Bagging and Boosting Decision Trees

Andrew Nobel

November, 2021

Preface: Wisdom of Crowds

Idea (ESL): The collective knowledge of a diverse and independent body of
people typically exceeds the knowledge of any single individual, and can be
harnessed by voting.

Example: Multiple choice exam
» 10 questions, 4 possible answers for each question
» 50 students take exam

» For each question random a set of 15 students have probability
p > .25 of selecting the right answer

» Remaining students use random guessing (p = .25)

Task: Compare individual scores to the score achieved by majority vote

Multiple Choice Exam: 50 Replicates (ESL)

Wisdom of Crowds

2 | Consensus + T i 99—
® Individual R Y o
.
o 14
© -
e
k] J— -
5 o -
e / -
§ / - -
8 e -
‘g. T 1T
. o — ¢
d L
o | | 1L L
o
T T T T
0.25 0.50 0.75 1.00

P — Probability of Informed Person Being Correct

Bagging = Bootstrap Aggregation

Bootstrap Resampling

Definition: Let D,, = z1, ..., z, be a fixed data set. A bootstrap sample from
D,, is a new, random data set

D ==z,...,2
where each z; is drawn independently at random from {z1,..., 2.}
» Bootstrap sample D;, has same number of observations as D,,

> In general, D;, has repeated values — some z;’s chosen more than once

Another view: Elements =7, ..., z; are independent draws from empirical
distribution of D,,, which places mass 1/n at each original data point z;

Bagging Regression Trees

Approach: Average regression trees produced from bootstrap samples
» Dataset D, = (z1,41),-.-, (Zn,yn) € X X R
> Generate B bootstrap samples D", ..., D:® from D,,

#(b)

» Forb=1,...,B produce a regression tree ¢**)(z) from D},

> Bagged regression estimate is the average of the trees ¢** (z)

Abag _ i *(b)

lllustration of Bagging (kdnugets.com)

Dataset

\

/

Bootstrap) Bootstrap Bootstrap) LN Bootstrap|
Learner eo e
3

Bagging Decision Trees

Approach 1: Poll decision trees produced from bootstrap samples
» Dataset D, = (z1,41),- .-, (Zn,yn) € X x {0,1}
> Generate B bootstrap samples D", ..., Di®) from D,
> Forb=1,..., B produce a decision tree ¢*® from D}

> Define bagged classification rule by polling the decision trees ¢*(®

¢° () = majority vote{¢™ (), ..., ") (z)}

Bagging Decision Trees

Approach 2: Average conditional probability estimates
» Dataset D, = (z1,¥1),-.., (Tn,yn) € X x {0,1}
> Generate B bootstrap samples D", ..., D:'® from D,
> Forb=1,...,B use Di to get tree-based estimate 7** of

> Produce bagged estimate of n(x) by averaging estimates 7 (z)
B
Abag — Z *(b)

> Define bagged classification rule ¢°¢(z) = 1(7™9(z) > 1/2)

Bagging for Trees

Pluses
» Reduces instability of decision and regression trees
» Averaging reduces variance of bagged regression estimates

»> Bagging gives smoother estimates than individual trees

Minuses
» Bagged trees are not easily interpretable (bagged trees are not a tree)
» If decision trees are a poor fit, bagging may not help

» Increased computation

Bagging in General

Bootstrap aggregation can be applied to any classification or regression
procedure ¢, (x : D)

» Procedure ¢, (z : Dy) called “base learner”, usually simple

» Bagging can improve the performance of non-linear base learners

Bagging effectively increases the set of models fit by the base learner, but the
increase may be modest

Boosting

Boosting for Classification

Ingredients
» Dataset D, = (z1,¥1),..., (Tn,yn) € X x {—1,+1}

> Weak learner L(z : D,,w) that produces a simple classification rule
from data D,, and weights w(i) for individual data points

Weak learner may perform only marginally better than random guessing

Ex: Decision stumps, single split decision tree (root with two children)
» Popular choice of weak learner for boosting

> Assign class labels to two terminal regions using weighted majority vote

Idea Behind Boosting

Question: How to turn a weak learner into a really good classification rule?

Approach: Apply weak learner to the data multiple times, in stages

> At each stage, give more weight to data points where the weak
learner made mistakes at previous stages

» Combine rules from different stages via a weighted sum

» Use the sign of the weighted sum to classify new data

Input to Boosting: Data set D,, and weak learner L(x : D,,w)

Overview of AdaBoost (ESL)

FINAL CLASSIFIER

G(z) = sign [Eﬁfﬂ amGm (z)]

Weishted Sample RSN €Iy1 €]

Weighted Sample JaeeN (o)

Weighted Sample R JEEEN e)]

—o.—o._.....

aining Sample RN €))

Iﬁ

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
sions of the dataset, and then combined to produce a final prediction.

AdaBoost Algorithm

1. Initialize: Sample weight vector wi (i) = 1/nfori=1,...,n
2. lterate: Form = 1,..., M do the following

a. Fitrule gm(z) = L(z : Dn,wWn,) to data D,, with sample weights w,,

b. Assess the weighted empirical risk of the rule g,

Zwm I(gm (i) # yi) /Zwm

=1
c. Compute coefficient a, = log[(1 — 7,) /rm] for weak learner g,

d. Update weights: Wy,11(5) = Wy, (3) exp{ctm 1(gm (2:) # 3:)}

3. Output: Aggregate rule ¢™*(z) = sign [fo:l A gm ()

AdaBoost Algorithm, cont.

Note: The coefficient «,,, of the rule g,, is given by

am = log

(1—7m) { positive if r,, < 1/2

'm negative if r, > 1/2

» If rp, > 1/2 then —g,,, performs better than +g,,, so coefficient a,,, <0
> Weights at misclassified points increased if a.,, > 0

» Weights at misclassified points decreased if a,,, < 0

Boosting Example: Simulated Data (ESL)

Model: Let X ~ Ni10(0,7) and Y = sign [|| X||> — med(||X|[*)]
> Prior probabilities for classes +1, —1 are each 1/2

> AsY = h(X), Bayes risk R* = 0 and Bayes rule ¢*(z) = h(x)

Observations: training set D,, with n = 2K; test set D,,, with m =10K

Methods
» Base learner: decision stump, tree with root and two children
» Standard classification tree

> Boosted base learner (decision stump)

Boosting Example, Results

Test set error rates
» Random guessing: 50%
> Base learner: 46%
» Standard classification tree: 25%

» Boosted base learner (M = 400 iterations): 6%

Boosting on Simulated Data (ESL)

05

Single Stump

0.4

244 Node Tree

Test Error

0.1 0.2

0.0
1

T T T T T
0 100 200 300 400

Boosting lterations

FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps,
as a function of the number of iterations. Also shown are the test error rate for
a single stump, and a 244-node classification tree.

Boosting in Practice

In many cases, as number of iterations M increases
> Training error of $** goes to zero

» Test error of q?)b"“‘ decreases, then flattens out

Boosting: Training and Test Error on Simulated Data (Hastie slides)

0.2 0.3 0.4 0.5
|

Train and Test Error

0.1

0.0

0 100 200 300 400 500 600

Number of Terms

Additive Models for Classification

Building Additive Models for Classification

Given
» Family G of simple classification rules g : X — {1}

» Data D,, = (z1,y1), .-, (Tn,yn) € X x {£1}
Task: Construct a classification rule of the form ¢(z) = sign(f(z)) where

M
f(x) = Z Bmgm(x) with g1,...,9m €G

Idea: Construct f from D,, in a greedy fashion, one term at a time, using
the exponential loss function

{(y, h(z)) = exp(—y h(z))

Forward Stagewise Additive Modeling

1. Initialize: fo(z) =0

2. lterate: Form = 1,..., M do the following

a. Find weight 8., € R and rule g, € G yielding best single term
improvement of current additive expansion

(B> gm) = argmin _ £(ys, fm—1(z:) + Bg(s))

9 =1

b. Update additive expansion f.(z) = fm—1(x) + Bmgm ()

3. Output: Final expansion fu (z) = Y12, B;g;(x)

Boosting vs. Forward Stagewise Additive Modeling (FSAM)

Fact: AdaBoost is a version of FSAM with exponential loss
» Family G is set of decision stumps
» Step 2a of FSAM corresponds to fitting decision stumps to weighted data

»> AdaBoost driven by minimization of exponential loss

AdaBoost Misclassification and Exponential Loss (ESL)

1.0

08

Training Error
0.6

0.4

Exponential Loss

Misclassification Rate

0.0

0 100 200 300 400

Boosting Iterations

FIGURE 10.3. Simulated data, boosting with stumps: misclassification error
rate on the training set, and average exponential loss: (1/N) Ef\;l exp(—yif(z:)).
After about 250 iterations, the misclassification error is zero, while the exponential
loss continues to decrease.

