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Convergence of Random Vectors



Convergence of Random Vectors: Standard Notions

Setting: Sequence of random vectors X1, X2, . . . , X ∈ Rd defined on the
same probability space.

1. Xn → X with probability one (wp1, a.s., or a.e.) if

P
(

lim
n→∞

Xn = X
)

= P (Xn → X as n→∞) = 1

2. Xn → X in quadratic mean (L2) if

E||Xn −X||2 → 0 as n→∞

3. Xn → X in probability if for all δ > 0

P (||Xn −X|| > δ) → 0 as n→∞



Relationships Between Modes of Convergence

Fact: Let X1, X2, . . . , X ∈ Rd be random vectors

1. If Xn → X wp1 then Xn → X in probability

2. If Xn → X in L2 then Xn → X in probability

In general, other implications do not hold

I convergence in probability does not imply convergence in L2 or wp1

I convergence in L2 does not imply convergence wp1



Operations Extending Convergence

1. Gluing. If Xn → X in probability and Yn → Y in probability then[
Xn

Yn

]
→
[
X
Y

]
in probability

2. Continuous transformation. If Xn → X in probability and g : Rd → Rk is
continuous, then g(Xn)→ g(X) in probability.

Note:

I Continuous transformation extension also holds if Xn, X take values
in an open subset X of Rd and g : X → Rk is continuous

I Same properties hold for convergence with probability one



Scheffé’s Theorems

Thm: Let X1, X2, . . . ∈ R be non-negative r.v. such that as n tends to infinity

I Xn → X wp1 and

I EXn → EX <∞

Then E|Xn −X| → 0

Thm: If g1, g2, . . . , g are probability densities on Rd such that gn(x)→ g(x)
for Lebesgue almost every x then

∫
|gn(x)− g(x)| dx→ 0.



Law of Large Numbers



Law of Large Numbers

Idea: An average of iid random vectors converges to their common
expectation

Thm: Let X1, X2, . . . , X ∈ Rd be iid. For n ≥ 1 define Xn := n−1∑n
i=1Xi

1. If E||X|| <∞ then Xn → EX wp1

2. If E||X|| <∞ then Xn → EX in probability

3. If E||X||2 <∞ then Xn → EX in L2



Application: Consistency of Sample Variance Matrix

Example: Let X1, X2, . . . ∈ Rd be iid with E(Xi) = µ and Var(Xi) = Σ. Wish
to estimate Σ from X1, . . . , Xn

Definition: The sample variance matrix of X1, . . . , Xn ∈ Rd is

Sn =
1

n

n∑
i=1

(Xi −Xn)(Xi −Xn)t

Fact

1. Sn = n−1∑n
i=1XiX

t
i − (Xn)(Xn)t

2. Sn → Σ wp1 as n→∞



Empirical CDF and the Glivenko-Cantelli Theorem



The Empirical CDF

Setting: Observations X1, X2, . . . , X ∈ R iid with CDF F (x) = P(X ≤ x)

Definition: The empirical CDF of X1, . . . , Xn is given by

F̂n(t) =
1

n

n∑
i=1

I(Xi ≤ t) t ∈ R

Note: For fixed t, F̂n(t) is the fraction of points X1, . . . , Xn that are less than
or equal to t. In particular, nF̂n(t)

d
= Bin(n, F (t)) and

EF̂n(t) = F (t) and Var(F̂n(t)) = F (t)(1− F (t))/n



Glivenko-Cantelli Theorem

Question: The LLN ensures that F̂n(t)→ F (t) wp1 for each fixed t ∈ R. Is
this convergence uniform over all t?

Theorem: If X1, X2, ... ∈ R are iid with Xi ∼ F then as n→∞

sup
t∈R
|F̂n(t)− F (t)| → 0 wp1

Note: As F̂n, F are right continuous, the sup is unchanged if we replace R by
the rationals. As the rationals are countable, the sup is measurable.

Proof idea: First establish the result for continuous F by approximation, then
discrete F by a direct argument, then combine these to get the general result.



Application of Glivenko-Cantelli

Moving-Target: In many problems one needs to analyze the behavior of
objects where two or more random quantities interact. Uniform laws of large
numbers like the G-C theorem can be useful for such analyses.

Example: Let X1, X2, . . . ∈ R iid with Xi ∼ F continuous. For n ≥ 1 let

I θ̂n = θ̂n(Xn
1 ) ∈ R point estimate of parameter θ0 of interest

I F̂n = empirical CDF of X1, . . . , Xn

Question: If θ̂n → θ0, does F̂n(θ̂n)→ F (θ0)?



Estimating of Percentiles

Recall: The percentile function of a CDF F is defined for p ∈ (0, 1) by

F−1(p) := inf{u : F (u) ≥ p}

Fact (Basic properties of percentile function)

1. F−1 is the usual inverse if F is continuous and strictly increasing

2. F−1 is non-decreasing

3. F−1(p) ≤ u if and only if F (u) ≥ p

4. If U ∼ Uniform(0, 1) then X = F−1(U) has CDF F

5. If X ∼ F and F is continuous then F (X) ∼ Uniform(0, 1)



Consistent Estimation of Percentiles

Percentile Inference problem

I Observe X1, X2, . . . , Xn ∈ R iid with unknown CDF F

I Goal: Estimate percentile F−1(p) for fixed p ∈ (0, 1) of interest

I Candidate estimate: percentile F̂−1
n (p) of empirical CDF

Fact: If F is continuous and increasing in a neighborhood of F−1(p)
then F̂−1

n (p)→ F−1(p) wp1 as n→∞.



Standard and Stochastic Order Relations



Standard Order Relations

Given: Numerical sequences {an : n ≥ 1} and {bn : n ≥ 1}

Definition

I an = O(bn) if there exists C <∞ such that |an| ≤ C |bn| for all n ≥ 1

I an = o(bn) if |an|/|bn| → 0 as n→∞

I an = Ω(bn) if there exists C > 0 such that |an| ≥ C |bn| for all n ≥ 1

I an = Θ(bn) if an = O(bn) and an = Ω(bn)



Absolute Order Relations

Given: Numerical sequence {an : n ≥ 1}

Absolute Order: Special case where bn ≡ 1

I an = O(1) if there exists C <∞ such that |an| ≤ C for all n ≥ 1

I an = o(1) if |an| → 0 as n→∞

I an = Ω(1) if there exists C > 0 such that |an| ≥ C for all n ≥ 1

I an = Θ(1) if there exist C > 0 such that C−1 ≤ |an| ≤ C for all n ≥ 1



Standard Order Relations: Formal Interpretation

Definition: O(bn) is the family of all sequences {an} for which there exists
constant C <∞, depending on {an}, such that |an| ≤ C |bn| for all n ≥ 1

Families o(bn), Ω(bn), and Θ(bn) are defined in a similar fashion

Interp’n. Equations involving order notation are regarded as inclusions:
family of sequences on left of equality is contained in family on right

I 12 + 22 + · · ·+ n2 = O(n3)

I 3n+O(n2) = O(n2)

I O(n) + o(n2) = o(n2)

I O(n2) = O(n3)

I O(an)O(bn) = anO(bn)



Stochastic Order Relations

Definition: Let X1, X2, . . . ∈ Rd be random vectors defined on the same
probability space

1. Xn = Op(1) if for every ε > 0 there exists M = M(ε) <∞ such that

P(||Xn|| ≥M) ≤ ε for every n ≥ 1

In this case {Xn} is said to be stochastically bounded or tight

2. Xn = op(1) if ||Xn|| → 0 in probability



Stochastic Order Relations: Examples

1. If X is any random vector, the constant sequence Xn = X is tight

2. If Xn → X in probability, then {Xn} is tight

3. The sequences Xn ∼ N (0, n) and Yn ∼ N (n, 1) are not tight

Idea: A sequence is tight if the probability mass of the vectors Xn does
not “escape” to plus or minus infinity



Stochastic Order Relations

Formal interpretation of Op(1) and op(1) is similar to standard order symbols

I Op(1) is the family of all stochastically bounded sequences of
random vectors

I op(1) is the family of all sequences of random vectors whose
norms converge to zero in probability,

Note: Random vectors may be defined on different probability spaces

Equations involving stochastic order notation understood as inclusions: the
set of sequences on the right of the equality is contained in the set on the left



Stochastic Order Relations: Basic Properties

Fact: Under the set-inclusion interpretation, the following relations hold

1. op(1) = Op(1)

2. Op(1) +Op(1) = Op(1)

3. Op(1) + op(1) = Op(1)

4. op(1) + op(1) = op(1)

5. Op(1)Op(1) = Op(1)

6. Op(1)op(1) = op(1)



Relative Stochastic Order Relations

Definition: Let X1, X2, . . . ∈ Rd and Y1, Y2, . . . ∈ Rd be random vectors
defined on the same probability space

1. Xn = OP (Yn) if for every ε > 0 there exists M <∞ such that
P(||Xn|| ≥M ||Yn||) ≤ ε when n is sufficiently large

2. Xn = oP (Yn) if the ratio ||Xn||/||Yn|| converges to zero in probability

In principal, Xi and Yi could be of different dimensions


