
Bagging and Boosting Decision Trees

Andrew Nobel

November, 2021



Preface: Wisdom of Crowds

Idea (ESL): The collective knowledge of a diverse and independent body of
people typically exceeds the knowledge of any single individual, and can be
harnessed by voting.

Example: Multiple choice exam

I 10 questions, 4 possible answers for each question

I 50 students take exam

I For each question random a set of 15 students have probability
p ≥ .25 of selecting the right answer

I Remaining students use random guessing (p = .25)

Task: Compare individual scores to the score achieved by majority vote



Multiple Choice Exam: 50 Replicates (ESL)



Bagging = Bootstrap Aggregation



Bootstrap Resampling

Definition: Let Dn = z1, . . . , zn be a fixed data set. A bootstrap sample from
Dn is a new, random data set

D∗
n = z∗1 , . . . , z

∗
n

where each z∗i is drawn independently at random from {z1, . . . , zn}

I Bootstrap sample D∗
n has same number of observations as Dn

I In general, D∗
n has repeated values – some zi’s chosen more than once

Another view: Elements z∗1 , . . . , z∗n are independent draws from empirical
distribution of Dn, which places mass 1/n at each original data point zi



Bagging Regression Trees

Approach: Average regression trees produced from bootstrap samples

I Data set Dn = (x1, y1), . . . , (xn, yn) ∈ X × R

I Generate B bootstrap samples D∗(1)
n , . . . , D

∗(B)
n from Dn

I For b = 1, . . . , B produce a regression tree ϕ̂∗(b)(x) from D
∗(b)
n

I Bagged regression estimate is the average of the trees ϕ̂∗(b)(x)

ϕ̂bag(x) = B−1
B∑
b=1

ϕ̂∗(b)(x)



Illustration of Bagging (kdnugets.com)



Bagging Decision Trees

Approach 1: Poll decision trees produced from bootstrap samples

I Data set Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1}

I Generate B bootstrap samples D∗(1)
n , . . . , D

∗(B)
n from Dn

I For b = 1, . . . , B produce a decision tree φ∗(b) from D
∗(b)
n

I Define bagged classification rule by polling the decision trees φ∗(b)

φ̂bag(x) = majority vote{φ∗(1)(x), . . . , φ∗(B)(x)}



Bagging Decision Trees

Approach 2: Average conditional probability estimates

I Data set Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1}

I Generate B bootstrap samples D∗(1)
n , . . . , D

∗(B)
n from Dn

I For b = 1, . . . , B use D∗(b)
n to get tree-based estimate η̂∗(b) of η

I Produce bagged estimate of η(x) by averaging estimates η̂∗(b)(x)

η̂bag(x) = B−1
B∑
b=1

η̂∗(b)(x)

I Define bagged classification rule φ̂bag(x) = I(η̂bag(x) ≥ 1/2)



Bagging for Trees

Pluses

I Reduces instability of decision and regression trees

I Averaging reduces variance of bagged regression estimates

I Bagging gives smoother estimates than individual trees

Minuses

I Bagged trees are not easily interpretable (bagged trees are not a tree)

I If decision trees are a poor fit, bagging may not help

I Increased computation



Bagging in General

Bootstrap aggregation can be applied to any classification or regression
procedure ϕn(x : Dn)

I Procedure ϕn(x : Dn) called “base learner”, usually simple

I Bagging can improve the performance of non-linear base learners

Bagging effectively increases the set of models fit by the base learner, but the
increase may be modest



Boosting



Boosting for Classification

Ingredients

I Data set Dn = (x1, y1), . . . , (xn, yn) ∈ X × {−1,+1}

I Weak learner L(x : Dn,w) that produces a simple classification rule
from data Dn and weights w(i) for individual data points

Weak learner may perform only marginally better than random guessing

Ex: Decision stumps, single split decision tree (root with two children)

I Popular choice of weak learner for boosting

I Assign class labels to two terminal regions using weighted majority vote



Idea Behind Boosting

Question: How to turn a weak learner into a really good classification rule?

Approach: Apply weak learner to the data multiple times, in stages

I At each stage, give more weight to data points where the weak
learner made mistakes at previous stages

I Combine rules from different stages via a weighted sum

I Use the sign of the weighted sum to classify new data

Input to Boosting: Data set Dn and weak learner L(x : Dn,w)



Overview of AdaBoost (ESL)



AdaBoost Algorithm

1. Initialize: Sample weight vector w1(i) = 1/n for i = 1, . . . , n

2. Iterate: For m = 1, . . . ,M do the following

a. Fit rule gm(x) = L(x : Dn,wm) to data Dn with sample weights wm

b. Assess the weighted empirical risk of the rule gm

rm =
n∑
i=1

wm(i) I(gm(xi) 6= yi) /

n∑
i=1

wm(i)

c. Compute coefficient αm = log[(1− rm)/rm] for weak learner gm

d. Update weights: wm+1(i) = wm(i) exp{αm I(gm(xi) 6= yi)}

3. Output: Aggregate rule φ̂boost(x) = sign
[∑M

m=1 αmgm(x)
]



AdaBoost Algorithm, cont.

Note: The coefficient αm of the rule gm is given by

αm = log
(1− rm)

rm
=

 positive if rm < 1/2

negative if rm > 1/2

I If rm > 1/2 then −gm performs better than +gm so coefficient αm < 0

I Weights at misclassified points increased if αm > 0

I Weights at misclassified points decreased if αm < 0



Boosting Example: Simulated Data (ESL)

Model: Let X ∼ N10(0, I) and Y = sign
[
||X||2 −med(||X||2)

]
I Prior probabilities for classes +1,−1 are each 1/2

I As Y = h(X), Bayes risk R∗ = 0 and Bayes rule φ∗(x) = h(x)

Observations: training set Dn with n = 2K; test set Dm with m =10K

Methods

I Base learner: decision stump, tree with root and two children

I Standard classification tree

I Boosted base learner (decision stump)



Boosting Example, Results

Test set error rates

I Random guessing: 50%

I Base learner: 46%

I Standard classification tree: 25%

I Boosted base learner (M = 400 iterations): 6%



Boosting on Simulated Data (ESL)



Boosting in Practice

In many cases, as number of iterations M increases

I Training error of φ̂boost goes to zero

I Test error of φ̂boost decreases, then flattens out



Boosting: Training and Test Error on Simulated Data (Hastie slides)



Additive Models for Classification



Building Additive Models for Classification

Given

I Family G of simple classification rules g : X → {±1}

I Data Dn = (x1, y1), . . . , (xn, yn) ∈ X × {±1}

Task: Construct a classification rule of the form φ̂(x) = sign(f̂(x)) where

f̂(x) =
M∑
m=1

βmgm(x) with g1, . . . , gm ∈ G

Idea: Construct f̂ from Dn in a greedy fashion, one term at a time, using
the exponential loss function

`(y, h(x)) = exp(−y h(x))



Forward Stagewise Additive Modeling

1. Initialize: f0(x) = 0

2. Iterate: For m = 1, . . . ,M do the following

a. Find weight βm ∈ R and rule gm ∈ G yielding best single term
improvement of current additive expansion

(βm, gm) = argmin
β,g

n∑
i=1

`(yi, fm−1(xi) + βg(xi))

b. Update additive expansion fm(x) = fm−1(x) + βmgm(x)

3. Output: Final expansion fM (x) =
∑M
j=1 βjgj(x)



Boosting vs. Forward Stagewise Additive Modeling (FSAM)

Fact: AdaBoost is a version of FSAM with exponential loss

I Family G is set of decision stumps

I Step 2a of FSAM corresponds to fitting decision stumps to weighted data

I AdaBoost driven by minimization of exponential loss



AdaBoost Misclassification and Exponential Loss (ESL)


