# Theoretical Statistics, STOR 655 

# Modes of Convergence, Laws of Large Numbers, <br> Stochastic Order 

Andrew Nobel

January 2022

## Convergence of Random Vectors

## Convergence of Random Vectors: Standard Notions

Setting: Sequence of random vectors $X_{1}, X_{2}, \ldots, X \in \mathbb{R}^{d}$ defined on the same probability space.

1. $X_{n} \rightarrow X$ with probability one (wp1, a.s., or a.e.) if

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=\mathbb{P}\left(X_{n} \rightarrow X \text { as } n \rightarrow \infty\right)=1
$$

2. $X_{n} \rightarrow X$ in quadratic mean $\left(L_{2}\right)$ if

$$
\mathbb{E}\left\|X_{n}-X\right\|^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

3. $X_{n} \rightarrow X$ in probability if for all $\delta>0$

$$
\mathbb{P}\left(\left\|X_{n}-X\right\|>\delta\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

## Relationships Between Modes of Convergence

Fact: Let $X_{1}, X_{2}, \ldots, X \in \mathbb{R}^{d}$ be random vectors

1. If $X_{n} \rightarrow X$ wp1 then $X_{n} \rightarrow X$ in probability
2. If $X_{n} \rightarrow X$ in $L_{2}$ then $X_{n} \rightarrow X$ in probability

In general, other implications do not hold

- convergence in probability does not imply convergence in $L_{2}$ or wp1
- convergence in $L_{2}$ does not imply convergence wp1


## Operations Extending Convergence

1. Gluing. If $X_{n} \rightarrow X$ in probability and $Y_{n} \rightarrow Y$ in probability then

$$
\left[\begin{array}{c}
X_{n} \\
Y_{n}
\end{array}\right] \rightarrow\left[\begin{array}{c}
X \\
Y
\end{array}\right] \text { in probability }
$$

2. Continuous transformation. If $X_{n} \rightarrow X$ in probability and $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is continuous, then $g\left(X_{n}\right) \rightarrow g(X)$ in probability.

## Note:

- Continuous transformation extension also holds if $X_{n}, X$ take values in an open subset $\mathcal{X}$ of $\mathbb{R}^{d}$ and $g: \mathcal{X} \rightarrow \mathbb{R}^{k}$ is continuous
- Same properties hold for convergence with probability one


## Scheffés Theorems

Thm: Let $X_{1}, X_{2}, \ldots \in \mathbb{R}$ be non-negative r.v. such that as $n$ tends to infinity

- $X_{n} \rightarrow X$ wp1 and
- $\mathbb{E} X_{n} \rightarrow \mathbb{E} X<\infty$

Then $\mathbb{E}\left|X_{n}-X\right| \rightarrow 0$

Thm: If $g_{1}, g_{2}, \ldots, g$ are probability densities on $\mathbb{R}^{d}$ such that $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x$ then $\int\left|g_{n}(x)-g(x)\right| d x \rightarrow 0$.

## Law of Large Numbers

## Law of Large Numbers

Idea: An average of iid random vectors converges to their common expectation

Thm: Let $X_{1}, X_{2}, \ldots, X \in \mathbb{R}^{d}$ be iid. For $n \geq 1$ define $\bar{X}_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$

1. If $\mathbb{E}\|X\|<\infty$ then $\bar{X}_{n} \rightarrow \mathbb{E} X$ wp1
2. If $\mathbb{E}\|X\|<\infty$ then $\bar{X}_{n} \rightarrow \mathbb{E} X$ in probability
3. If $\mathbb{E}\|X\|^{2}<\infty$ then $\bar{X}_{n} \rightarrow \mathbb{E} X$ in $L_{2}$

## Application: Consistency of Sample Variance Matrix

Example: Let $X_{1}, X_{2}, \ldots \in \mathbb{R}^{d}$ be iid with $\mathbb{E}\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\Sigma$. Wish to estimate $\Sigma$ from $X_{1}, \ldots, X_{n}$

Definition: The sample variance matrix of $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}$ is

$$
S_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(X_{i}-\bar{X}_{n}\right)^{t}
$$

Fact

1. $S_{n}=n^{-1} \sum_{i=1}^{n} X_{i} X_{i}^{t}-\left(\bar{X}_{n}\right)\left(\bar{X}_{n}\right)^{t}$
2. $S_{n} \rightarrow \Sigma$ wp1 as $n \rightarrow \infty$

## Empirical CDF and the Glivenko-Cantelli Theorem

## The Empirical CDF

Setting: Observations $X_{1}, X_{2}, \ldots, X \in \mathbb{R}$ iid with $\operatorname{CDF} F(x)=\mathbb{P}(X \leq x)$

Definition: The empirical CDF of $X_{1}, \ldots, X_{n}$ is given by

$$
\hat{F}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(X_{i} \leq t\right) \quad t \in \mathbb{R}
$$

Note: For fixed $t, \hat{F}_{n}(t)$ is the fraction of points $X_{1}, \ldots, X_{n}$ that are less than or equal to $t$. In particular, $n \hat{F}_{n}(t) \stackrel{d}{=} \operatorname{Bin}(n, F(t))$ and

$$
\mathbb{E} \hat{F}_{n}(t)=F(t) \text { and } \operatorname{Var}\left(\hat{F}_{n}(t)\right)=F(t)(1-F(t)) / n
$$

## Glivenko-Cantelli Theorem

Question: The LLN ensures that $\hat{F}_{n}(t) \rightarrow F(t)$ wp1 for each fixed $t \in \mathbb{R}$. Is this convergence uniform over all $t$ ?

Theorem: If $X_{1}, X_{2}, \ldots \in \mathbb{R}$ are iid with $X_{i} \sim F$ then as $n \rightarrow \infty$

$$
\sup _{t \in \mathbb{R}}\left|\hat{F}_{n}(t)-F(t)\right| \rightarrow 0 \text { wp1 }
$$

Note: As $\hat{F}_{n}, F$ are right continuous, the sup is unchanged if we replace $\mathbb{R}$ by the rationals. As the rationals are countable, the sup is measurable.

Proof idea: First establish the result for continuous $F$ by approximation, then discrete $F$ by a direct argument, then combine these to get the general result.

## Application of Glivenko-Cantelli

Moving-Target: In many problems one needs to analyze the behavior of objects where two or more random quantities interact. Uniform laws of large numbers like the G-C theorem can be useful for such analyses.

Example: Let $X_{1}, X_{2}, \ldots \in \mathbb{R}$ iid with $X_{i} \sim F$ continuous. For $n \geq 1$ let

- $\hat{\theta}_{n}=\hat{\theta}_{n}\left(X_{1}^{n}\right) \in \mathbb{R}$ point estimate of parameter $\theta_{0}$ of interest
- $\hat{F}_{n}=$ empirical CDF of $X_{1}, \ldots, X_{n}$

Question: If $\hat{\theta}_{n} \rightarrow \theta_{0}$, does $\hat{F}_{n}\left(\hat{\theta}_{n}\right) \rightarrow F\left(\theta_{0}\right)$ ?

## Estimating of Percentiles

Recall: The percentile function of a CDF $F$ is defined for $p \in(0,1)$ by

$$
F^{-1}(p):=\inf \{u: F(u) \geq p\}
$$

Fact (Basic properties of percentile function)

1. $F^{-1}$ is the usual inverse if $F$ is continuous and strictly increasing
2. $F^{-1}$ is non-decreasing
3. $F^{-1}(p) \leq u$ if and only if $F(u) \geq p$
4. If $U \sim \operatorname{Uniform}(0,1)$ then $X=F^{-1}(U)$ has CDF $F$
5. If $X \sim F$ and $F$ is continuous then $F(X) \sim \operatorname{Uniform}(0,1)$

## Consistent Estimation of Percentiles

## Percentile Inference problem

- Observe $X_{1}, X_{2}, \ldots, X_{n} \in \mathbb{R}$ iid with unknown CDF $F$
- Goal: Estimate percentile $F^{-1}(p)$ for fixed $p \in(0,1)$ of interest
- Candidate estimate: percentile $\hat{F}_{n}^{-1}(p)$ of empirical CDF

Fact: If $F$ is continuous and increasing in a neighborhood of $F^{-1}(p)$ then $\hat{F}_{n}^{-1}(p) \rightarrow F^{-1}(p)$ wp1 as $n \rightarrow \infty$.

## Standard and Stochastic Order Relations

## Standard Order Relations

Given: Numerical sequences $\left\{a_{n}: n \geq 1\right\}$ and $\left\{b_{n}: n \geq 1\right\}$

## Definition

- $a_{n}=O\left(b_{n}\right)$ if there exists $C<\infty$ such that $\left|a_{n}\right| \leq C\left|b_{n}\right|$ for all $n \geq 1$
- $a_{n}=o\left(b_{n}\right)$ if $\left|a_{n}\right| /\left|b_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$
- $a_{n}=\Omega\left(b_{n}\right)$ if there exists $C>0$ such that $\left|a_{n}\right| \geq C\left|b_{n}\right|$ for all $n \geq 1$
- $a_{n}=\Theta\left(b_{n}\right)$ if $a_{n}=O\left(b_{n}\right)$ and $a_{n}=\Omega\left(b_{n}\right)$


## Absolute Order Relations

Given: Numerical sequence $\left\{a_{n}: n \geq 1\right\}$

Absolute Order: Special case where $b_{n} \equiv 1$

- $a_{n}=O(1)$ if there exists $C<\infty$ such that $\left|a_{n}\right| \leq C$ for all $n \geq 1$
- $a_{n}=o(1)$ if $\left|a_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$
- $a_{n}=\Omega(1)$ if there exists $C>0$ such that $\left|a_{n}\right| \geq C$ for all $n \geq 1$
- $a_{n}=\Theta(1)$ if there exist $C>0$ such that $C^{-1} \leq\left|a_{n}\right| \leq C$ for all $n \geq 1$


## Standard Order Relations: Formal Interpretation

Definition: $O\left(b_{n}\right)$ is the family of all sequences $\left\{a_{n}\right\}$ for which there exists constant $C<\infty$, depending on $\left\{a_{n}\right\}$, such that $\left|a_{n}\right| \leq C\left|b_{n}\right|$ for all $n \geq 1$

Families $o\left(b_{n}\right), \Omega\left(b_{n}\right)$, and $\Theta\left(b_{n}\right)$ are defined in a similar fashion

Interp'n. Equations involving order notation are regarded as inclusions: family of sequences on left of equality is contained in family on right

- $1^{2}+2^{2}+\cdots+n^{2}=O\left(n^{3}\right)$
- $3 n+O\left(n^{2}\right)=O\left(n^{2}\right)$
- $O(n)+o\left(n^{2}\right)=o\left(n^{2}\right)$
- $O\left(n^{2}\right)=O\left(n^{3}\right)$
- $O\left(a_{n}\right) O\left(b_{n}\right)=a_{n} O\left(b_{n}\right)$


## Stochastic Order Relations

Definition: Let $X_{1}, X_{2}, \ldots \in \mathbb{R}^{d}$ be random vectors defined on the same probability space

1. $X_{n}=O_{p}(1)$ if for every $\epsilon>0$ there exists $M=M(\epsilon)<\infty$ such that

$$
\mathbb{P}\left(\left\|X_{n}\right\| \geq M\right) \leq \epsilon \text { for every } n \geq 1
$$

In this case $\left\{X_{n}\right\}$ is said to be stochastically bounded or tight
2. $X_{n}=o_{p}(1)$ if $\left\|X_{n}\right\| \rightarrow 0$ in probability

## Stochastic Order Relations: Examples

1. If $X$ is any random vector, the constant sequence $X_{n}=X$ is tight
2. If $X_{n} \rightarrow X$ in probability, then $\left\{X_{n}\right\}$ is tight
3. The sequences $X_{n} \sim \mathcal{N}(0, n)$ and $Y_{n} \sim \mathcal{N}(n, 1)$ are not tight

Idea: A sequence is tight if the probability mass of the vectors $X_{n}$ does not "escape" to plus or minus infinity

## Stochastic Order Relations

Formal interpretation of $O_{p}(1)$ and $o_{p}(1)$ is similar to standard order symbols

- $O_{p}(1)$ is the family of all stochastically bounded sequences of random vectors
- $o_{p}(1)$ is the family of all sequences of random vectors whose norms converge to zero in probability,

Note: Random vectors may be defined on different probability spaces

Equations involving stochastic order notation understood as inclusions: the set of sequences on the right of the equality is contained in the set on the left

## Stochastic Order Relations: Basic Properties

Fact: Under the set-inclusion interpretation, the following relations hold

1. $o_{p}(1)=O_{p}(1)$
2. $O_{p}(1)+O_{p}(1)=O_{p}(1)$
3. $O_{p}(1)+o_{p}(1)=O_{p}(1)$
4. $o_{p}(1)+o_{p}(1)=o_{p}(1)$
5. $O_{p}(1) O_{p}(1)=O_{p}(1)$
6. $O_{p}(1) o_{p}(1)=o_{p}(1)$

## Relative Stochastic Order Relations

Definition: Let $X_{1}, X_{2}, \ldots \in \mathbb{R}^{d}$ and $Y_{1}, Y_{2}, \ldots \in \mathbb{R}^{d}$ be random vectors defined on the same probability space

1. $X_{n}=O_{P}\left(Y_{n}\right)$ if for every $\epsilon>0$ there exists $M<\infty$ such that $\mathbb{P}\left(\left\|X_{n}\right\| \geq M\left\|Y_{n}\right\|\right) \leq \epsilon$ when $n$ is sufficiently large
2. $X_{n}=o_{P}\left(Y_{n}\right)$ if the ratio $\left\|X_{n}\right\| /\left\|Y_{n}\right\|$ converges to zero in probability

In principal, $X_{i}$ and $Y_{i}$ could be of different dimensions

