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Probability Inequalities



Elementary Inequalities for Probability

Recall: If A,B are events, the axioms of probability ensure that

(a) P (Ac) = 1− P (A)

(b) If A ⊆ B then P (A) ≤ P (B)

(c) P (A ∪B) ≤ P (A) + P (B)

Example: Let X,Y be random variables and a, b > 0

(1) P(|X + Y | ≥ a+ b) ≤ P(|X| ≥ a) + P(|Y | ≥ b)

(2) P(|XY | ≥ a) ≤ P(|X| ≥ a/b) + P(|Y | ≥ b)



Concentration Inequalities

For a random variable X

I EX tells us about the center of its distribution

I Var(X) tells us about the spread of its distribution

Concentration Inequalities: Bounds on the probability that a random
variable is far from its expectation

P(X ≥ EX + t) P(X ≤ EX − t) P(|X − EX| ≥ t)

I Often X = U1 + · · ·+ Un sum of independent random variables

I Bounds depend on the moments (or MGF) of X

I Applications in statistics, machine learning, probability



Markov’s and Chebyshev’s Inequalities

Markov’s inequality: If X ≥ 0 and t > 0 then

P(X ≥ t) ≤ EX
t

Chebyshev’s Inequality: If EX2 <∞ then for each t > 0

P(|X − EX| ≥ t) ≤ Var(X)

t2

I Upper bound may be larger than 1 (not useful)

I Upper bound is less than 1 if t > SD(X)



Extending Chebyshev

Applying same proof idea we can show that for each t > 0,

P(|X − EX| ≥ t) ≤ min
s>0

E|X − EX|s

ts

Upshot: smaller central moments yield better upper bounds



Weak Law of Large Numbers (WLLN)

WLLN: Let U1, U2, . . . , U be iid with Var(U) finite. Then for each t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui − E(U)

∣∣∣∣∣ ≥ t
)
→ 0

as n tends to infinity. In words, the average of U1, . . . , Un converges in
probability to E(U) as n grows.

Proof: Apply Chebyshev’s inequality to X = n−1∑n
i=1 Ui



Moment Generating Functions

Recall: The moment generating function (MGF) of a rv X is defined by

MX(s) = E
[
esX

]
for s ∈ R

Note that MX(s) ≥ 0, and that MX(s) may be +∞.

Fact: if X1, . . . , Xn are independent and MXi(s) are finite in a neighborhood
of 0 then Sn = X1 + · · ·+Xn has MGF

MSn(s) =

n∏
i=1

MXi(s)

MGFs are a good way to study sums of independent random variables



MGF Examples

1. Normal: If X ∼ N (0, σ2) then MX(s) = es
2σ2/2

2. Poisson: If X ∼ Poiss(λ) then MX(s) = eλ(e
s−1)

3. Chi-squared: If X ∼ χ2
k then MX(s) = (1− 2s)−k/2 for s < 1/2

4. Sign: If X = 1,−1 with probability 1/2 then MX(s) = (es + e−s)/2



Chernoff’s Inequality

Chernoff Bound: For any random variable X and t ∈ R

P(X ≥ t) ≤ min
s>0

e−st EesX = min
s>0

e−stMX(s)

Corollary: If MGF of (X − EX) is at most M(s) for s ≥ 0, then for t > 0

P(X ≥ EX + t) ≤ inf
s>0

e−stM(s)

I Inequalities for left tail P(X ≤ EX − t) established in same way

I Bound on P(|X − EX| ≥ t) obtained by adding L/R tail bounds



Hoeffding’s MGF Bound and Hoeffding’s Inequality

MGF bound: If X ∈ [a, b] then for every s ≥ 0

Ees(X−EX) ≤ es
2(b−a)2/8

Probability Inequality: Let X1, . . . , Xn be independent with ai ≤ Xi ≤ bi
and let Sn = X1 + · · ·+Xn. For every t ≥ 0,

P(Sn − ESn ≥ t) ≤ exp

{
−2t2∑n

i=1(bi − ai)2

}

Also P(Sn − ESn ≤ −t) ≤ RHS and P(|Sn − ESn| ≥ t) ≤ 2 RHS

Note: Bound does not use information about variance of the Xis



Example: Bernoulli Random Variables

Let X1, . . . , Xn be iid Bern(p). Note that E(
∑n
i=1Xi) = np

Chebyshev: Uses Var(Xi) = p(1− p). For each t ≥ 0

P

(
n∑
i=1

Xi − np ≥ t

)
≤ n p(1− p)

t2
≤ n

4t2

Hoeffding: Uses 0 ≤ Xi ≤ 1. For each t ≥ 0

P

(
n∑
i=1

Xi − np ≥ t

)
≤ exp

{
−2t2

n

}

Note: Upper bounds useful only when t &
√
n



Bernoulli Example, cont.

Compare bounds of Chebyshev and Hoeffding when n = 100

t Chebyshev Hoeffding

5 1 .607
10 .250 .135
12 .173 .0561
14 .128 .0198
16 .0977 .0060
20 .0625 .000335

Upshot: Once the bounds kick in, Hoeffding is better



Bernoulli Example, cont.

Bounds for sums can be converted into bounds for averages, and vice versa

Chebyshev: For each t ≥ 0

P

(
1

n

n∑
i=1

Xi − p ≥ t

)
≤ p(1− p)

n t2
≤ 1

4n t2

Hoeffding: For each t ≥ 0

P

(
1

n

n∑
i=1

Xi − p ≥ t

)
≤ exp

{
−2n t2

}

Note: Upper bounds useful only when t & 1/
√
n



Other Examples of Hoeffding’s Inequality

Ex: Let X1, . . . , Xn ∈ X be iid with distribution P and let A ⊆ X . For t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P (A)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
−2nt2

}
Note that n−1∑n

i=1 I(Xi ∈ A) is the observed relative frequency of A, while
P (A) is its true probability

Ex: Let X1, . . . , Xn iid ∼ U(−θ, θ). Note that EX = 0. For t ≥ 0,

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

{
−t2

2nθ2

}


