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Overview: Support Vector Machines (SVM)

v

Simplest case: linear classification rule

v

Generalizes to non-linear rules through feature maps and kernels

v

Good off-the-shelf method for high dimensional data, widely used

v

Begins with geometry rather than a statistical model

v

Close connections with convex programming

v

Early bridge between machine learning and optimization

Notational switch: Code two-valued response Y as —1 or +1



Linear Classification Rules



Linear Classification Rules

Setting: Labeled pair (z, y) with predictor x € R? and class y € {—1, +1}

Definition: Given w € R? and b € R linear classification rule has form

+1 ifwlz >0
b(z) = sign(z‘w —b) = {

-1 ifwlz<b

Decision boundary of ¢ equal to hyperplane H = {z : w'z = b}



Distance to Decision Boundary

Consider rule ¢ = sign(z‘w — b) with decision boundary H = {z : w'z = b}

Given pair (z,y) ask two questions
» Correctness: Is x on the right side of decision boundary H?

» Confidence: How far is = from the decision boundary H?

Fact: The signed distance from z to the decision boundary H is given by




Margin

Definition: The margin of linear rule ¢ = sign(z'w — b) at (z,y) is

me(z,y) =y (M)

[l

Idea: Margin assesses the fit of ¢ at pair (z,y)
> my(z,y) > 0iff p(z) = y iff z on correct side of H
> my(z,y) < 0iff p(z) # y iff z on wrong side of H

> |me(x,y)| = distance from z to H



Maximum Margin Classifiers and Linearly Separability

General goal: In fitting a linear rule to data, we would like the margins of all
the data points to be large and positive (if possible)

Definition: A dataset D,, = (z1,v1),. .., (zn, yxn) is linearly separable if there
is a hyperplane H separating {z; : y; = 1} and {z; : y; = —1}
We will consider two cases

1. Data is linearly separable = max margin classifier

2. Data is not linearly separable = soft margin classifier



Maximum Margin Classifiers (Support Vector Machine)

Linearly Separable Case



Linearly Separable Data: Multiple Hyperplanes

Variable 2
1

Variable 1



Max Margin Classifier (from ISL)




Maximizing the Minimum Margin

Max Margin Classifier: Given linearly separable data D,,, find w and b to
maximize the minimum margin of ¢(z) = sign(z*w — b). Program is

t —
mabxf‘(w,b) where I'(w,b) = min y; <M> (%)

1<i<n [|wl]

Note that this program is not convex.

Fact: Non-convex program (%) is equivalent to the convex program
x 1 . .
p" = min §||w\|2 subject to y;(ziw —b)>1 for i=1,...,n

Finding p* is called the primal problem



Solving the Problem of Maximizing the Minimum Margin

Approach: Solve primal problem using Lagrangian function and duality

Definition: The Lagrangian L : R x R x R}, with R = [0, o), for the max
margin classifier problem is

1 n
L(w7ba )‘) = §||w||2 - Z)‘L {yl(wt‘zl - b) - 1}
i=1

Note: Lagrangian combines objective and constraints into a single function.
New variables \; called Lagrange multipliers.



Min-Max Formulation and Dual Problem

1. The Lagrangian turns primal problem into min-max problem. Note that

[lw||?>/2 if constraints satisfied
max L(w,b,A\) =
A20 +00 otherwise

Therefore the primal problem can be written in min-max form
p" = min lglg())( L(w,b,\)
2. Changing the order of the min and the max yields the dual problem

d® = max min L(w,b, \)
A>0 w,b



The Dual Problem

Note: The dual problem can be written in the equivalent form

d* = max L(\) where L(\) = min L(w,b,\)

A>0 w,b

» The dual function L()\) is concave and has a global maximum,
so the dual problem has a solution.

» In general, d* < p*. Difference p* — d* > 0 called duality gap

» In this case, can show that d* = p*, so solution of the dual problem
gives solution of the primary problem



Solving the Dual Problem

Step 1: Fix A > 0 and minimize L(w, b, A) over w, b. Differentiation gives

’w:iAiyi$i and i)\iyizo
i=1 i=1

Substituting these equations into L(w, b, \) yields quadratic dual function

- " 1«
L()\) = Z)\l — 5 Z Ai )\j YiYj <xi7xj>
i=1

i,j=1
Step 2: Solve concave dual problem using quadratic programming

maxL(A) st Y Xyi=0and Ai,..., A, >0

i=1



Solving the Problem of Maximizing the Minimum Margin

Step 3: Combine solution \ of dual problem and optimality conditions to get
desired values of w and b

1
w:E Aiyix; b=— mln:rw—i— max ziw
2 |iyi=1 iy;=—1

Upshot: Maximum margin classification rule ¢,°(z) = sign(h(z)) where

h(z) = z'w—b = Z/\iyZ'(:vi,x)fb
i=1



Inner Products

Note: Observed feature vectors z; affect ¢,5*™ only through inner products

» Dual L()\) depends on z;'s only through inner products (z;, z;)

» Function h(z) depends on z;’s only through inner products (x;, x)



KKT Conditions and Support Vectors

Fact: For each ¢, optimal w, b, and X are such that A; (y; h(z;) — 1) = 0.
This implies that A; =0 or y; h(z;) =1

Let S = {i: A; > 0}. Note that

1. h(x) = Zies i Yi <131,13> —b

2. Ifi € Sthen y;h(x;) = 1 so z; lies on margin for class y;

Definition: Training vectors x; with ¢ € S called support vectors

» Changing a support vector with other data fixed would change the
decision boundary



Soft Margin Classifiers (Support Vector Machine)

General Case



Extending SVM to Non-Separable Case

Most data sets not linearly separable: no hyperplane can separate +1’s

Question: How to extend maximum margin classifiers to this setting?



SVM: Non-Separable Case

Idea: Reformulate primal problem. For fixed C' > 0 solve convex program

mm{| + CZ&}
i=1
s.t. yi(xﬁw—b) > 1—& and 61 >0

» £1,...,&, are called slack variables
> ¢ measures violation of hard constraint y; (zfw — b) > 1
> ||w||? small means larger margin

» ( controls tradeoff between margin size and total slack



Slack Variables and Margins

Consider linear function h(z) = x'w — b, associated rule ¢(z) = sign(h(z))
» Separating hyperplane H = {z : h(z) = 0}

> Target half spaces Ht = {z : h(z) > 1} and H~ = {z : h(z) < -1}

Consider data point (x;, y;) with fit u; = y;h(z;). Three cases
1. Ifu; > 1then ¢(z;) = y; and x; € HY, slack & =0
2. If 0 <wu; <1then ¢(z;) =y butx; ¢ HY, slack& =1 —m; € (0,1]

3. Ifu; <O0then ¢(x;) #ys and z; ¢ HY ,slack & =1 —m; > 1



Soft Margin Classifier

Upshot: Dual approach similar to separable case yields soft margin

classification rule ¢,°(z) = sign(h(z)) where

h(z) = z'w—b = Z)\iyi@“w)—b
i€s

» Optimal A from dual optimization; support set S = {i : \; > 0}

w=» Xyiz; b= function of A and data
€S

> Rule ¢,°™ depends on vectors z;, z only through inner products



Effect of Parameter C' (from ISL)

X,
o

' 2 ' o
X X

Figure: SVM with small C (the top left) to large C' (bottom right). Data non-separable.



Revisiting the Soft Margin Classifier

Recall: Soft margin classifier has primal problem

mln{ -1—0251} st yi(ztw—b)>1-¢ and & >0

Equivalent Problem: Primal problem can be written in form

mm{ZZh w'e; — b, y:) + A|w]| }

=1
> ln(s,t) = [1 — st]+ = max(1 — st,0) “hinge loss ”
> ¢, (s,t) convex in s when t fixed, so £, (w'z — b, y) convex in w, b

» Equivalent problem is a convex program



Revisiting Soft Margin, cont.

Note similarity between hinge-loss problem and ridge regression

min {i_zlé(ﬁtxi,yn + A|/3|2} with £(s,t) = (s — t)?

Sparse SVM: Connection with Ridge suggests SVM with ¢;-penalty

I}E}} {Zﬂh(wt% —byyi) + >\||w|1}

=1

> The ¢;-penalty sets many coefficients of w to zero
> Interpretation: selecting important features

» Similar idea can be applied to logistic regression



Support Vector Machines: Non-Linear Case



Nonlinear SVM: Background

Note: Inner product (x, z’) is signed measure of similarity between = and z’
> (z,2') = ||z||||2|| if z, 2" pointin same direction
> (z,z') = 0if z,z’ are orthogonal

> (z,z') = —||z||||='|| if z, 2" point in opposite directions

Goal: Enhance and expand applicability of standard SVM
» Map predictors x to new feature space via nonlinear transformation
» Classify data using similarity between transformed features

» In many cases new features space is high dimensional



Direct Approach to Nonlinear SVM: Feature Maps

Given: Data (z1,y1),- .., (@n,yn) € X x {£1}
» Define feature map ~ : X — R taking predictors to HD features
> Apply SVM to observations (y(z1),91), .-, (7(%n),yn)

> SVM classifier is sign of h(z) = D" | Aiyi (v(zs),v(x)) — b

Example 1: Two-way interactions (polynomials of degree two)
» Predictor space X = R?
> Define feature map v : X — R? by v(z) = (z: ;) 1<:.j<p

> Computing (y(z),v(z')) requires d = p* operations.



Feature Maps, cont.

Example 2: Bag-of-words representation of documents
» Predictor space X = {English language documents}
» Fix set of words (vocabulary) V' of interest

> Define map v: X — {0,1,2,...}V from docs to word counts by

~(z) = # occurrences of each word v € V' in document z
» Computing (y(z),~v(x")) requires d = |V'| operations

Note: Bag-of-words representation common in natural language processing



Nonlinear SVM via Kernels

Basic idea: Replace inner product (-, -) by kernel function K : X x X — R
where K (u,v) measures the similarity between v and v. Key assumptions

> K(u,v) = K(v,u)

> Forall uy,...,u, € X the matrix {K (u;,u;):1<4i,57<n} >0

Kernel classifier: SVM with kernel K
» Solve Lagrange dual problem, replacing (z;, z;) by K (z;,z;)

> Optimal rule rule ¢(z) = sign(h(x)) where

Zx\ yi K(zs,2) — b

i€S



Examples of Kernels

1. Feature map. Given v : X — R< define kernel K (u,v) = {(y(u), y(v))
2. Polynomial. For X = R? let K (u,v) = (1 + (u,v))?
3. Radial basis. For X = R? let K (u,v) = exp{—c||u — v||*}

4. Neural network. For X = R? let K (u,v) = tanh(a(u, v) 4 b)
Fact: Under appropriate conditions kernel K (u,v) = (y(u),y(v)) for a
suitable feature map v : X — S

» Feature space S may be infinite dimensional

» Computing K (u,v) may be faster than computing (y(u),y(v))



