Optimization Problems and Convexity

Andrew Nobel

March, 2021

General Optimization Problem

Problem: Minimize a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ over a set $A \subseteq \mathbb{R}^{d}$ of interest. Often expressed in the form of a mathematical program:

$$
\min f(x) \text { subject to } x \in A
$$

- Function f called objective function
- Set A represents constraints on the arguments x of interest
- Points $x \in A$ called feasible
- Usually interested in $\min _{A} f(x)$ and $\operatorname{argmin}_{A} f(x)$

General Optimization Problem, cont.

Global and local minima

- Feasible $x \in A$ is a global minimum of f if $f(x) \leq f(y)$ for all $y \in A$
- Feasible $x \in A$ is a local minimum of f if there exists an $r>0$ such that $f(x) \leq f(y)$ for all $y \in A$ with $\|x-y\| \leq r$

Notes: A global minimum is a local minimum. Other issues

- Is there a global min? Is it unique?
- Is there a closed form solution for the global min?
- Are there good iterative or approximate solutions?
- Does f have many local minima?

Review of Convex Sets and Functions

1. A set $C \subseteq \mathbb{R}^{d}$ is convex if for every pair $x, y \in C$ and every $\alpha \in[0,1]$

$$
\alpha x+(1-\alpha) y \in C
$$

2. An intersection of convex sets is convex
3. A function $f: C \rightarrow \mathbb{R}$ is convex if for every pair $x, y \in C$ and $\alpha \in[0,1]$

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

and is strictly convex if \leq replaced by $<$ whenever $x \neq y$ and $\alpha \in(0,1)$
4. The maximum of convex functions is convex

Convexity and Optimization

Fact: If $C \subseteq \mathbb{R}^{d}$ is convex and $f: C \rightarrow \mathbb{R}$ is convex then

1. Any local minimum is a global minimum
2. If f is strictly convex any global minimum is unique

In general: If $C \subseteq \mathbb{R}^{d}$ and $f: C \rightarrow \mathbb{R}$ are convex then there are efficient iterative methods to find the global minimum of f when it exists

Optimization Examples

1. Largest eigenvalue. Given $A \in \mathbb{R}^{n \times n}$ symmetric, $\lambda_{\max }(A)$ is the solution of

$$
\max v^{t} A v \text { s.t. }\|v\| \leq 1
$$

2. Sample variance. Given $x_{1}, \ldots, x_{n} \in \mathbb{R}$

$$
\min \sum_{i=1}^{n}\left(x_{i}-a\right)^{2} \text { s.t. } a \in \mathbb{R}
$$

Optimization Examples

3. PCA. Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ with $\sum_{i=1}^{n} x_{i}=0$

$$
\min \sum_{i=1}^{n}\left\|x_{i}-\operatorname{proj}_{V}\left(x_{i}\right)\right\|^{2} \text { s.t. } V \text { a } k \text {-dim subspace of } \mathbb{R}^{p}
$$

4. K-means clustering. Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$

$$
\min \sum_{i=1}^{n} \min _{1 \leq j \leq k}\left\|x_{i}-c_{j}\right\|^{2} \text { s.t. } c_{1}, \ldots, c_{k} \in \mathbb{R}^{p}
$$

Optimization Examples

5. Best linear classification rule. Given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{p} \times\{0,1\}$, find hyperplane $H(\beta)=\left\{x: x^{t} \beta=\beta_{0}\right\}$ that best separates 0 s and 1 s

$$
\min \sum_{i=1}^{n} \mathbb{I}\left\{\left(2 y_{i}-1\right)\left(x_{i}^{t} \beta-\beta_{0}\right) \geq 0\right\} \text { s.t. } \beta \in \mathbb{R}^{p+1}
$$

6. Least squares regression. Given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{p} \times \mathbb{R}$, find linear function of x minimizing sum of squared errors

$$
\min \sum_{i=1}^{n}\left(y_{i}-x_{i}^{t} \beta-\beta_{0}\right)^{2} \text { s.t. } \beta \in \mathbb{R}^{p+1}
$$

Optimization Examples

8. Maximum Likelihood Estimation. Given data $x_{1}, \ldots, x_{n} \in \mathcal{X}$ and family $\mathcal{P}=\{f(x: \theta): \theta \in \Theta\}$ of densities on \mathcal{X}, maximum likelihood estimate is

$$
\hat{\theta}^{\mathrm{MLE}}=\underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} \log f_{\theta}\left(x_{i}\right)
$$

