
Optimization Problems and Convexity

Andrew Nobel

March, 2021



General Optimization Problem

Problem: Minimize a function f : Rd → R over a set A ⊆ Rd of interest.
Often expressed in the form of a mathematical program:

min f(x) subject to x ∈ A

I Function f called objective function

I Set A represents constraints on the arguments x of interest

I Points x ∈ A called feasible

I Usually interested in minA f(x) and argminA f(x)



General Optimization Problem, cont.

Global and local minima

I Feasible x ∈ A is a global minimum of f if f(x) ≤ f(y) for all y ∈ A

I Feasible x ∈ A is a local minimum of f if there exists an r > 0 such
that f(x) ≤ f(y) for all y ∈ A with ||x− y|| ≤ r

Notes: A global minimum is a local minimum. Other issues

I Is there a global min? Is it unique?

I Is there a closed form solution for the global min?

I Are there good iterative or approximate solutions?

I Does f have many local minima?



Review of Convex Sets and Functions

1. A set C ⊆ Rd is convex if for every pair x, y ∈ C and every α ∈ [0, 1]

αx+ (1− α)y ∈ C

2. An intersection of convex sets is convex

3. A function f : C → R is convex if for every pair x, y ∈ C and α ∈ [0, 1]

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

and is strictly convex if ≤ replaced by < whenever x 6= y and α ∈ (0, 1)

4. The maximum of convex functions is convex



Convexity and Optimization

Fact: If C ⊆ Rd is convex and f : C → R is convex then

1. Any local minimum is a global minimum

2. If f is strictly convex any global minimum is unique

In general: If C ⊆ Rd and f : C → R are convex then there are efficient
iterative methods to find the global minimum of f when it exists



Optimization Examples

1. Largest eigenvalue. Given A ∈ Rn×n symmetric, λmax(A) is the solution of

max vtAv s.t. ||v|| ≤ 1

2. Sample variance. Given x1, . . . , xn ∈ R

min

n∑
i=1

(xi − a)2 s.t. a ∈ R



Optimization Examples

3. PCA. Given x1, . . . , xn ∈ Rp with
∑n
i=1 xi = 0

min

n∑
i=1

‖xi − projV (xi)‖2 s.t. V a k-dim subspace of Rp

4. K-means clustering. Given x1, . . . , xn ∈ Rp

min

n∑
i=1

min
1≤j≤k

||xi − cj ||2 s.t. c1, . . . , ck ∈ Rp



Optimization Examples

5. Best linear classification rule. Given (x1, y1), . . . , (xn, yn) ∈ Rp × {0, 1},
find hyperplane H(β) = {x : xtβ = β0} that best separates 0s and 1s

min
n∑
i=1

I{(2yi − 1)(xtiβ − β0) ≥ 0} s.t. β ∈ Rp+1

6. Least squares regression. Given (x1, y1), . . . , (xn, yn) ∈ Rp ×R, find linear
function of x minimizing sum of squared errors

min

n∑
i=1

(yi − xtiβ − β0)2 s.t. β ∈ Rp+1



Optimization Examples

8. Maximum Likelihood Estimation. Given data x1, . . . , xn ∈ X and family
P = {f(x : θ) : θ ∈ Θ} of densities on X , maximum likelihood estimate is

θ̂MLE = argmin
θ∈Θ

n∑
i=1

log fθ(xi)


