
Decision and Regression Trees

Andrew Nobel

November, 2021

Review: Histogram Classification Rules

I Data set Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1}

I Partition γ = {A1, . . . , Am} of feature space X into disjoint cells

I Membership function γ(x) = cell Aj of γ containing x

Definition: Histogram rule φ̂γn(x) = majority vote {yi : γ(xi) = γ(x)}

Fact: Histogram rule φ̂γn minimizes the empirical risk (training error)

Rn(φ) = n−1
n∑
i=1

I(φ(xi) 6= yi)

among all decision rules φ that are constant on cells of partition γ

Histogram Regression Estimates

I Data set Dn = (x1, y1), . . . , (xn, yn) ∈ X × R

I Partition γ = {A1, . . . , Am} of feature space X into disjoint cells

I Membership function γ(x) = cell Aj of γ containing x

Definition: Histogram rule ϕ̂γn(x) = average {yi : γ(xi) = γ(x)}

Fact: Histogram rule ϕ̂γn minimizes the empirical risk (training error)

Rn(ϕ) = n−1
n∑
i=1

(ϕ(xi)− yi)2

among all functions ϕ that are constant on cells of partition γ

Decision Trees in a Nutshell

1. A decision tree is a histogram classification rule based on a data
dependent partition

2. The partition is characterized by a binary tree T that describes a
recursive splitting of the feature space

3. Each split in the partition is simple, involving a single variable and
an associated threshold

Binary Trees

Definition: A binary tree T is a (directed, acyclic) graph such that

1. T has a distinguished node t0 called the root with no parent

2. Every other node t ∈ T has one parent and zero or two children

I Nodes with two children are called internal, denoted by T o

I Nodes with no children are called leaves, denoted by ∂T

Note: Tree usually drawn upside-down, with root node at the top. If T has
more than one node, the root node is internal

Labeled Binary Tree

Suppose X = Rp. A labeled binary tree is described by

1. A binary tree T

I root node t0

I interior nodes T o

I leaves ∂T

2. For each internal node t ∈ T o

I a splitting feature/variable jt ∈ {1, . . . , p}

I a splitting threshold τt ∈ R

Tree-Structured Partition

Each node t of a labeled binary tree corresponds to a region A(t) ⊆ Rp

Regions are recursively defined, starting at the root

I A(t0) = Rp.

I For t ∈ T o region A(t) split on component jt at threshold τt yielding

A(tl) = A(t) ∩ {x : xjt ≤ τt} and A(tr) = A(t) ∩ {x : xjt > τt}

Fact: The terminal regions {A(t) : t ∈ ∂T} associated with the leaves of T
partition Rp. This is called the partition generated by T

Example: Regression Tree (ESL)

Decision Trees

Definition: A decision tree is a histogram classification rule that is based on
the partition of a labeled binary tree T . Formally,

φT (x) =
∑
t∈∂T

c(t) I(x ∈ A(t))

where c(t) ∈ {0, 1} is the class associated with terminal region A(t).

Outline: How to obtain a decision tree from data Dn?

I Use Dn to grow a large labeled tree T0 in a greedy fashion

I Prune large tree T0 to get a “right-sized” tree T

I Assign each terminal region of T to its majority class

Impurity Measures for Regions

Given: Data (x1, y1), . . . , (xn, yn) and region A ⊆ X define

I |A| = number of xi ∈ A

I p̂(A) = |A|−1∑
xi∈A I(yi = 1) = fraction of points in A with yi = 1

Impurity Measures: Let p̂ = p̂(A). Standard measures include

1. Misclassification rate M(A) = min(p̂, 1− p̂)

2. Gini index G(A) = p̂ (1− p̂)

3. Entropy H(A) = −p̂ log p̂− (1− p̂) log(1− p̂)

Idea: Impurity measures quantify extent to which A contains points from one
class. Small when p̂ close to 0 or 1, maximized at p = 1/2.

Impurity Reduction from Region Splitting

Definition: If region A split into Al and Ar the reduction in misclassification
rate is given by

∆M = M(A)−
[
|Al|
|A|M(Al) +

|Ar|
|A| M(Ar)

]

Changes ∆G and ∆H for Gini and entropy measures are defined similarly

Fact: The quantities ∆M ,∆G, and ∆H are non-negative. Better splits are
associated with larger values of ∆∗

Tree Growing from Data

Fix in advance

I Data set Dn = (x1, y1), . . . , (xn, yn) ∈ Rp × {−1, 1}

I Impurity measure M , G, or H with associated reduction measure ∆

I Count threshold n0: only split regions with at least n0 points

I Reduction threshold ∆0: only implement splits with ∆ > ∆0

Tree Growing from Data

Initialize: Let T := {t0} with A(t0) = Rp.

Iterate: For each leaf t ∈ ∂T with |A(t)| ≥ n0 do

1. For each j ∈ {1, . . . , p} and each τ ∈ R find change ∆ for the split

A(t) ∩ {x : xj ≤ τ} and A(t) ∩ {x : xj > τ}

2. Identify optimal variable j(t) and threshold τ(t)

3. If optimal ∆ ≤ ∆0 stop. Otherwise add leaves tl and tr to node t

I assign A(tl) = A(t) ∩ {x : xj(t) ≤ τ(t)}

I assign A(tr) = A(t) ∩ {x : xj(t) > τ(t)}

Output: Baseline tree T0

Pruning to Balance Fit and Complexity

Let T ≤ T0 be a binary subtree of T0 with the same root

I Leaf regions {A(t) : t ∈ ∂T} of T partition feature space X

I Majority voting in terminal regions of T yields decision tree φT

I Measure fit of φT by its empirical risk R̂n(T)

I Measure complexity of φT by |T | = number of nodes in T

Definition: For each λ ≥ 0 define subtree

Tλ = argmin
T≤T0

{
R̂n(T) + λ|T |

}
Tree Tλ offers optimal balance of fit and complexity with weight λ

Cost-Complexity Pruning

Focus: Subtrees Tλ = argminT≤T0

{
R̂n(T) + λ|T |

}
for λ ≥ 0

I If Ta ≤ Tb then |Ta| ≤ |Tb|, while R̂n(Ta) ≥ R̂n(Tb)

I T0 = full tree T0. For λ is sufficiently large, Tλ = {root}

Fact: The trees Tλ are nested: λ1 ≤ λ2 implies Tλ2 ≤ Tλ1 . Full sequence
{Tλ : λ ≥ 0} can be found by successively removing nodes with small ∆M

Upshot: Given large initial tree T0

I Choose value λ̃ of penalty λ using cross validation

I Final rule is decision tree φ̂tree associated with Tλ̃

Example: Spam Data (ESL)

Data: 4061 messages classified as “email” or “spam”

Features: Each message has 57 predictors

I percentage of words matching those on a list (48)

I percentage of characters matching characters on a list (6)

I counting sequences of capital letters (3)

Decision Tree

I grow with entropy based impurity, training set 3065 samples

I penalty parameter λ̂ chosen by 10-fold CV

I use test set to evaluate node impurity, overall performance

Example: Pruned Tree for Spam Detection (ESL)

Estimating Conditional Probabilities

Idea: Given data Dn = (X1, Y1), . . . , (Xn, Yn) and decision tree T with
terminal regions

γ = {A(t) : t ∈ ∂T}

Rather than poll class labels in each terminal region, we may estimate
η(x) = P(Y = 1 |X = x) by averaging the responses, that is

η̂(x) = average{yi : I(γ(xi) = γ(x))}

Note that corresponding decision tree rule is φ̂tree(x) = I(η̂(x) ≥ 1/2)

Regression Trees

1. Growing. Grow large initial tree T0 from data using impurity measure

U(A) =
∑
xi∈A

(yi − yA)2 with yA = |A|−1
∑
xi∈A

yi

2. Pruning. Consider optimal cost-complexity subtrees

Tλ = argmin
T≤T0

{Rn(T) + λ|T |} λ ≥ 0

where Rn(T) is empirical risk of histogram regression rule based on T

3. Output. Use cross validation to select penalty λ̂ and associated tree Tλ̂.
Final rule is regression tree ϕ̂tree based on Tλ̂

Classification and Regression Trees

Pluses

I Growing and pruning are computationally efficient

I Trees are readily interpretable

I Can accommodate ordinal and categorical features

Minuses

I Unstable: a small change in the data can lead to a very different rule

I Histogram rules are piecewise constant, not smooth

I Some simple rules not well-captured by tree-structured partitions

