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Different Perspective on Classification

Background: Given a classification procedure φn, consider the family of all
possible classification rules it can produce

F = {φn(x : Dn) : Dn ∈ (X × {0, 1})n}

I Procedure φn uses observations Dn to select a rule φ̂n ∈ F

I Selection process typically seeks rule in F that approximately
minimizes training error R̂n

Idealization: Minimizing training error provides a useful theoretical
framework for understanding classification procedures

I Tradeoff between performance and complexity of F



Empirical Risk Minimization (ERM)

Ingredients

I Finite family F = {φ1, . . . , φK} of classification rules

I Observations Dn = (X1, Y1), . . . , (Xn, Yn) iid copies of (X,Y )

ERM: Select rule φ ∈ F with smallest number of misclassifications

φ̂ERM
n = argmin

φ∈F
R̂n(φ) = argmin

φ∈F

1

n

n∑
i=1

I(φ(Xi) 6= Yi)

Downward bias of training error:

R(φ̂ERM
n ) ≥ ER̂n(φ̂ERM

n )



Estimation and Approximation Error

Question: In general, Bayes rule φ∗ not in F . How good is φ̂ERM
n ?

Compare conditional risk R(φ̂n) and Bayes risk R(φ∗). Easy to see that

R(φ̂ERM
n )−R(φ∗) =

[
R(φ̂ERM

n )−min
φ∈F

R(φ)

]
+

[
min
φ∈F

R(φ)−R(φ∗)
]

I [L] = Estimation error: φ̂ERM
n vs best rule in F (random)

I [R] = Approximation error: best rule in F vs Bayes rule (fixed)

Note: If F gets bigger estimation error increases while approximation
error decreases



Bound on Estimation Error for ERM

Fact: If φ̂ERM
n is derived from a family F then the estimation error

0 ≤ R(φ̂n)−min
φ∈F

R(φ) ≤ 2max
φ∈F
|R(φ)− R̂n(φ)|

Upshot

I For finite families F we can control the estimation error using
Chebyshev’s or Hoeffding’s inequalities plus the union bound

I For infinite families F we can control the estimation error using
Vapnik-Chervonenkis inequalities and uniform LLNs


