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Regression: Prediction with a Real-Valued Response

Setting: Jointly distributed pair (X,Y ) with X ∈ Rp and Y ∈ R

I X is a feature vector, often high dimensional

I Y is a real-valued response

Goals

I Predict Y from X

I Identify the components of X that most affect Y



Regression: Prediction with a Real-Valued Response

Ex 1: Marketing (ISL)

I X = money spent on different components of marketing campaign

I Y = gross profits from sales of marketed item

Ex 2: Housing

I X = geographic and demographic features of a neighborhood

I Y = median home price



Regression: Statistical Framework

1. Jointly distributed pair (X,Y ) ∈ Rp × R

2. Prediction rule ϕ : Rp → R. Regard ϕ(X) as an estimate of Y

3. Squared loss `(y′, y) = (y′ − y)2 = error when y′ used to predict y

4. Risk of prediction rule ϕ is its expected loss

R(ϕ) = E `(ϕ(X), Y ) = E(ϕ(X)− Y )2

Overall goal: Find a prediction rule ϕ with small risk R(ϕ)



Optimal Prediction and the Regression Function

Fact: Under the squared loss the risk of any fixed rule ϕ is

R(ϕ) = E (ϕ(X)− E(Y |X) )2 + E (E(Y |X)− Y )2

Thus optimal prediction rule ϕ is the regression function

f(x) = E(Y |X = x)

Signal Plus Noise Model: Assume for some function f : Rp → R

Y = f(X) + ε where E ε = 0 and ε ⊥⊥ X

In this case f is the regression function, and for every prediction rule ϕ

R(ϕ) = E(ϕ(X)− f(X))2 + Var(ε)



Regression Procedures and Empirical Risk

Observations: Dn = (X1, Y1), . . . , (Xn, Yn) ∈ Rp × R iid copies of (X,Y )

Definition

I A regression procedure is a map ϕn : Rp × (Rp × R)n → R

I Let ϕ̂n(x) := ϕn(x : Dn) be the prediction rule based on Dn

Definition: The empirical risk or training error of a rule ϕ is given by

R̂n(ϕ) =
1

n

n∑
i=1

(Yi − ϕ(Xi))
2



Linear Regression

Encompasses assumptions about data generation and prediction

I Linear models: How data is generated

I Linear prediction rules: How data is fit



Linear Regression Model

Model: For some coefficient vector β = (β0, β1, . . . , βp)
t ∈ Rp+1

Y = β0 +

p∑
j=1

Xjβj + ε = 〈β,X〉+ ε

where we assume that

I ε is independent of augmented feature vector X = (1, X1, . . . , Xp)
t

I Eε = 0 and Var(ε) = σ2

Note: No assumption about distribution of feature vector X



Flexibility of Linear Model (from ESL)

Flexibility arises from latitude in defining the features of X = (1, X1, . . . , Xp)
t

Features can include

I Any numerical quantity (possibly taking a finite number of values)

I Transformations (square root, log, square) of numerical quantities

I Polynomial (X2 = X2
1 , X3 = X3

1 ) or basis expansions of other features

I Dummy variables to code qualitative inputs

I Variable interactions, e.g., X3 = X1 ·X2 or X3 = I(X1 ≥ 0, X2 ≥ 0)



Linear Rules and Procedures

Definition

I Linear prediction rule has form ϕβ(x) = xtβ for some β ∈ Rp+1

I Linear procedure ϕn produces linear rules from observations Dn

Notation: Linear rule ϕβ fully determined by coefficient vector β. Write

I R(β) = E(Y −Xtβ)2

I R̂n(β) = n−1 ∑n
i=1(Yi −Xt

iβ)2



Different Settings, Different Assumptions

Fitting: Fitting linear models

I Data (x1, y1), . . . , (xn, yn) is fixed, non-random

I No assumption about underlying distribution(s)

Inference: Concerning coefficients from OLS, Ridge, LASSO

I yi = xtiβ + εi with xj fixed and εj iid ∼ N (0, σ2)

I Conditions on feature vectors xj (design matrix)

Assessment: Test error, cross-validation

I Observations (Xi, Yi) are iid copies of (X,Y )



Ordinary Least Squares (OLS)

Given: Paired observations (x1, y1), . . . , (xn, yn) ∈ Rp+1 × R define

I Response vector y = (y1, . . . , yn)t

I Design matrix X ∈ Rn×(p+1) with ith row xti

OLS: Identify the vector β̂ minimizing the residual sum of squares (RSS)

n R̂n(β) =
n∑
i=1

(yi − xtiβ)2 = ||y −Xβ||2

Interpretation: Projecting y onto subspace of Rn spanned by columns of X,
which correspond to features of the data



Least Squares Estimation of Coefficient Vector

Fact: If rank(X) = p then R̂n(β) is strictly convex and has unique minimizer

β̂ = (XtX)−1Xty (normal equations)

I Minimization problem has closed form solution

I Assumption rank(X) = p ensures XtX is invertible, requires n ≥ p

I Solution β̂ yields linear prediction rule ϕβ̂(x) = 〈β̂, x〉

I Fitted value of the response y is the projection ŷ = Xβ̂



Gaussian Linear Model

Gaussian Linear Model: Assume feature vectors x1, . . . ,xn are fixed and
that responses yi follow linear model with normal errors

yi = xtiβ + εi with εi iid N (0, σ2)

Model can be written in vector form y = Xβ + ε with ε ∼ Nn(0, σ2I)

Fact: Estimate β̂ = (XtX)−1Xty has following properties

1. Eβ̂ = β and Var(β̂) = (XtX)−1σ2

2. β̂ is multivariate normal



Inference for Gaussian Linear Model

1. Can show ||y −Xβ̂||2 ∼ σ2χ2
n−p−1. Estimate noise variance σ2 by

σ̂2 =
||y −Xβ̂||2

n− p− 1

2. Let vj = (XtX)−1
jj . If βj = 0 then the t-type statistic

Tj =
β̂j

σ̂
√
vj
∼ tn−p−1

We can use Tj to test if βj = 0. Approximate 95% confidence interval for βj is

(β̂j − 1.96
√
vj σ̂, β̂j + 1.96

√
vj σ̂)



Penalized Linear Regression

Recal: OLS estimate β̂ depends directly on (XtX)−1

I Inverse does not exist if p > n

I Small eigenvalues resulting from (near) collinearity among features can
lead to unstable estimates, unreliable predictions

Alternative: Penalized regression

I Regularize OLS cost function by adding a term that penalizes large
coefficients, shrinking estimates towards zero



Ridge Regression

Setting: Paired observations (x1, y1), . . . , (xn, yn) ∈ Rp × R

I Centering: Assume
∑n
i=1 xi = 0 and

∑n
i=1 yi = 0

I Design matrix X ∈ Rn×p

I Response vector y ∈ Rn



Ridge Regression, cont

Given: Design matrix X ∈ Rn×p and response vector y ∈ Rn

Penalized cost function: For each λ ≥ 0 define

R̂n,λ(β) = ||y −Xβ||2 + λ ||β||2

I ||y −Xβ||2 measures fit of the linear model

I ||β||2 measures magnitude of coefficient vector

I λ controls tradeoff between fit and magnitude

I OLS is special case λ = 0



Ridge Regression, cont.

Fact: If λ > 0 then R̂n,λ(β) is strictly convex and has unique minimizer

β̂λ = (XtX + λIp)
−1Xty

I Eigenvalues of XtX + λIp = eigenvalues of XtX plus λ.

I If λ > 0 then XtX + λIp > 0 is invertible so β̂λ is well defined

I If λ1 ≤ λ2 then ||β̂λ2 || ≤ ||β̂λ1 ||: penalty shrinks β̂λ towards zero

I Ridge procedure yields linear rule ϕβ̂λ(x) = 〈x, β̂λ〉

I Ridge regression is really a family of procedures, one for each λ



Ridge Regression as a Convex Program

Recall: R̂n,λ(β) = ||y −Xβ||2 + λ ||β||2

Fact: Minimizing R̂n,λ(β) is the Lagrangian form of mathematical program

min f(β) = ||y −Xβ||2 subject to ||β||2 ≤ t,

where t depends on λ

Note: Objective function and constraint set of the program are convex



Selecting Penalty Parameter

Issue: Different parameters λ give different solutions β̂λ. How to choose λ?

I Fix “grid” Λ = {λ1, . . . , λN} of parameter values

Approach 1. Independent training set Dn and test set Dm

I Find vectors β̂λ1 , . . . , β̂λN using training set Dn with different λ

I Select vector β̂λ` minimizing test error R̂m(β) = m−1 ∑m
j=1(Yj −Xt

jβ)2

Approach 2. Cross-validation

I For each 1 ≤ ` ≤ N evaluate cross-validated risk R̂k-CV(Ridge(λ`))

I Select vector β̂λ` for which λ` minimizes cross-validated risk



Ridge Regression and Gaussian Linear Model

Setting: Suppose y = Xβ + ε with X fixed and ε ∼ Nn(0, σ2I)

Ridge estimate β̂λ shrinks OLS estimate β̂ towards zero. For λ > 0

I Increased bias Eβ̂λ 6= β

I Reduced variance Var(β̂λ) < Var(β̂)

Appropriate choice of λ can reduce overall mean-squared error, that is,

E||β̂λ − β||2 < E||β̂ − β||2


