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Stochastic Framework for Classification

Recall

I Observations (X1, Y1), . . . , (Xn, Yn) iid ∼ (X,Y )

I Population, new sample (X,Y ) ∈ X × {0, 1} (unobserved)

How do we use observations?

I For training: To produce a classification rule

I For testing: To assess the performance of the rule we produced

I (Also for validation, to select among competing rules)

Issue: Same observations sometimes used for more than one task



Rules, Procedures, and Schemes

Recall: A classification rule is a map φ : X → {0, 1}

Definition: An n-sample classification procedure is a map

φn : X × (X × {0, 1})n → {0, 1}

Given observations Dn the procedure φn yields a rule φ̂n(x) = φn(x : Dn)

I If Dn is random then φ̂n(x) is random

I Different data sets yield different classification rules

Definition: A classification scheme is a sequence φ1, φ2, . . . of procedures,
one for each sample size



Example: Two Procedures, Two Datasets

? Two n-sample procedures, e.g., φn = LDA and ψn = LogReg

? Two data sets for some task of interest, Da
n and Db

n

1. Apply LDA and LogReg to data Da
n

I φ̂a
n(x) = φn(x : Da

n) and ψ̂a
n(x) = ψn(x : Da

n)

I How do resulting rules differ? Is one better than the other?

2. Apply LDA to data sets Da
n and Db

n

I φ̂a
n(x) = φn(x : Da

n) and φ̂b
n(x) = φn(x : Db

n)

I Does LDA produce similar rules on two data sets?



Related Issues

Stability: Does a small change in one of the data points yields a big change
in the rule φ̂n?

Aggregation: How can we combine different rules to get better ones?



Risk of Rules and Procedures



Risk of Rules and Procedures

Recall: A rule φ : X → {0, 1} has risk R(φ) = P(φ(X) 6= Y )

For a procedure φn : X × (X × {0, 1})n → {0, 1} there are two types of risk

1. Conditional risk R(φ̂n) = P(φn(X : Dn) 6= Y |Dn)

I Performance of rule φ̂n produced from specific data set Dn

I R(φ̂n) is a random variable, a function of observations Dn

2. Expected risk ER(φ̂n) = P(φn(X : Dn) 6= Y )

I Expected performance of procedure φn on data sets Dn

I ER(φ̂n) is a number



Risk of Rules and Procedures, cont.

? Conditional risk R(φ̂n) is the performance of the rule φ̂n

? Expected risk ER(φ̂n) is the expected performance of the procedure
φn on data sets Dn

Use of risk measures

I Assessing performance of a rule or procedure

I Comparing or selecting among competing procedures

I Assessing the intrinsic difficulty of the classification problem



Estimating Risk

Problem: Risk measures depend on the unknown distribution of (X,Y )

One solution

I Replace probabilities and expectations by averages over observations

I Appeal to the law of large numbers and probability inequalities



Sample Error Rate

Definition: Given observations Dn = (X1, Y1), . . . , (Xn, Yn) the sample error
rate or empirical risk of a rule φ : X → {0, 1} on Dn is

R̂n(φ) =
1

n

n∑
i=1

I(φ(Xi) 6= Yi)

Fact: When φ is fixed

1. E[R̂n(φ)] = R(φ) and Var(R̂n(φ)) = n−1R(φ)(1−R(φ))

2. R̂n(φ) ∼ n−1 Bin(n,R(φ))

3. R̂n(φ)→ R(φ) in probability as n tends to infinity



Sample Error Rate vs Risk for Fixed Rules

Chebyshev: If φ is fixed, for every t > 0 we have

P
(
|R̂n(φ)−R(φ)| ≥ t

)
≤ R(φ)(1−R(φ))

n t2
≤ 1

4n t2

Hoeffding: If φ is fixed, for every t > 0 we have

P
(
|R̂n(φ)−R(φ)| ≥ t

)
≤ 2 exp{−2nt2}

Upshot: For a fixed rule φ, the sample error rate R̂n(φ) can provide a good
estimate of risk R(φ) when n is moderately large



Example: Sample Size Calculation

Task: Assess risk of a rule based on iid observations Dn. Let δ, ε > 0. How
large must n be to ensure that

Pr
(
|R̂n(φ)−R(φ)| ≥ δ

)
≤ ε

This says that sample error rate is close to the true risk with high probability:
in ML terminology probably almost correct (PAC)

Solution: Consider Chebyshev and Hoeffding bounds for the probability on
the left. Set the bound equal to ε and solve for n.

nC =
1

4 δ2 ε
nH =

1

2 δ2
log

(
2

ε

)



Training and Test Sets



Training Sets and Training Error

New: Suppose rule φ̂n(x) = φn(x : Dn) obtained from observations Dn

I Refer to Dn as a training set and R̂n(φ̂n) as training error

Q: Is training error R̂n(φ̂n) a good estimate of the conditional risk R(φ̂n)?

A: No! Root of the problem: φ̂n and R̂n based on same observations Dn

I In general, we expect that R̂n(φ̂n) will underestimate R(φ̂n)

I Rule φ̂n is fit to Dn: it is likely to perform worse on another set D′n

Example: Training error of 1-NN rules is always zero!



One Solution: Separate Training and Test Sets

1. Split iid observations (X1, Y1), . . . , (Xn+m, Yn+m) into two disjoint groups

I Training set Dn = (X1, Y1), . . . , (Xn, Yn)

I Test set Dm = (Xn+1, Yn+1), . . . , (Xn+m, Yn+m)

Note that training set Dn and test set Dm are independent

2. Use training set Dn to construct a classification rule φ̂n(x) = φn(x : Dn)

3. Assess performance of φ̂n via its average error rate on test set Dm

R̂m(φ̂n) = m−1
m∑

j=1

I(φ̂n(Xn+j) 6= Yn+j)



Training and Test Sets, cont.

Fact: Training set Dn and test set Dm are independent

1. E[R̂m(φ̂n) |Dn] = P(φ̂n(X) 6= Y |Dn) = R(φ̂n)

2. For each t > 0,

P
(
|R̂m(φ̂n)−R(φ̂n)| > t |Dn

)
≤ exp{−2mt2}

Downside: When data is hard to come by or expensive to obtain, splitting
observations into training and test sets is a luxury, not always feasible



Cross Validation



Overview of Cross Validation

1. Split observations into k equal size groups, called “folds”

2. For each group j = 1, . . . , k

I Produce a rule from the observations outside group j

I Find the error rate of the rule using the observations inside group j

3. Average the error rates obtained from different groups



Cross-Validation in Detail

Ingredients

I Observations D = (X1, Y1), . . . , (XN , YN )

I Number of folds k ≥ 2

I Assume that N = km

I Classification procedure φN−m



Cross Validation

1. Randomly divide DN into k sets D(1)
m , . . . , D

(k)
m each with m points

2. For j = 1, . . . , k do

I Obtain rule φ̂j(x) by applying φN−m to training set DN \D(j)
m

I Let R̂j = sample error rate of rule φ̂` on hold-out test set D(j)
m

3. The k-fold cross validated risk estimate is the average of the sample errors

R̂k-CV :=
1

k

k∑
j=1

R̂j



Analysis: What is Cross Validation Estimating?

Fact: E(R̂k-CV) = ER(φ̂N−m)

I R̂k-CV estimating expected risk rather than conditional risk

I R̂k-CV centered at the expected risk of φN−m

Fact: The mean squared error E(R̂k-CV − ER(φ̂N ))2 of R̂k-CV has bias-variance
decomposition

MSE(R̂k-CV) = [ER(φ̂N−m)− ER(φ̂N ) ]2 + Var(R̂k-CV)

I Bias term [ER(φ̂N−m)−ER(φ̂N ) ]2 usually gets smaller as k gets bigger

I Variance Var(R̂k-CV) usually gets bigger as k gets bigger


