Optimization Problems and Convexity

Andrew Nobel

March, 2021

General Optimization Problem

Problem: Minimize a function $f : \mathbb{R}^d \to \mathbb{R}$ over a set $A \subseteq \mathbb{R}^d$ of interest. Often expressed in the form of a *mathematical program*:

 $\min f(x)$ subject to $x \in A$

- Function f called objective function
- Set A represents constraints on the arguments x of interest
- Points $x \in A$ called *feasible*
- Usually interested in $\min_A f(x)$ and $\operatorname{argmin}_A f(x)$

General Optimization Problem, cont.

Global and local minima

- Feasible $x \in A$ is a global minimum of f if $f(x) \leq f(y)$ for all $y \in A$
- Feasible $x \in A$ is a *local minimum* of f if there exists an r > 0 such that $f(x) \le f(y)$ for all $y \in A$ with $||x y|| \le r$

Notes: A global minimum is a local minimum. Other issues

- Is there a global min? Is it unique?
- Is there a closed form solution for the global min?
- Are there good iterative or approximate solutions?
- Does f have many local minima?

Review of Convex Sets and Functions

1. A set $C \subseteq \mathbb{R}^d$ is convex if for every pair $x, y \in C$ and every $\alpha \in [0, 1]$

$$\alpha x + (1 - \alpha)y \in C$$

- 2. An intersection of convex sets is convex
- **3.** A function $f: C \to \mathbb{R}$ is convex if for every pair $x, y \in C$ and $\alpha \in [0, 1]$

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$$

and is *strictly convex* if \leq replaced by < whenever $x \neq y$ and $\alpha \in (0, 1)$

4. The maximum of convex functions is convex

Convexity and Optimization

Fact: If $C \subseteq \mathbb{R}^d$ is convex and $f : C \to \mathbb{R}$ is convex then

1. Any local minimum is a global minimum

2. If f is strictly convex any global minimum is unique

In general: If $C \subseteq \mathbb{R}^d$ and $f : C \to \mathbb{R}$ are convex then there are efficient iterative methods to find the global minimum of f when it exists

Optimization Examples

1. Largest eigenvalue. Given $A \in \mathbb{R}^{n \times n}$ symmetric, $\lambda_{\max}(A)$ is the solution of

 $\max v^t A v \text{ s.t. } ||v|| \le 1$

2. Sample variance. Given $x_1, \ldots, x_n \in \mathbb{R}$

$$\min \sum_{i=1}^{n} (x_i - a)^2 \text{ s.t. } a \in \mathbb{R}$$

Optimization Examples

3. *PCA.* Given
$$x_1, \ldots, x_n \in \mathbb{R}^p$$
 with $\sum_{i=1}^n x_i = 0$

$$\min \sum_{i=1}^n \|x_i - \mathsf{proj}_V(x_i)\|^2 \text{ s.t. } V ext{ a }k ext{-dim subspace of } \mathbb{R}^p$$

4. *K*-means clustering. Given $x_1, \ldots, x_n \in \mathbb{R}^p$

$$\min \sum_{i=1}^{n} \min_{1 \le j \le k} ||x_i - c_j||^2 \text{ s.t. } c_1, \dots, c_k \in \mathbb{R}^p$$

Optimization Examples

5. Best linear classification rule. Given $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^p \times \{0, 1\}$, find hyperplane $H(\beta) = \{x : x^t\beta = \beta_0\}$ that best separates 0s and 1s

$$\min \sum_{i=1}^{n} \mathbb{I}\{(2y_i - 1)(x_i^t \beta - \beta_0) \ge 0\} \text{ s.t. } \beta \in \mathbb{R}^{p+1}$$

6. Least squares regression. Given $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$, find linear function of *x* minimizing sum of squared errors

$$\min \sum_{i=1}^{n} (y_i - x_i^t \beta - \beta_0)^2 \text{ s.t. } \beta \in \mathbb{R}^{p+1}$$

8. Maximum Likelihood Estimation. Given data $x_1, \ldots, x_n \in \mathcal{X}$ and family $\mathcal{P} = \{f(x : \theta) : \theta \in \Theta\}$ of densities on \mathcal{X} , maximum likelihood estimate is

$$\hat{\theta}^{\mathsf{MLE}} = \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} \log f_{\theta}(x_i)$$