
Support Vector Machines

Andrew Nobel

April, 2021

Overview: Support Vector Machines (SVM)

I Simplest case: linear classification rule

I Generalizes to non-linear rules through feature maps and kernels

I Good off-the-shelf method for high dimensional data, widely used

I Begins with geometry rather than a statistical model

I Close connections with convex programming

I Early bridge between machine learning and optimization

Notational switch: Code two-valued response Y as −1 or +1

Linear Classification Rules

Linear Classification Rules

Setting: Labeled pair (x, y) with predictor x ∈ Rp and class y ∈ {−1,+1}

Definition: Given w ∈ Rp and b ∈ R linear classification rule has form

φ(x) = sign(xtw − b) =

{
+1 if wtx ≥ b

−1 if wtx < b

Decision boundary of φ equal to hyperplane H = {x : wtx = b}

Distance to Decision Boundary

Consider rule φ = sign(xtw − b) with decision boundary H = {x : wtx = b}

Given pair (x, y) ask two questions

I Correctness: Is x on the right side of decision boundary H?

I Confidence: How far is x from the decision boundary H?

Fact: The signed distance from x to the decision boundary H is given by

xtw − b
||w||

Margin

Definition: The margin of linear rule φ = sign(xtw − b) at (x, y) is

mφ(x, y) = y

(
xtw − b
||w||

)

Idea: Margin assesses the fit of φ at pair (x, y)

I mφ(x, y) > 0 iff φ(x) = y iff x on correct side of H

I mφ(x, y) < 0 iff φ(x) 6= y iff x on wrong side of H

I |mφ(x, y)| = distance from x to H

Maximum Margin Classifiers and Linearly Separability

General goal: In fitting a linear rule to data, we would like the margins of all
the data points to be large and positive (if possible)

Definition: A dataset Dn = (x1, y1), . . . , (xn, yn) is linearly separable if there
is a hyperplane H separating {xi : yi = 1} and {xi : yi = −1}

We will consider two cases

1. Data is linearly separable⇒ max margin classifier

2. Data is not linearly separable⇒ soft margin classifier

Maximum Margin Classifiers (Support Vector Machine)

Linearly Separable Case

Linearly Separable Data: Multiple Hyperplanes

Max Margin Classifier (from ISL)

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

Maximizing the Minimum Margin

Max Margin Classifier: Given linearly separable data Dn, find w and b to
maximize the minimum margin of φ(x) = sign(xtw − b). Program is

max
w,b

Γ(w, b) where Γ(w, b) = min
1≤i≤n

yi

(
xtiw − b
||w||

)
(?)

Note that this program is not convex.

Fact: Non-convex program (?) is equivalent to the convex program

p∗ = min
w,b

1

2
||w||2 subject to yi(x

t
iw − b) ≥ 1 for i = 1, . . . , n

Finding p∗ is called the primal problem

Solving the Problem of Maximizing the Minimum Margin

Approach: Solve primal problem using Lagrangian function and duality

Definition: The Lagrangian L : Rp × R× Rn+, with R+ = [0,∞), for the max
margin classifier problem is

L(w, b, λ) :=
1

2
||w||2 −

n∑
i=1

λi {yi(wtxi − b)− 1}

Note: Lagrangian combines objective and constraints into a single function.
New variables λi called Lagrange multipliers.

Min-Max Formulation and Dual Problem

1. The Lagrangian turns primal problem into min-max problem. Note that

max
λ≥0

L(w, b, λ) =

{
||w||2/2 if constraints satisfied

+∞ otherwise

Therefore the primal problem can be written in min-max form

p∗ = min
w,b

max
λ≥0

L(w, b, λ)

2. Changing the order of the min and the max yields the dual problem

d∗ = max
λ≥0

min
w,b

L(w, b, λ)

The Dual Problem

Note: The dual problem can be written in the equivalent form

d∗ = max
λ≥0

L̃(λ) where L̃(λ) = min
w,b

L(w, b, λ)

I The dual function L̃(λ) is concave and has a global maximum,
so the dual problem has a solution.

I In general, d∗ ≤ p∗. Difference p∗ − d∗ ≥ 0 called duality gap

I In this case, can show that d∗ = p∗, so solution of the dual problem
gives solution of the primary problem

Solving the Dual Problem

Step 1: Fix λ ≥ 0 and minimize L(w, b, λ) over w, b. Differentiation gives

w =

n∑
i=1

λi yi xi and
n∑
i=1

λi yi = 0

Substituting these equations into L(w, b, λ) yields quadratic dual function

L̃(λ) =

n∑
i=1

λi −
1

2

n∑
i,j=1

λi λj yi yj 〈xi, xj〉

Step 2: Solve concave dual problem using quadratic programming

max L̃(λ) s.t.
n∑
i=1

λi yi = 0 and λ1, . . . , λn ≥ 0

Solving the Problem of Maximizing the Minimum Margin

Step 3: Combine solution λ of dual problem and optimality conditions to get
desired values of w and b

w =
n∑
i=1

λi yi xi b =
1

2

[
min
i:yi=1

xtiw + max
i:yi=−1

xtiw

]

Upshot: Maximum margin classification rule φ̂ SVM
n (x) = sign(h(x)) where

h(x) = xtw − b =

n∑
i=1

λi yi 〈xi, x〉 − b

Inner Products

Note: Observed feature vectors xi affect φ̂ SVM
n only through inner products

I Dual L̃(λ) depends on xi’s only through inner products 〈xi, xj〉

I Function h(x) depends on xi’s only through inner products 〈xi, x〉

KKT Conditions and Support Vectors

Fact: For each i, optimal w, b, and λ are such that λi(yi h(xi)− 1) = 0.
This implies that λi = 0 or yi h(xi) = 1

Let S = {i : λi > 0}. Note that

1. h(x) =
∑
i∈S λi yi 〈xi, x〉 − b

2. If i ∈ S then yih(xi) = 1 so xi lies on margin for class yi

Definition: Training vectors xi with i ∈ S called support vectors

I Changing a support vector with other data fixed would change the
decision boundary

Soft Margin Classifiers (Support Vector Machine)

General Case

Extending SVM to Non-Separable Case

Most data sets not linearly separable: no hyperplane can separate ±1’s

0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

X1

X
2

Question: How to extend maximum margin classifiers to this setting?

SVM: Non-Separable Case

Idea: Reformulate primal problem. For fixed C > 0 solve convex program

min
w,b,ξ

{
1

2
||w||2 + C

n∑
i=1

ξi

}

s.t. yi(xtiw − b) ≥ 1− ξi and ξi ≥ 0

I ξ1, . . . , ξn are called slack variables

I ξi measures violation of hard constraint yi(xtiw − b) ≥ 1

I ||w||2 small means larger margin

I C controls tradeoff between margin size and total slack

Slack Variables and Margins

Consider linear function h(x) = xtw − b, associated rule φ(x) = sign(h(x))

I Separating hyperplane H = {x : h(x) = 0}

I Target half spaces H+ = {x : h(x) ≥ 1} and H− = {x : h(x) ≤ −1}

Consider data point (xi, yi) with fit ui = yih(xi). Three cases

1. If ui ≥ 1 then φ(xi) = yi and xi ∈ Hyi , slack ξi = 0

2. If 0 ≤ ui < 1 then φ(xi) = yi but xi 6∈ Hyi , slack ξi = 1−mi ∈ (0, 1]

3. If ui < 0 then φ(xi) 6= yi and xi 6∈ Hyi , slack ξi = 1−mi > 1

Soft Margin Classifier

Upshot: Dual approach similar to separable case yields soft margin
classification rule φ̂ SVM

n (x) = sign(h(x)) where

h(x) = xtw − b =
∑
i∈S

λi yi 〈xi, x〉 − b

I Optimal λ from dual optimization; support set S = {i : λi > 0}

w =
∑
i∈S

λi yi xi b = function of λ and data

I Rule φ̂ SVM
n depends on vectors xi, x only through inner products

Effect of Parameter C (from ISL)

−1 0 1 2
−

3
−

2
−

1
0

1
2

3
−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2
−

3
−

2
−

1
0

1
2

3

X1X1

X1X1

X
2

X
2

X
2

X
2

Figure: SVM with small C (the top left) to large C (bottom right). Data non-separable.

Revisiting the Soft Margin Classifier

Recall: Soft margin classifier has primal problem

min
w,b,ξ

{
1

2
||w||2 + C

n∑
i=1

ξi

}
s.t. yi(x

t
iw − b) ≥ 1− ξi and ξi ≥ 0

Equivalent Problem: Primal problem can be written in form

min
w,b

{
n∑
i=1

`h(wtxi − b, yi) + λ||w||2
}

I `h(s, t) = [1− st]+ = max(1− st, 0) “hinge loss ”

I `h(s, t) convex in s when t fixed, so `h(wtx− b, y) convex in w, b

I Equivalent problem is a convex program

Revisiting Soft Margin, cont.

Note similarity between hinge-loss problem and ridge regression

min
β

{
n∑
i=1

`(βtxi, yi) + λ||β||2
}

with `(s, t) = (s− t)2

Sparse SVM: Connection with Ridge suggests SVM with `1-penalty

min
w,b

{
n∑
i=1

`h(wtxi − b, yi) + λ||w||1

}

I The `1-penalty sets many coefficients of w to zero

I Interpretation: selecting important features

I Similar idea can be applied to logistic regression

Support Vector Machines: Non-Linear Case

Nonlinear SVM: Background

Note: Inner product 〈x, x′〉 is signed measure of similarity between x and x′

I 〈x, x′〉 = ||x|| ||x′|| if x, x′ point in same direction

I 〈x, x′〉 = 0 if x, x′ are orthogonal

I 〈x, x′〉 = −||x|| ||x′|| if x, x′ point in opposite directions

Goal: Enhance and expand applicability of standard SVM

I Map predictors x to new feature space via nonlinear transformation

I Classify data using similarity between transformed features

I In many cases new features space is high dimensional

Direct Approach to Nonlinear SVM: Feature Maps

Given: Data (x1, y1), . . . , (xn, yn) ∈ X × {±1}

I Define feature map γ : X → Rd taking predictors to HD features

I Apply SVM to observations (γ(x1), y1), . . . , (γ(xn), yn)

I SVM classifier is sign of h(x) =
∑n
i=1 λi yi 〈γ(xi), γ(x)〉 − b

Example 1: Two-way interactions (polynomials of degree two)

I Predictor space X = Rp

I Define feature map γ : X → Rd by γ(x) = (xi xj)1≤i,j≤p

I Computing 〈γ(x), γ(x′)〉 requires d = p2 operations.

Feature Maps, cont.

Example 2: Bag-of-words representation of documents

I Predictor space X = {English language documents}

I Fix set of words (vocabulary) V of interest

I Define map γ : X → {0, 1, 2, . . .}V from docs to word counts by

γ(x) = # occurrences of each word v ∈ V in document x

I Computing 〈γ(x), γ(x′)〉 requires d = |V | operations

Note: Bag-of-words representation common in natural language processing

Nonlinear SVM via Kernels

Basic idea: Replace inner product 〈·, ·〉 by kernel function K : X × X → R
where K(u, v) measures the similarity between u and v. Key assumptions

I K(u, v) = K(v, u)

I For all u1, . . . , un ∈ X the matrix {K(ui, uj) : 1 ≤ i, j ≤ n} ≥ 0

Kernel classifier: SVM with kernel K

I Solve Lagrange dual problem, replacing 〈xi, xj〉 by K(xi, xj)

I Optimal rule rule φ(x) = sign(h(x)) where

h(x) =
∑
i∈S

λi yiK(xi, x)− b

Examples of Kernels

1. Feature map. Given γ : X → Rd define kernel K(u, v) = 〈γ(u), γ(v)〉

2. Polynomial. For X = Rd let K(u, v) = (1 + 〈u, v〉)d

3. Radial basis. For X = Rd let K(u, v) = exp{−c||u− v||2}

4. Neural network. For X = Rd let K(u, v) = tanh(a〈u, v〉+ b)

Fact: Under appropriate conditions kernel K(u, v) = 〈γ(u), γ(v)〉 for a
suitable feature map γ : X → S

I Feature space S may be infinite dimensional

I Computing K(u, v) may be faster than computing 〈γ(u), γ(v)〉

