the normalizing constant needed to make qf (x) sum to

one. Note that Cf = Eq(ef ), where Eq denotes expectation under q.

b. Show that if KL(p : q) is finite then we have the elementary identity

KL(p : q)− Ep(f) = KL(p : qf )− log(Cf )

c. Use the previous identity to show that for all p, q we have the following variational

expression for the KL divergence:

KL(p : q) = sup
f :X→R

[Ep(f)− log(Cf ) ]
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Hint: Consider separately the case where KL(p : q) < ∞ and KL(p : q) = ∞. In the

former case, first establish an inequality, and then find a function f achieving equality.

d. Use the variational expression above to show that the KL divergence is convex, namely,

for all pmfs p1, p2, q1, q2 and all α ∈ [0, 1] we have

KL(αp1 + (1− α) p2 : α q1 + (1− α) q2) ≤ αKL(p1 : q1) + (1− α) KL(p2 : q2)

Hint: Extensive calculations are not necessary.

68. Show that the Kolmogorov-Smirnov distance KS(P,Q) and the total variation distance

TV(P,Q) are metrics.

69. Establish the log-sum inequality: If a1, . . . , an and b1, . . . , bn are positive then

n∑
i=1

ai log
ai
bi
≥

(
n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

with equality iff all the ratios ai/bi are equal. Hint: Use Jensen’s inequality and the strict

concavity of the log function. Optional: Show that the inequality continues to hold if we

assume only that a1, . . . , an and b1, . . . , bn are non-negative

70. (Data Processing Inequality) Let p and q be probability mass functions on a countable

set X .

(a) Use the log-sum inequality to show that for every event A ⊆ X

∑
x∈A

p(x) log
p(x)

q(x)
≥ P (A) log

P (A)

Q(A)

with equality iff p(x)/q(x) is constant for x ∈ A.

(b) Now let f : X → Y be a function from X to some other set Y, and let Y = f(X). Find

the probability mass function p̃ of Y when X ∼ p. Find the probability mass function

q̃ of Y when X ∼ q.

(c) Show that KL(p̃, q̃) ≤ KL(p, q)

71. (Tensorization) Let P1, . . . , Pn and Q1, . . . , Qn be distributions on R with densities

f1, . . . , fn and g1, . . . , gn respectively. Establish the following relations
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(a) KS(⊗ni=1Pi,⊗ni=1Qi) ≤
∑n

i=1 KS(Pi, Qi)

(b) TV(⊗ni=1Pi,⊗ni=1Qi) ≤
∑n

i=1 TV(Pi, Qi)

(c) KL(⊗ni=1Pi,⊗ni=1Qi) =
∑n

i=1 KL(Pi, Qi)

72. Stirling’s approximation for factorials states the following

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n

(a) Use Stirling’s approximation to show that for s ≤ n/2(
n

s

)
≤ exp

{
s log

(en
s

)}
(b) Let h(p) = −p log p − (1 − p) log(1 − p) for p ∈ [0, 1] be the binary entropy function.

Use Stirling’s approximation to show that for s ≤ n/2(
n

s

)
≤ 2nh(s/n)
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