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Review: Histogram Classification Rules

» Dataset D, = (z1,y1),-.-, (Tn,yn) € X x {0,1}

» Partition v = {44, ..., A} of feature space X into disjoint cells

» Membership function v(z) = cell A; of v containing =
Definition: Histogram rule ¢}, (x) = majority vote {y; : v(z:) = v(z)}

Fact: Histogram rule ¢, minimizes the empirical risk (training error)

= 712]1 xz #yz

among all decision rules ¢ that are constant on cells of partition



Histogram Regression Estimates

» Dataset D, = (z1,41),-.-, (Tn,yn) € X X R
» Partition v = {44, ..., A} of feature space X into disjoint cells

» Membership function v(z) = cell A; of v containing =
Definition: Histogram rule @7 (x) = average {y; : v(z;) = v(z)}

Fact: Histogram rule ¢}, minimizes the empirical risk (training error)
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among all functions ¢ that are constant on cells of partition -y



Decision Trees in a Nutshell

1. A decision tree is a histogram classification rule based on a data
dependent partition

2. The partition is characterized by a binary tree T that describes a
recursive splitting of the feature space

3. Each split in the partition is simple, involving a single variable and
an associated threshold



Binary Trees

Definition: A binary tree T is a (directed, acyclic) graph such that
1. T has a distinguished node t, called the root with no parent
2. Every other node ¢ € T has one parent and zero or two children

» Nodes with two children are called internal, denoted by T

> Nodes with no children are called leaves, denoted by 0T

Note: Tree usually drawn upside-down, with root node at the top. If 7" has
more than one node, the root node is internal



Labeled Binary Tree

Suppose X = RP. A labeled binary tree is described by

1. Abinary tree T
» root node to
» interior nodes T°

» |eaves OT

2. For each internal node ¢t € T°
> a splitting feature/variable j: € {1,...,p}

> a splitting threshold 7 € R



Tree-Structured Partition

Each node ¢ of a labeled binary tree corresponds to a region A(t) C R
Regions are recursively defined, starting at the root
> Ato) = RP.

> Fort € T° region A(t) split on component j; at threshold 7 yielding

At)) = A@) N{z : z;, <7} and A(t,) = A(t)N{x:zj, > 7}

Fact: The terminal regions {A(t) : t € 9T} associated with the leaves of T’
partition R?. This is called the partition generated by T’



Example: Regression Tree (ESL)
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.



Decision Trees

Definition: A decision tree is a histogram classification rule that is based on
the partition of a labeled binary tree T'. Formally,

¢r(z) = Y c(t)l(z € At))

tedT

where c(t) € {0, 1} is the class associated with terminal region A(¢).

Outline: How to obtain a decision tree from data D,,?
» Use D, to grow a large labeled tree Tj in a greedy fashion
» Prune large tree Ty to get a “right-sized” tree T

» Assign each terminal region of T to its majority class



Impurity Measures for Regions

Given: Data (z1,¥1),- .., (zn, yn) and region A C X define
> |A| = number of z; € A

> p(A) = A7 X, 4 Iy = 1) = fraction of points in A with y; = 1

Impurity Measures: Let p = 5(A). Standard measures include
1. Misclassification rate M (A) = min(p, 1 — p)
2. Giniindex G(A) = p (1 — p)

3. Entropy H(A) = —plogp — (1 — p) log(1 — p)

Idea: Impurity measures quantify extent to which A contains points from one
class. Small when p close to 0 or 1, maximized at p = 1/2.



Impurity Reduction from Region Splitting

Definition: If region A splitinto A; and A, the reduction in misclassification
rate is given by

Ay = M(A)— %M(Al)—k

Ay |
1]

M(A,)

Changes A¢ and Ay for Gini and entropy measures are defined similarly

Fact: The quantities As, Ag, and Ay are non-negative. Better splits are
associated with larger values of A,



Tree Growing from Data

Fix in advance
» Dataset D, = (z1,91),..., (Zn,yn) € R? x {-1,1}
> Impurity measure M, G, or H with associated reduction measure A
» Count threshold no: only split regions with at least ny points

» Reduction threshold Ag: only implement splits with A > Aq



Tree Growing from Data

Initialize: Let T := {to} with A(to) = R.

lterate: For each leaf t € 9T with |A(t)| > no do
1. Foreach j € {1,...,p} and each 7 € R find change A for the split

A)N{z:z; <7} and A(t)N{z:z; > 7}
2. ldentify optimal variable j(¢t) and threshold 7(t)

3. If optimal A < A, stop. Otherwise add leaves t; and ¢, to node ¢
> assign A(t;) = A(t) N{x: x4 < 7(1)}

> assign A(t,) = A(t) N {z : z;4) > 7(t)}

Output: Baseline tree Ty



Pruning to Balance Fit and Complexity

Let T < T, be a binary subtree of T, with the same root
> Leaf regions {A(t) : t € 0T} of T partition feature space X
» Majority voting in terminal regions of T yields decision tree ¢r
» Measure fit of ¢ by its empirical risk R, (T')

» Measure complexity of ¢r by |T'| = number of nodes in T’

Definition: For each X > 0 define subtree

= argmin {R +/\\T|}

T<T,

Tree T offers optimal balance of fit and complexity with weight A



Cost-Complexity Pruning

Focus: Subtrees T\ = argming g, {RH(T) + >\|T|} forA>0

> If T, < T, then |T.| < |T3|, while R,,(T%) > Rn(Ts)

> T, = full tree Tp. For X is sufficiently large, T = {root}

Fact: The trees T are nested: A1 < A2 implies T, < T4, . Full sequence
{T : A > 0} can be found by successively removing nodes with small A,
Upshot: Given large initial tree Ty

> Choose value X of penalty X using cross validation

> Final rule is decision tree ¢ associated with T}



Example: Spam Data (ESL)

Data: 4061 messages classified as “email” or “spam”

Features: Each message has 57 predictors
» percentage of words matching those on a list (48)
» percentage of characters matching characters on a list (6)

» counting sequences of capital letters (3)

Decision Tree
» grow with entropy based impurity, training set 3065 samples
> penalty parameter \ chosen by 10-fold CV

> use test set to evaluate node impurity, overall performance



Example: Pruned Tree for Spam Detection (ESL)

Gomail)
/s'wvss‘s\
ans<oves N
€h$>0,0555

Gomaid) )
/ané\ s
/
remove<0.06 hp<0.405 |
remove>0.08 1p>0.405
) 0
Jon3
\ \
en<o101 goorge<0.15 CAPAVE<2.407
cnr>o.191 | seorae>0.15 ’f CAPAVE>2007
. } \
[ Gra) [oam] [ooal] Cova [spem
et joons Laoe s pania vy
! \
seorss<0.005| CAPAVE<2.1505 1999<0.58 |
| capavesz2.7s0s /7 rovoz0.s
/ \ /
Goad [(spon] wpa]
Josnzg, 1ot T8
o
free<0.065 |
/ tree3p.008
/
G G m par
/777413/\ l;' /15794 *mJ

CAPMAX<10.5 \ business<0.145
CAPMAX>105 [ businers>0-143

b} Gmai)) [ email]
oz, jomeg, 1m0
[ /

receive<0.123 edu<0.045 \
[ rocoive>0125 [ eduz0.015
/ ?

FIGURE 9.5. The pruned tree for the spam ezample. The split variables are
shown in blue on the branches, and the classification is shown in every node. The
numbers under the terminal nodes indicate misclassification rates on the test data.



Estimating Conditional Probabilities

Idea: Given data D,, = (X1,Y1),...,(Xn, Y,) and decision tree T" with
terminal regions

v ={A(t): t € AT}

Rather than poll class labels in each terminal region, we may estimate
n(z) = P(Y = 1| X = z) by averaging the responses, that is

fi(z) = average{y, : I(v(z:) = v(x))}

Note that corresponding decision tree rule is ¢"*(z) = I(#j(z) > 1/2)



Regression Trees

1. Growing. Grow large initial tree Ty from data using impurity measure

UA) = > (g =) with 5, = A" > u
T, €EA ;€A

2. Pruning. Consider optimal cost-complexity subtrees

T\ = argmin{R,(T)+ A\T|} A>0

T<T,

where R, (T') is empirical risk of histogram regression rule based on T

3. Output. Use cross validation to select penalty A and associated tree T5.
Final rule is regression tree ¢"° based on T}



Classification and Regression Trees

Pluses
» Growing and pruning are computationally efficient
» Trees are readily interpretable

» Can accommodate ordinal and categorical features

Minuses
> Unstable: a small change in the data can lead to a very different rule
> Histogram rules are piecewise constant, not smooth

» Some simple rules not well-captured by tree-structured partitions



