Probability Inequalities

Andrew Nobel

October, 2021

Probability Inequalities

Elementary Inequalities for Probability

Recall: If A, B are events, the axioms of probability ensure that
(a) $P\left(A^{c}\right)=1-P(A)$
(b) If $A \subseteq B$ then $P(A) \leq P(B)$
(c) $P(A \cup B) \leq P(A)+P(B)$

Example: Let X, Y be random variables and $a, b>0$
(1) $\mathbb{P}(|X+Y| \geq a+b) \leq \mathbb{P}(|X| \geq a)+\mathbb{P}(|Y| \geq b)$
(2) $\mathbb{P}(|X Y| \geq a) \leq \mathbb{P}(|X| \geq a / b)+\mathbb{P}(|Y| \geq b)$

Concentration Inequalities

For a random variable X

- $\mathbb{E} X$ tells us about the center of its distribution
- $\operatorname{Var}(X)$ tells us about the spread of its distribution

Concentration Inequalities: Bounds on the probability that a random variable is far from its expectation

$$
\mathbb{P}(X \geq \mathbb{E} X+t) \quad \mathbb{P}(X \leq \mathbb{E} X-t) \quad \mathbb{P}(|X-\mathbb{E} X| \geq t)
$$

- Often $X=U_{1}+\cdots+U_{n}$ sum of independent random variables
- Bounds depend on the moments (or MGF) of X
- Applications in statistics, machine learning, probability

Markov's and Chebyshev's Inequalities

Markov's inequality: If $X \geq 0$ and $t>0$ then

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E} X}{t}
$$

Chebyshev's Inequality: If $\mathbb{E} X^{2}<\infty$ then for each $t>0$

$$
\mathbb{P}(|X-\mathbb{E} X| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

- Upper bound may be larger than 1 (not useful)
- Upper bound is less than 1 if $t>\operatorname{SD}(X)$

Extending Chebyshev

Applying same proof idea we can show that for each $t>0$,

$$
\mathbb{P}(|X-\mathbb{E} X| \geq t) \leq \min _{s>0} \frac{\mathbb{E}|X-\mathbb{E} X|^{s}}{t^{s}}
$$

Upshot: smaller central moments yield better upper bounds

Weak Law of Large Numbers (WLLN)

WLLN: Let U_{1}, U_{2}, \ldots, U be iid with $\operatorname{Var}(U)$ finite. Then for each $t>0$,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} U_{i}-\mathbb{E}(U)\right| \geq t\right) \rightarrow 0
$$

as n tends to infinity. In words, the average of U_{1}, \ldots, U_{n} converges in probability to $\mathbb{E}(U)$ as n grows.

Proof: Apply Chebyshev's inequality to $X=n^{-1} \sum_{i=1}^{n} U_{i}$

Moment Generating Functions

Recall: The moment generating function (MGF) of a rv X is defined by

$$
M_{X}(s)=\mathbb{E}\left[e^{s X}\right] \quad \text { for } s \in \mathbb{R}
$$

Note that $M_{X}(s) \geq 0$, and that $M_{X}(s)$ may be $+\infty$.

Fact: if X_{1}, \ldots, X_{n} are independent and $M_{X_{i}}(s)$ are finite in a neighborhood of 0 then $S_{n}=X_{1}+\cdots+X_{n}$ has MGF

$$
M_{S_{n}}(s)=\prod_{i=1}^{n} M_{X_{i}}(s)
$$

MGFs are a good way to study sums of independent random variables

MGF Examples

1. Normal: If $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then $M_{X}(s)=e^{s^{2} \sigma^{2} / 2}$
2. Poisson: If $X \sim \operatorname{Poiss}(\lambda)$ then $M_{X}(s)=e^{\lambda\left(e^{s}-1\right)}$
3. Chi-squared: If $X \sim \chi_{k}^{2}$ then $M_{X}(s)=(1-2 s)^{-k / 2}$ for $s<1 / 2$
4. Sign: If $X=1,-1$ with probability $1 / 2$ then $M_{X}(s)=\left(e^{s}+e^{-s}\right) / 2$

Chernoff's Inequality

Chernoff Bound: For any random variable X and $t \in \mathbb{R}$

$$
\mathbb{P}(X \geq t) \leq \min _{s>0} e^{-s t} \mathbb{E} e^{s X}=\min _{s>0} e^{-s t} M_{X}(s)
$$

Corollary: If MGF of $(X-\mathbb{E} X)$ is at most $M(s)$ for $s \geq 0$, then for $t>0$

$$
\mathbb{P}(X \geq \mathbb{E} X+t) \leq \inf _{s>0} e^{-s t} M(s)
$$

- Inequalities for left tail $\mathbb{P}(X \leq \mathbb{E} X-t)$ established in same way
- Bound on $\mathbb{P}(|X-\mathbb{E} X| \geq t)$ obtained by adding L / R tail bounds

Hoeffding's MGF Bound and Hoeffding's Inequality

MGF bound: If $X \in[a, b]$ then for every $s \geq 0$

$$
\mathbb{E} e^{s(X-\mathbb{E} X)} \leq e^{s^{2}(b-a)^{2} / 8}
$$

Probability Inequality: Let X_{1}, \ldots, X_{n} be independent with $a_{i} \leq X_{i} \leq b_{i}$ and let $S_{n}=X_{1}+\cdots+X_{n}$. For every $t \geq 0$,

$$
\mathbb{P}\left(S_{n}-\mathbb{E} S_{n} \geq t\right) \leq \exp \left\{\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right\}
$$

Also $\mathbb{P}\left(S_{n}-\mathbb{E} S_{n} \leq-t\right) \leq$ RHS and $\mathbb{P}\left(\left|S_{n}-\mathbb{E} S_{n}\right| \geq t\right) \leq 2$ RHS

Note: Bound does not use information about variance of the $X_{i} \mathrm{~s}$

Example: Bernoulli Random Variables

Let X_{1}, \ldots, X_{n} be iid $\operatorname{Bern}(p)$. Note that $\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)=n p$

Chebyshev: Uses $\operatorname{Var}\left(X_{i}\right)=p(1-p)$. For each $t \geq 0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-n p \geq t\right) \leq \frac{n p(1-p)}{t^{2}} \leq \frac{n}{4 t^{2}}
$$

Hoeffding: Uses $0 \leq X_{i} \leq 1$. For each $t \geq 0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-n p \geq t\right) \leq \exp \left\{\frac{-2 t^{2}}{n}\right\}
$$

Note: Upper bounds useful only when $t \gtrsim \sqrt{n}$

Bernoulli Example, cont.

Compare bounds of Chebyshev and Hoeffding when $n=100$

t	Chebyshev	Hoeffding
5	1	.607
10	.250	.135
12	.173	.0561
14	.128	.0198
16	.0977	.0060
20	.0625	.000335

Upshot: Once the bounds kick in, Hoeffding is better

Bernoulli Example, cont.

Bounds for sums can be converted into bounds for averages, and vice versa

Chebyshev: For each $t \geq 0$

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-p \geq t\right) \leq \frac{p(1-p)}{n t^{2}} \leq \frac{1}{4 n t^{2}}
$$

Hoeffding: For each $t \geq 0$

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-p \geq t\right) \leq \exp \left\{-2 n t^{2}\right\}
$$

Note: Upper bounds useful only when $t \gtrsim 1 / \sqrt{n}$

Other Examples of Hoeffding's Inequality

Ex: Let $X_{1}, \ldots, X_{n} \in \mathcal{X}$ be iid with distribution P and let $A \subseteq \mathcal{X}$. For $t \geq 0$,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(X_{i} \in A\right)-P(A)\right| \geq t\right) \leq 2 \exp \left\{-2 n t^{2}\right\}
$$

Note that $n^{-1} \sum_{i=1}^{n} \mathbb{I}\left(X_{i} \in A\right)$ is the observed relative frequency of A, while $P(A)$ is its true probability

Ex: Let X_{1}, \ldots, X_{n} iid $\sim \mathrm{U}(-\theta, \theta)$. Note that $\mathbb{E} X=0$. For $t \geq 0$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left\{\frac{-t^{2}}{2 n \theta^{2}}\right\}
$$

