Linear Regression

Andrew Nobel

October, 2021

Regression: Prediction with a Real-Valued Response

Setting: Jointly distributed pair (X, Y) with $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}$

- X is a feature vector, often high dimensional
- Y is a real-valued response

Goals

- Predict Y from X
- Identify the components of X that most affect Y

Regression: Prediction with a Real-Valued Response

Ex 1: Marketing (ISL)

- $X=$ money spent on different components of marketing campaign
- $Y=$ gross profits from sales of marketed item

Ex 2: Housing

- $X=$ geographic and demographic features of a neighborhood
- $Y=$ median home price

Regression: Statistical Framework

1. Jointly distributed pair $(X, Y) \in \mathbb{R}^{p} \times \mathbb{R}$
2. Prediction rule $\varphi: \mathbb{R}^{p} \rightarrow \mathbb{R}$. Regard $\varphi(X)$ as an estimate of Y
3. Squared loss $\ell\left(y^{\prime}, y\right)=\left(y^{\prime}-y\right)^{2}=$ error when y^{\prime} used to predict y
4. Risk of prediction rule φ is its expected loss

$$
R(\varphi)=\mathbb{E} \ell(\varphi(X), Y)=\mathbb{E}(\varphi(X)-Y)^{2}
$$

Overall goal: Find a prediction rule φ with small risk $R(\varphi)$

Optimal Prediction and the Regression Function

Fact: Under the squared loss the risk of any fixed rule φ is

$$
R(\varphi)=\mathbb{E}(\varphi(X)-\mathbb{E}(Y \mid X))^{2}+\mathbb{E}(\mathbb{E}(Y \mid X)-Y)^{2}
$$

Thus optimal prediction rule φ is the regression function

$$
f(x)=\mathbb{E}(Y \mid X=x)
$$

Signal Plus Noise Model: Assume for some function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
Y=f(X)+\varepsilon \text { where } \mathbb{E} \varepsilon=0 \text { and } \varepsilon \Perp X
$$

In this case f is the regression function, and for every prediction rule φ

$$
R(\varphi)=\mathbb{E}(\varphi(X)-f(X))^{2}+\operatorname{Var}(\varepsilon)
$$

Regression Procedures and Empirical Risk

Observations: $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathbb{R}^{p} \times \mathbb{R}$ iid copies of (X, Y)

Definition

- A regression procedure is a map $\varphi_{n}: \mathbb{R}^{p} \times\left(\mathbb{R}^{p} \times \mathbb{R}\right)^{n} \rightarrow \mathbb{R}$
- Let $\hat{\varphi}_{n}(x):=\varphi_{n}\left(x: D_{n}\right)$ be the prediction rule based on D_{n}

Definition: The empirical risk or training error of a rule φ is given by

$$
\hat{R}_{n}(\varphi)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\varphi\left(X_{i}\right)\right)^{2}
$$

Linear Regression

Encompasses assumptions about data generation and prediction

- Linear models: How data is generated
- Linear prediction rules: How data is fit

Linear Regression Model

Model: For some coefficient vector $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{t} \in \mathbb{R}^{p+1}$

$$
Y=\beta_{0}+\sum_{j=1}^{p} X_{j} \beta_{j}+\varepsilon=\langle\beta, X\rangle+\varepsilon
$$

where we assume that

- ε is independent of augmented feature vector $X=\left(1, X_{1}, \ldots, X_{p}\right)^{t}$
- $\mathbb{E} \varepsilon=0$ and $\operatorname{Var}(\varepsilon)=\sigma^{2}$

Note: No assumption about distribution of feature vector X

Flexibility of Linear Model (from ESL)

Flexibility arises from latitude in defining the features of $X=\left(1, X_{1}, \ldots, X_{p}\right)^{t}$

Features can include

- Any numerical quantity (possibly taking a finite number of values)
- Transformations (square root, log, square) of numerical quantities
- Polynomial ($X_{2}=X_{1}^{2}, X_{3}=X_{1}^{3}$) or basis expansions of other features
- Dummy variables to code qualitative inputs
- Variable interactions, e.g., $X_{3}=X_{1} \cdot X_{2}$ or $X_{3}=\mathbb{I}\left(X_{1} \geq 0, X_{2} \geq 0\right)$

Linear Rules and Procedures

Definition

- Linear prediction rule has form $\varphi_{\beta}(x)=x^{t} \beta$ for some $\beta \in \mathbb{R}^{p+1}$
- Linear procedure φ_{n} produces linear rules from observations D_{n}

Notation: Linear rule φ_{β} fully determined by coefficient vector β. Write

- $R(\beta)=\mathbb{E}\left(Y-X^{t} \beta\right)^{2}$
- $\hat{R}_{n}(\beta)=n^{-1} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{t} \beta\right)^{2}$

Different Settings, Different Assumptions

Fitting: Fitting linear models

- Data $\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{n}, y_{n}\right)$ is fixed, non-random
- No assumption about underlying distribution(s)

Inference: Concerning coefficients from OLS, Ridge, LASSO

- $y_{i}=\mathbf{x}_{i}^{t} \beta+\varepsilon_{i}$ with \mathbf{x}_{j} fixed and ε_{j} iid $\sim \mathcal{N}\left(0, \sigma^{2}\right)$
- Conditions on feature vectors x_{j} (design matrix)

Assessment: Test error, cross-validation

- Observations $\left(X_{i}, Y_{i}\right)$ are iid copies of (X, Y)

Ordinary Least Squares (OLS)

Given: Paired observations $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{p+1} \times \mathbb{R}$ define

- Response vector $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{t}$
- Design matrix $\mathbf{X} \in \mathbb{R}^{n \times(p+1)}$ with i th row \mathbf{x}_{i}^{t}

OLS: Identify the vector $\hat{\beta}$ minimizing the residual sum of squares (RSS)

$$
n \hat{R}_{n}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{t} \beta\right)^{2}=\|\mathbf{y}-\mathbf{X} \beta\|^{2}
$$

Interpretation: Projecting y onto subspace of \mathbb{R}^{n} spanned by columns of X, which correspond to features of the data

Least Squares Estimation of Coefficient Vector

Fact: If $\operatorname{rank}(\mathbf{X})=p$ then $\hat{R}_{n}(\beta)$ is strictly convex and has unique minimizer

$$
\hat{\beta}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y} \quad \text { (normal equations) }
$$

- Minimization problem has closed form solution
- Assumption rank $(\mathbf{X})=p$ ensures $\mathbf{X}^{t} \mathbf{X}$ is invertible, requires $n \geq p$
- Solution $\hat{\beta}$ yields linear prediction rule $\varphi_{\hat{\beta}}(x)=\langle\hat{\beta}, x\rangle$
- Fitted value of the response \mathbf{y} is the projection $\hat{\mathbf{y}}=\mathbf{X} \hat{\beta}$

Gaussian Linear Model

Gaussian Linear Model: Assume feature vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are fixed and that responses y_{i} follow linear model with normal errors

$$
y_{i}=\mathbf{x}_{i}^{t} \beta+\varepsilon_{i} \text { with } \varepsilon_{i} \text { iid } \mathcal{N}\left(0, \sigma^{2}\right)
$$

Model can be written in vector form $\mathbf{y}=\mathbf{X} \beta+\varepsilon$ with $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$

Fact: Estimate $\hat{\beta}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y}$ has following properties

1. $\mathbb{E} \hat{\beta}=\beta$ and $\operatorname{Var}(\hat{\beta})=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \sigma^{2}$
2. $\hat{\beta}$ is multivariate normal

Inference for Gaussian Linear Model

1. Can show $\|\mathbf{y}-\mathbf{X} \hat{\beta}\|^{2} \sim \sigma^{2} \chi_{n-p-1}^{2}$. Estimate noise variance σ^{2} by

$$
\hat{\sigma}^{2}=\frac{\|\mathbf{y}-\mathbf{X} \hat{\beta}\|^{2}}{n-p-1}
$$

2. Let $v_{j}=\left(\mathbf{X}^{t} \mathbf{X}\right)_{j j}^{-1}$. If $\beta_{j}=0$ then the t-type statistic

$$
T_{j}=\frac{\hat{\beta}_{j}}{\hat{\sigma} \sqrt{v_{j}}} \sim t_{n-p-1}
$$

We can use T_{j} to test if $\beta_{j}=0$. Approximate 95% confidence interval for β_{j} is

$$
\left(\hat{\beta}_{j}-1.96 \sqrt{v_{j}} \hat{\sigma}, \hat{\beta}_{j}+1.96 \sqrt{v_{j}} \hat{\sigma}\right)
$$

Penalized Linear Regression

Recal: OLS estimate $\hat{\beta}$ depends directly on $\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}$

- Inverse does not exist if $p>n$
- Small eigenvalues resulting from (near) collinearity among features can lead to unstable estimates, unreliable predictions

Alternative: Penalized regression

- Regularize OLS cost function by adding a term that penalizes large coefficients, shrinking estimates towards zero

Ridge Regression

Setting: Paired observations $\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{p} \times \mathbb{R}$

- Centering: Assume $\sum_{i=1}^{n} \mathbf{x}_{i}=0$ and $\sum_{i=1}^{n} y_{i}=0$
- Design matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$
- Response vector $\mathbf{y} \in \mathbb{R}^{n}$

Ridge Regression, cont

Given: Design matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ and response vector $\mathbf{y} \in \mathbb{R}^{n}$

Penalized cost function: For each $\lambda \geq 0$ define

$$
\hat{R}_{n, \lambda}(\beta)=\|\mathbf{y}-\mathbf{X} \beta\|^{2}+\lambda\|\beta\|^{2}
$$

- $\|\mathbf{y}-\mathbf{X} \beta\|^{2}$ measures fit of the linear model
- $\|\beta\|^{2}$ measures magnitude of coefficient vector
- λ controls tradeoff between fit and magnitude
- OLS is special case $\lambda=0$

Ridge Regression, cont.

Fact: If $\lambda>0$ then $\hat{R}_{n, \lambda}(\beta)$ is strictly convex and has unique minimizer

$$
\hat{\beta}_{\lambda}=\left(\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}\right)^{-1} \mathbf{X}^{t} \mathbf{y}
$$

- Eigenvalues of $\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}=$ eigenvalues of $\mathbf{X}^{t} \mathbf{X}$ plus λ.
- If $\lambda>0$ then $\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}>0$ is invertible so $\hat{\beta}_{\lambda}$ is well defined
- If $\lambda_{1} \leq \lambda_{2}$ then $\left\|\hat{\beta}_{\lambda_{2}}\right\| \leq\left\|\hat{\beta}_{\lambda_{1}}\right\|$: penalty shrinks $\hat{\beta}_{\lambda}$ towards zero
- Ridge procedure yields linear rule $\varphi_{\hat{\beta}_{\lambda}}(\mathbf{x})=\left\langle\mathbf{x}, \hat{\beta}_{\lambda}\right\rangle$
- Ridge regression is really a family of procedures, one for each λ

Ridge Regression as a Convex Program

Recall: $\hat{R}_{n, \lambda}(\beta)=\|\mathbf{y}-\mathbf{X} \beta\|^{2}+\lambda\|\beta\|^{2}$

Fact: Minimizing $\hat{R}_{n, \lambda}(\beta)$ is the Lagrangian form of mathematical program

$$
\min f(\beta)=\|\mathbf{y}-\mathbf{X} \beta\|^{2} \text { subject to }\|\beta\|^{2} \leq t,
$$

where t depends on λ

Note: Objective function and constraint set of the program are convex

Selecting Penalty Parameter

Issue: Different parameters λ give different solutions $\hat{\beta}_{\lambda}$. How to choose λ ?

- Fix "grid" $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$ of parameter values

Approach 1. Independent training set D_{n} and test set D_{m}

- Find vectors $\hat{\beta}_{\lambda_{1}}, \ldots, \hat{\beta}_{\lambda_{N}}$ using training set D_{n} with different λ
- Select vector $\hat{\beta}_{\lambda_{\ell}}$ minimizing test error $\hat{R}_{m}(\beta)=m^{-1} \sum_{j=1}^{m}\left(Y_{j}-X_{j}^{t} \beta\right)^{2}$

Approach 2. Cross-validation

- For each $1 \leq \ell \leq N$ evaluate cross-validated risk $\hat{R}^{k \cdot c v}\left(\operatorname{Ridge}\left(\lambda_{\ell}\right)\right)$
- Select vector $\hat{\beta}_{\lambda_{\ell}}$ for which λ_{ℓ} minimizes cross-validated risk

Ridge Regression and Gaussian Linear Model

Setting: Suppose $\mathbf{y}=\mathbf{X} \beta+\varepsilon$ with \mathbf{X} fixed and $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$

Ridge estimate $\hat{\beta}_{\lambda}$ shrinks OLS estimate $\hat{\beta}$ towards zero. For $\lambda>0$

- Increased bias $\mathbb{E} \hat{\beta}_{\lambda} \neq \beta$
- Reduced variance $\operatorname{Var}\left(\hat{\beta}_{\lambda}\right)<\operatorname{Var}(\hat{\beta})$

Appropriate choice of λ can reduce overall mean-squared error, that is,

$$
\mathbb{E}\left\|\hat{\beta}_{\lambda}-\beta\right\|^{2}<\mathbb{E}\|\hat{\beta}-\beta\|^{2}
$$

