Cross Validation

Andrew Nobel

October, 2021

Stochastic Framework for Classification

Recall

- Observations $(X_1, Y_1), \ldots, (X_n, Y_n)$ iid $\sim (X, Y)$
- ▶ Population, new sample $(X, Y) \in \mathcal{X} \times \{0, 1\}$ (unobserved)

How do we use observations?

- For training: To produce a classification rule
- For *testing*: To assess the performance of the rule we produced
- (Also for validation, to select among competing rules)

Issue: Same observations sometimes used for more than one task

Rules, Procedures, and Schemes

Recall: A *classification rule* is a map $\phi : \mathcal{X} \to \{0, 1\}$

Definition: An *n*-sample classification procedure is a map

 $\phi_n: \mathcal{X} \times (\mathcal{X} \times \{0,1\})^n \to \{0,1\}$

Given observations D_n the procedure ϕ_n yields a rule $\hat{\phi}_n(x) = \phi_n(x:D_n)$

- If D_n is random then $\hat{\phi}_n(x)$ is random
- Different data sets yield different classification rules

Definition: A *classification scheme* is a sequence ϕ_1, ϕ_2, \ldots of procedures, one for each sample size

Example: Two Procedures, Two Datasets

* Two *n*-sample procedures, e.g., $\phi_n = \text{LDA}$ and $\psi_n = \text{LogReg}$

 \star Two data sets for some task of interest, D_n^a and D_n^b

1. Apply LDA and LogReg to data D_n^a

•
$$\hat{\phi}_n^a(x) = \phi_n(x:D_n^a)$$
 and $\hat{\psi}_n^a(x) = \psi_n(x:D_n^a)$

How do resulting rules differ? Is one better than the other?

2. Apply LDA to data sets D_n^a and D_n^b

•
$$\hat{\phi}_n^a(x) = \phi_n(x:D_n^a)$$
 and $\hat{\phi}_n^b(x) = \phi_n(x:D_n^b)$

Does LDA produce similar rules on two data sets?

Stability: Does a small change in one of the data points yields a big change in the rule $\hat{\phi}_n$?

Aggregation: How can we combine different rules to get better ones?

Risk of Rules and Procedures

Risk of Rules and Procedures

Recall: A rule $\phi : \mathcal{X} \to \{0, 1\}$ has *risk* $R(\phi) = \mathbb{P}(\phi(X) \neq Y)$

For a *procedure* $\phi_n : \mathcal{X} \times (\mathcal{X} \times \{0,1\})^n \to \{0,1\}$ there are two types of risk

- 1. Conditional risk $R(\hat{\phi}_n) = \mathbb{P}(\phi_n(X:D_n) \neq Y \mid D_n)$
 - Performance of rule $\hat{\phi}_n$ produced from specific data set D_n
 - $R(\hat{\phi}_n)$ is a random variable, a function of observations D_n
- 2. Expected risk $\mathbb{E}R(\hat{\phi}_n) = \mathbb{P}(\phi_n(X:D_n) \neq Y)$
 - Expected performance of procedure ϕ_n on data sets D_n
 - $\blacktriangleright \mathbb{E}R(\hat{\phi}_n)$ is a number

Risk of Rules and Procedures, cont.

 \star Conditional risk $R(\hat{\phi}_n)$ is the performance of the *rule* $\hat{\phi}_n$

* Expected risk $\mathbb{E}R(\hat{\phi}_n)$ is the expected performance of the *procedure* ϕ_n on data sets D_n

Use of risk measures

- Assessing performance of a rule or procedure
- Comparing or selecting among competing procedures
- Assessing the intrinsic difficulty of the classification problem

Problem: Risk measures depend on the unknown distribution of (X, Y)

One solution

- Replace probabilities and expectations by averages over observations
- Appeal to the law of large numbers and probability inequalities

Sample Error Rate

Definition: Given observations $D_n = (X_1, Y_1), \ldots, (X_n, Y_n)$ the sample error rate or empirical risk of a rule $\phi : \mathcal{X} \to \{0, 1\}$ on D_n is

$$\hat{R}_n(\phi) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(\phi(X_i) \neq Y_i)$$

Fact: When ϕ is fixed

1.
$$\mathbb{E}[\hat{R}_n(\phi)] = R(\phi) \text{ and } Var(\hat{R}_n(\phi)) = n^{-1} R(\phi)(1 - R(\phi))$$

- **2.** $\hat{R}_n(\phi) \sim n^{-1} \operatorname{Bin}(n, R(\phi))$
- 3. $\hat{R}_n(\phi) \rightarrow R(\phi)$ in probability as *n* tends to infinity

Sample Error Rate vs Risk for Fixed Rules

Chebyshev: If ϕ is fixed, for every t > 0 we have

$$\mathbb{P}\left(|\hat{R}_n(\phi) - R(\phi)| \ge t \right) \ \le \ \frac{R(\phi)(1 - R(\phi))}{n \, t^2} \ \le \ \frac{1}{4 \, n \, t^2}$$

Hoeffding: If ϕ is fixed, for every t > 0 we have

$$\mathbb{P}\left(|\hat{R}_n(\phi) - R(\phi)| \ge t\right) \le 2\exp\{-2nt^2\}$$

Upshot: For a fixed rule ϕ , the sample error rate $\hat{R}_n(\phi)$ can provide a good estimate of risk $R(\phi)$ when n is moderately large

Example: Sample Size Calculation

Task: Assess risk of a rule based on iid observations D_n . Let $\delta, \epsilon > 0$. How large must *n* be to ensure that

$$\Pr\left(|\hat{R}_n(\phi) - R(\phi)| \ge \delta\right) \le \epsilon$$

This says that sample error rate is close to the true risk with high probability: in ML terminology *probably almost correct* (PAC)

Solution: Consider Chebyshev and Hoeffding bounds for the probability on the left. Set the bound equal to ϵ and solve for n.

$$n_C = \frac{1}{4\,\delta^2\,\epsilon} \qquad n_H = \frac{1}{2\,\delta^2}\log\left(\frac{2}{\epsilon}\right)$$

Training and Test Sets

Training Sets and Training Error

New: Suppose rule $\hat{\phi}_n(x) = \phi_n(x:D_n)$ obtained from observations D_n

• Refer to D_n as a *training set* and $\hat{R}_n(\hat{\phi}_n)$ as *training error*

Q: Is training error $\hat{R}_n(\hat{\phi}_n)$ a good estimate of the conditional risk $R(\hat{\phi}_n)$?

A: No! Root of the problem: $\hat{\phi}_n$ and \hat{R}_n based on *same* observations D_n

- ln general, we expect that $\hat{R}_n(\hat{\phi}_n)$ will underestimate $R(\hat{\phi}_n)$
- Rule $\hat{\phi}_n$ is fit to D_n : it is likely to perform worse on another set D'_n

Example: Training error of 1-NN rules is always zero!

One Solution: Separate Training and Test Sets

1. Split iid observations $(X_1, Y_1), \ldots, (X_{n+m}, Y_{n+m})$ into two disjoint groups

Training set
$$D_n = (X_1, Y_1), \ldots, (X_n, Y_n)$$

• Test set $D_m = (X_{n+1}, Y_{n+1}), \dots, (X_{n+m}, Y_{n+m})$

Note that training set D_n and test set D_m are independent

2. Use training set D_n to construct a classification rule $\hat{\phi}_n(x) = \phi_n(x:D_n)$

3. Assess performance of $\hat{\phi}_n$ via its average error rate on test set D_m

$$\hat{R}_m(\hat{\phi}_n) = m^{-1} \sum_{j=1}^m \mathbb{I}(\hat{\phi}_n(X_{n+j}) \neq Y_{n+j})$$

Training and Test Sets, cont.

Fact: Training set D_n and test set D_m are independent

1.
$$\mathbb{E}[\hat{R}_m(\hat{\phi}_n) \mid D_n] = \mathbb{P}(\hat{\phi}_n(X) \neq Y \mid D_n) = R(\hat{\phi}_n)$$

2. For each t > 0,

$$\mathbb{P}\left(|\hat{R}_m(\hat{\phi}_n) - R(\hat{\phi}_n)| > t \,|\, D_n\right) \leq \exp\{-2mt^2\}$$

Downside: When data is hard to come by or expensive to obtain, splitting observations into training and test sets is a luxury, not always feasible

Cross Validation

Overview of Cross Validation

- 1. Split observations into k equal size groups, called "folds"
- 2. For each group $j = 1, \ldots, k$
 - Produce a rule from the observations *outside* group j
 - Find the error rate of the rule using the observations inside group j
- 3. Average the error rates obtained from different groups

Cross-Validation in Detail

Ingredients

- Observations $D = (X_1, Y_1), \ldots, (X_N, Y_N)$
- Number of folds $k \ge 2$
- Assume that N = k m
- ▶ Classification procedure ϕ_{N-m}

Cross Validation

- 1. Randomly divide D_N into k sets $D_m^{(1)}, \ldots, D_m^{(k)}$ each with m points
- 2. For j = 1, ..., k do
 - Obtain rule $\hat{\phi}^j(x)$ by applying ϕ_{N-m} to training set $D_N \setminus D_m^{(j)}$
 - Let $\hat{R}^j =$ sample error rate of rule $\hat{\phi}^{\ell}$ on hold-out test set $D_m^{(j)}$
- 3. The k-fold cross validated risk estimate is the average of the sample errors

$$\hat{R}^{\text{K-CV}} := \frac{1}{k} \sum_{j=1}^{k} \hat{R}^{j}$$

Analysis: What is Cross Validation Estimating?

Fact: $\mathbb{E}(\hat{R}^{k-CV}) = \mathbb{E}R(\hat{\phi}_{N-m})$

 $\blacktriangleright \hat{R}^{\rm k-CV}$ estimating expected risk rather than conditional risk

• $\hat{R}^{\text{k-CV}}$ centered at the expected risk of ϕ_{N-m}

Fact: The mean squared error $\mathbb{E}(\hat{R}^{k\text{-CV}} - \mathbb{E}R(\hat{\phi}_N))^2$ of $\hat{R}^{k\text{-CV}}$ has bias-variance decomposition

$$\mathsf{MSE}(\hat{R}^{\mathsf{k}\text{-}\mathsf{CV}}) = \left[\mathbb{E}R(\hat{\phi}_{N-m}) - \mathbb{E}R(\hat{\phi}_N)\right]^2 + \operatorname{Var}(\hat{R}^{\mathsf{k}\text{-}\mathsf{CV}})$$

▶ Bias term $[\mathbb{E}R(\hat{\phi}_{N-m}) - \mathbb{E}R(\hat{\phi}_N)]^2$ usually gets smaller as k gets bigger

► Variance $Var(\hat{R}^{k-CV})$ usually gets bigger as k gets bigger