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Regression: Prediction with a Real-Valued Response

Setting: Jointly distributed pair (X,Y) with X ¢ RP andY € R
» X is a feature vector, often high dimensional

» Y is a real-valued response

Goals
» Predict Y from X

> |dentify the components of X that most affect Y



Regression: Prediction with a Real-Valued Response

Ex 1: Marketing (ISL)
» X = money spent on different components of marketing campaign

> Y = gross profits from sales of marketed item

Ex 2: Housing
»> X = geographic and demographic features of a neighborhood

» Y = median home price



Regression: Statistical Framework

1. Jointly distributed pair (X,Y) € R? x R
2. Prediction rule ¢ : R? — R. Regard ¢(X) as an estimate of Y’
3. Squared loss £(y',y) = (y' — y)* = error when y’ used to predict y

4. Risk of prediction rule ¢ is its expected loss

R(¢) = E(p(X),Y) = E(p(X) - V)’

Overall goal: Find a prediction rule ¢ with small risk R(y)



Optimal Prediction and the Regression Function

Fact: Under the squared loss the risk of any fixed rule ¢ is
R(p) = E(p(X) —E(Y]X))* + E(E(Y|X)-Y)?
Thus optimal prediction rule ¢ is the regression function

f(@) =E(Y|X =)

Signal Plus Noise Model: Assume for some function f : R» — R
Y =f(X)+¢ec where Eec=0 and ¢ 1L X
In this case f is the regression function, and for every prediction rule ¢

R(p) = E(p(X) = f(X))* + Var(e)



Regression Procedures and Empirical Risk

Observations: D,, = (X1,Y1),..., (X, Ys) € R? x R iid copies of (X,Y)

Definition
> A regression procedure is a map ¢, : R? x (R x R)" — R

> Let ¢, (z) := ¢n(x : D,) be the prediction rule based on D,

Definition: The empirical risk or training error of a rule ¢ is given by



Linear Regression

Encompasses assumptions about data generation and prediction
» Linear models: How data is generated

> Linear prediction rules: How data is fit



Linear Regression Model

Model: For some coefficient vector 8 = (8o, b1, - . ., Bp)t € RPT?

Y = Bo+> XiBj+e = (B,X)+e

=1
where we assume that
> ¢ is independent of augmented feature vector X = (1, X1,..., X,)"

> Ee = 0and Var(e) = o?

Note: No assumption about distribution of feature vector X



Flexibility of Linear Model (from ESL)

Flexibility arises from latitude in defining the features of X = (1, X1,..., X,)"

Features can include
» Any numerical quantity (possibly taking a finite number of values)
» Transformations (square root, log, square) of numerical quantities
> Polynomial (X2 = X7, X3 = X3}) or basis expansions of other features
» Dummy variables to code qualitative inputs

> Variable interactions, e.g., X3 = X1 - Xp or X3 =1(X; > 0, X2 > 0)



Linear Rules and Procedures

Definition
> Linear prediction rule has form ¢s(z) = «'3 for some 8 € RPH!

» Linear procedure ¢,, produces linear rules from observations D,,

Notation: Linear rule ¢z fully determined by coefficient vector 5. Write
> R(B) = E(Y — X'B)?

> Ra(B) = n7' X (Yi - XiB)?



Different Settings, Different Assumptions

Fitting: Fitting linear models
» Data (x1,y1), ..., (Xn, yn) is fixed, non-random

» No assumption about underlying distribution(s)

Inference: Concerning coefficients from OLS, Ridge, LASSO
> Yi = Xﬁﬁ + &5 with X fixed and €j iid ~ N(O,U2)

» Conditions on feature vectors x; (design matrix)

Assessment: Test error, cross-validation

> Observations (X, Y;) are iid copies of (X,Y")



Ordinary Least Squares (OLS)

Given: Paired observations (xi1,y1),..., (Xn,yn) € RPT x R define
> Response vector y = (y1,...,yn)"

> Design matrix X € R™*®*1 with ith row x

OLS: Identify the vector 3 minimizing the residual sum of squares (RSS)

n

nR.(B) = > (v —xiB)? = |ly - X8|I

i=1

Interpretation: Projecting y onto subspace of R™ spanned by columns of X,
which correspond to features of the data



Least Squares Estimation of Coefficient Vector

Fact: If rank(X) = p then R,,(8) is strictly convex and has unique minimizer

f=(X'X)"'X'y (normal equations)

» Minimization problem has closed form solution
> Assumption rank(X) = p ensures X‘X is invertible, requires n > p
> Solution 3 yields linear prediction rule ¢;(z) = (8, )

> Fitted value of the response y is the projection y = X3



Gaussian Linear Model

Gaussian Linear Model: Assume feature vectors x;,...,x, are fixed and
that responses y; follow linear model with normal errors

yi = xIB +¢e; with & iid N(0,07)

Model can be written in vector form y = X8 + € with ¢ ~ N, (0,021)

Fact: Estimate 3 = (X'X)~' X'y has following properties
1. Ef = 8 and Var(f) = (X'X)"'o?

2. 3 is multivariate normal



Inference for Gaussian Linear Model

1. Can show ||y — Xj||> ~ o%x%_,_,. Estimate noise variance o by

o lly = XA
n—p—1

2. Letv; = (X'X);;". If B; = 0 then the ¢-type statistic

B;

Tj = === ~ thp-1

NG
We can use T; to test if 3; = 0. Approximate 95% confidence interval for j3; is

(B; — 1.96\/v; 6, B; + 1.96,/v; &)



Penalized Linear Regression

Recal: OLS estimate 3 depends directly on (X*X)~*
» Inverse does not existif p > n
» Small eigenvalues resulting from (near) collinearity among features can
lead to unstable estimates, unreliable predictions
Alternative: Penalized regression

» Regularize OLS cost function by adding a term that penalizes large
coefficients, shrinking estimates towards zero



Ridge Regression

Setting: Paired observations (x1,41),..., (Xn,yn) € RP xR
> Centering: Assume >  x; =0and > " 4 =0
» Design matrix X € R™*?

» Response vectory € R"



Ridge Regression, cont

Given: Design matrix X € R™*? and response vector y € R"

Penalized cost function: For each X\ > 0 define
R (B) = [ly = X8| + X[BII*

> ||y — X3||* measures fit of the linear model
> ||8||* measures magnitude of coefficient vector
» )\ controls tradeoff between fit and magnitude

» OLS is special case A =0



Ridge Regression, cont.

Fact: If A > 0then R,, »(3) is strictly convex and has unique minimizer

bx = (X'X + L) X'y

v

Eigenvalues of XX + AI,, = eigenvalues of X‘X plus \.

v

If X > 0then X'X + \I,, > 0 is invertible so 3 is well defined

v

If A\ < A2 then ||Bx, || < ||B, ||: penalty shrinks 3, towards zero

» Ridge procedure yields linear rule ©s, (x) = (x,8x)

v

Ridge regression is really a family of procedures, one for each A



Ridge Regression as a Convex Program

Recall: 2., (8) = [ly — X8|* + A[|8]1°

Fact: Minimizing R, x(3) is the Lagrangian form of mathematical program
min f(§) = |ly — Xp||” subject to [|5]|* <t,

where ¢t depends on A

Note: Objective function and constraint set of the program are convex



Selecting Penalty Parameter

Issue: Different parameters ) give different solutions 3x. How to choose A?

» Fix “grid” A = {\1, ..., An} of parameter values

Approach 1. Independent training set D,, and test set D,
> Find vectors By, , ..., B, Using training set D,, with different

> Select vector 3, minimizing test error R,,,(8) = m~" 327" (V; — X!B)?

Approach 2. Cross-validation
> For each 1 < ¢ < N evaluate cross-validated risk 2<% (Ridge()\/))

> Select vector (3, for which X, minimizes cross-validated risk



Ridge Regression and Gaussian Linear Model

Setting: Suppose y = X3 + ¢ with X fixed and € ~ N, (0, 0%1)

Ridge estimate 3, shrinks OLS estimate /3 towards zero. For A > 0
> Increased bias Ef, # 3

» Reduced variance Var(j3,) < Var()

Appropriate choice of A can reduce overall mean-squared error, that is,

E||Bx - BII* <E||B - 81



