
STOR 565 Homework: Classification and Regression

1. Some general questions about rooted binary trees. Refer to the notes on clustering for

the definitions.

a. Draw a rooted binary tree with 3 nodes. How many leaves does it have? How many

internal nodes does it have?

b. Draw a rooted binary tree with 5 nodes. How many leaves does it have? How many

internal nodes does it have?

c. Draw essentially different rooted binary trees with 7 nodes. Do they have the same

number of internal nodes? Do they have the same number of leaves?

d. Formulate a conjecture about the relationship between the number of internal nodes

and the number of leaves in a rooted binary tree.

e. (Optional) Prove your conjecture using induction.

2. Let (X,Y ) be a jointly distributed pair with X ∈ X and Y ∈ {0, 1}. Suppose that X is

finite and that (X,Y ) has joint probability mass function p(x, y).

a. Express the prior probabilities π0 = P(Y = 0) and π1 = P(Y = 1) in terms of p(x, y).

b. Express the class conditional probability mass function p0(x) = P(X = x |Y = 0) in

terms of p(x, y) and the prior probabilities.

c. Show that the marginal pmf of X can be written as p(x) = π0 p0(x) + π1 p1(x) where

p1(x) = P(X = x |Y = 1).

e. Use Bayes rule to show that η(x) := P (Y = 1 |X = x) = π1p1(x)/p(x)

3. Consider a classification problem in which the predictor X is uniformly distributed on

the unit interval [0, 1] and the response Y ∈ {0, 1} as usual. For x ∈ [0, 1] let η(x) = P(Y =

1 |X = x). Specify the Bayes rule φ∗ and the Bayes risk R∗ in each of the following cases.

a. η(x) = 1/3 for all x

b. η(x) = x
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c. η(x) ∈ {0, 1} for all x

In each of the cases above, find the prior probability π1 = P(Y = 1), or indicate why this is

not possible without more information.

4. Let (X,Y ) ∈ R2×{0, 1} be a random predictor-response pair. Suppose that the predictor

X is a pair (X1, X2) where X1, X2 ∈ [0, 1] are independent, X1 is uniform on [0, 1], and X2

has density g(x2) = 3x22 for 0 ≤ x2 ≤ 1. Suppose that η(x1, x2) = (x1 + x2)/2.

a. Find the Bayes rule φ∗ for this problem and identify its decision boundary.

b. Find the unconditional density of X

c. Find the Bayes risk associated with (X,Y )

d. Find the prior probability that Y = +1.

e. Find the class-conditional density of X given Y = 1.

5. Consider the labeled data set (−2, 1), (−1, 1), (0, 0), (1, 1), (2, 0) ∈ R× {0, 1}.

a. Sketch the 1-nearest neighbor rule for this dataset by drawing a line and indicating

which points are assigned to zero and which are assigned to one.

b. Sketch the 3-nearest neighbor rule for this dataset by drawing a line and indicating

which points are assigned to zero and which are assigned to one.

6. Suppose that you are given access to a database consisting of many email messages that

have been labeled as spam or normal. You decide to construct a simple classification rule,

the only feature being whether or not the word “meeting” appears somewhere in the email.

Using relative frequencies to estimate probabilities you find the following:

P̂ (spam) = .3 P̂ (‘meeting’ present | spam) = .01 P̂ (‘meeting’ present | normal) = .04

Using this information, calculate a simple classification rule for spam detection. What can

you say about the error rate of your rule on the database?

*7. Argue as carefully as you can that if the Bayes risk R∗ for a pair (X,Y ) is equal to 1/2

then Y is independent of X. Hint: Use the results of earlier HW problems.
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8. Let (X,Y ) ∈ R× {0, 1} be a random predictor-response pair. Suppose that Y has prior

probabilities π1 = P(Y = 1) and π0 = P(Y = 0), and that X is continuous with marginal

density f and class conditional densities f0 and f1. Let η(x) = P(Y = 1 |X = x) as usual.

a. Show that the Bayes rule φ∗ can be written in the form

φ∗(x) =


1 if log η(x)

1−η(x) ≥ 0

0 otherwise

b. Find a simple expression for the Bayes rule φ∗(x) in terms of π1f1(x) and π0f0(x).

Suppose that f1 is N (µ1, σ
2) and that f0 is N (µ0, σ

2) where µ1 > µ0.

c. Using the results above, find an expression for the Bayes rule φ∗(x) in terms of the

parameters π0, π1, µ0, µ1, and σ2.

d. What is the form of the rule in part (b) when π1 = 1/2? Explain why this makes

intuitive sense.

e. Suppose for simplicity that µ1 = u and µ0 = −u for some u > 0. What form does the

Bayes rule take when u increases (tends to infinity), and in particular, how does the

rule depend on π1 versus π0? A informal but clear answer is fine.

9. Let (X1, Y1), . . . , (Xn, Yn) ∈ R× {0, 1} be a labeled set of real observations.

a. Give an estimate of the probability that Y = 0. What does the law of large numbers

say about the limiting behavior of your estimate as n gets very large?

b. Write the sample mean µ̂0 of the zero-labeled observations using indicator functions.

c. Write the sample variance σ̂20 of the zero-labeled observations using µ̂0 and indicator

functions.

10. Consider the setting of linear discriminant analysis in which the class-conditional den-

sities f0 and f1 have the multivariate normal form fk = N (µk,Σk).

a. Using the expression for the multivariate normal density, show that the discriminant

functions δk(x) = log(πk fk(x)) have the form

δk(x) = −1

2
xtΣ−1k x+ 〈x,Σ−1k µk〉 −

1

2

[
log(2π)dπ−2k det(Σk) + µtkΣ

−1
k µk

]
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b. Show that when Σ0 = Σ1 = Σ the decision boundary B = {x : δ1(x) = δ0(x)} has the

form

B = {x : xt Σ−1(µ1 − µ0) + (c0 − c1) = 0}

where c0, c1 are real valued constants, and argue that this set is a hyperplane.

11. Describe and discuss linear discriminant analysis.

12. Let (X,Y ) be a jointly distributed pair with X ∈ Rd and Y ∈ {0, 1}. Suppose that

we have added a zeroth component to the vector X that is always equal to 1, so that the

augmented vector X ∈ Rd+1. The logistic regression method for binary classification is

based on the assumption that

log
P(Y = 1 |X = x)

P(Y = 0 |X = x)
= log

η(x)

1− η(x)
= 〈β, x〉 (1)

for some vector β ∈ Rd+1 of coefficients. In words, equation (1) says that the conditional

log-odds ratio of Y = 1 vs. Y = 0 is linear in the feature vector x.

a. Show, by inverting the relation (1), that

η(x) = η(x : β) =
e〈β,x〉

1 + e〈β,x〉
=

1

1 + e−〈β,x〉

Here we write η(x : β) to remind ourselves that η depends on β.

b. Equation (1) is sometimes written in the form logit(η(x)) = 〈β, x〉, where logit(u) =

log[u/(1 − u)] for 0 < u < 1 is the logistic (or logit) function. Sketch the logistic

function.

Given a data set Dn = (x1, y1), . . . , (xn, yn) ∈ Rd+1×{0, 1} logistic regression estimates the

coefficient vector β in (1) by maximizing the conditional log likelihood function

`(β) = log

n∏
i=1

Pβ(Y = yi |X = xi)

where Pβ(Y = 1 |X = x) = η(x : β) and Pβ(Y = 0 |X = x) = 1− η(x : β).

c. Use the expression for η(x : β) in (a) to show that the conditional log likelihood

function can be written in the form

`(β) =
n∑
i=1

[
yi〈β, xi〉 − log(1 + e〈β,xi〉)

]
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d. Show that ∇`(β) =
∑n

i=1 xi [yi − η(xi : β)]. Hint: Evaluate the partial derivative

∂`(β)/∂βj for a fixed index j between 1 and d.

13. Describe the difference between a fixed classification rule and a classification procedure.

Define and discuss the conditional and expected risk of a classification procedure.

14. Let Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1} be iid observations for a classification

problem. Recall that the empirical risk of a fixed classification rule φ : X → {0, 1} is

defined by

R̂n(φ) =
1

n

n∑
i=1

I(φ(Xi) 6= Yi)

and that the risk of φ is R(φ) = P(φ(X) 6= Y ).

a. Show that E[R̂n(φ)] = R(φ)

b. Show that Var(R̂n(φ)) = n−1R(φ)(1−R(φ)) ≤ 1/(4n)

c. Argue carefully that nR̂n(φ) has a Bin(n,R(φ)) distribution

d. Use Chebyshev’s inequality to show that for t ≥ 0

P(|R̂n(φ)−R(φ)| ≥ t) ≤ R(φ)(1−R(φ))

n t2
≤ 1

4n t2

e. Use Hoeffding’s inequality to show that for t ≥ 0

P(|R̂n(φ)−R(φ)| ≥ t) ≤ 2 exp{−2nt2}

15. Consider a classification problem in which you have access to a test set containing

m = 120 iid observations (Xi, Yi) ∈ X × {0, 1}. You would like to use the test set to

assess the risk of a given rule φ using the empirical risk R̂m(φ). Chebyshev’s inequality and

Hoeffding’s inequality provide bounds on P(|R̂m(φ) − R(φ)| ≥ t) for t ≥ 0. Compute and

compare these probability bounds, with m = 120, at the following values of t: 1/20, 1/11,

1/9, and 1/5.

16. Consider a classification problem in which you would like to assess the risk of a given

rule φ using its empirical risk R̂m(φ) on a test data set Dm. In particular, you wish to

determine the size n of the test set necessary to conclude that

P(|R̂n(φ)−R(φ)| ≥ δ) ≤ ε
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Use Chebyshev’s and Hoeffding’s inequalities to find suitable values for n as a function of

δ and ε. How do the resulting quantities depend on δ and ε? Generally speaking, which

inequality permits you to use a smaller test set?

17. Let Dn and Dm be independent training and test sets, respectively. Suppose that the

rule φ̂n(x) = φn(x : Dn) is derived from the training set.

a. Define the test set error R̂m(φ̂n).

b. Show that E[R̂m(φ̂n) |Dn] = R(φ̂n)

c. What is ER̂m(φ̂n)? Compare this to your answer above.

18. Let (x, y) ∈ Rp×R be a fixed predictor-response pair, and define a function f : Rp → R

by f(β) = (y − xtβ)2.

a. Show that f is convex.

b. Now let Dn = (x1, y1), . . . , (xn, yn) be n predictor-response pairs. What can you say

about the convexity of the sum of squares g(β) =
∑n

i=1(yi − xtiβ)2?

c. Fix λ ≥ 0 and define the penalized performance criterion

hα(β) =

n∑
i=1

(yi − xtiβ)2 + λ

p∑
j=1

|βj |α

Argue that hα is convex if α ≥ 1. Hint: Recall that a sum of convex functions is

convex.

19. Consider a data set with design matrix X ∈ Rn×p and response vector y ∈ Rn. Fix

λ > 0 and define the penalized loss R̂n,λ(β) = ||y−Xβ||2 + λ ||β||2. Following the calculus

based arguments for OLS, show that R̂n,λ(β) has unique minimizer β̂λ = (XtX+λIp)
−1Xty.

20. Let (X,Y ) ∈ Rp × R be a jointly distributed pair following the signal plus noise model

Y = f(X) + ε where ε is independent of X, Eε = 0, and Var(ε) = σ2.

a. Find simple expressions for EY and Var(Y ).

b. Argue that E(Y |X) = f(X). Thus f is the regression function of Y based on X.
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c. Show that ϕ = f minimizes the risk R(ϕ) = E(ϕ(X) − Y )2 over prediction rules

ϕ : Rp → R. What is the minimum value of R(ϕ)?

21. Let (X1, Y1), . . . , (Xn, Yn) ∈ X ×R be iid observations from the signal plus noise model

Y = f(X) + ε where ε ∼ N (0, σ2).

a. Define the empirical risk R̂n(ϕ) of a rule ϕ : Rp → R.

b. Assuming that Var(ϕ(X)) < ∞, find the expectation and variance of R̂n(ϕ). You

may use the fact that Eε3 = 0 and Eε4 = 3σ4 under our normality assumption.

c. What does Chebyshev’s inequality tell you in this setting? What sort of assumptions

could you make to control the size of the upper bound?

d. Can you apply Hoeffding’s inequality in this case? If so, what is the bound?

22. Let x1, . . . ,xn ∈ Rp+1 be fixed vectors with initial component equal to one 1. Suppose

that we observe responses y1, . . . , yn ∈ R generated from the linear model yi = βtxi + εi,

where β ∈ Rp+1 is an unknown coefficient vector and ε1, . . . , εn are iid ∼ N (0, σ2).

a. Argue that y1, . . . , yn are independent and that yi ∼ N (xtiβ, σ
2).

b. Find the joint likelihood L(β) of y1, . . . , yn.

c. Find the log likelihood `(β) of y1, . . . , yn and show that maximizing `(β) over β is

equivalent to minimizing the empirical risk R̂n(β) = n−1
∑n

i=1(yi − xtiβ)2 over β.

d. Define the response vector y and design matrix X associated with the data above,

giving the dimensions of each. Show carefully that R̂n(β) = n−1||y −Xβ||2.

23. Let y and X be the response vector and design matrix, respectively, associated with

observations (xi, yi) of the previous problem. Recall from class that the OLS coefficient

β̂ = (XtX)−1Xty

a. Show that y = Xβ + ε with ε ∼ Nn(0, σ2I). Conclude that y ∼ Nn(Xβ, σ2I).

b. Show that β̂ = β + (XtX)−1Xtε.

c. Find Eβ̂ and Var(β̂).
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d. Argue that β̂ ∼ Np+1(β, σ
2(XtX)−1), and conclude that β̂j ∼ N (βj , σ

2(XtX)−1jj ).

e. Use the distribution of β̂j to find a 95% confidence interval for βj .

24. Let y and X be the response vector and design matrix, respectively, associated with

observations (x1, y1), . . . , (xn, yn) ∈ Rp × R.

a. Show that XtX + λIp is symmetric and positive definite if λ > 0. Conclude that

XtX + λIp is invertible if λ > 0.

b. Find a simple relationship between the eigenvalues of XtX + λIp and those of XtX.

25. Let β̂λ be the minimizer of R̂n,λ(β) = ||y −Xβ||2 + λ ||β||2.

a. Show that β̂0 is the usual OLS estimator (when the rank of X is equal to p).

b. Show that ||y − Xβ̂λ||2 ≤ ||y − Xβ||2 for every β such that ||β|| ≤ ||β̂λ||. Hint:

Assume the stated inequality fails to hold and show that this implies that β̂λ is not

the minimizer of R̂n,λ(β).

26. Let Dn = (x1, y1), . . . , (xn, yn) ∈ Rp × {±1} be sequence of labeled pairs. Show that

the constraint set

C := {w, b : yi(x
t
iw − b) ≥ 1 for i = 1, . . . , n}

appearing in the primal SVM optimization problem is convex. To make things a bit more

formal, treat the elements of C as vectors v = (w1, . . . , wp, b)
t ∈ Rp+1. Hint: Show that C

is the intersection of n sets, one for each i, and then show that each of these sets is convex.

In the next two questions you are asked to fill in some of the details from the SVM

lecture concerning how one finds the maximum margin classifier for linearly separable data.

27. Write down the primal problem, with optimal value p∗, and argue using the previous

question and results from a previous homework that the primal problem is a convex program.

Now consider the Lagrangian L : Rp × R× Rn+, which is defined by

L(w, b, λ) :=
1

2
||w||2 −

n∑
i=1

λi {yi(wtxi − b)− 1}
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Establish that

max
λ≥0

L(w, b, λ) =


||w||2 if yi(x

t
iw − b) ≥ 1 for i = 1, . . . , n

+∞ otherwise

To see why this is true, note that if one of the constraints yi(x
t
iw − b) ≥ 1 is not satisfied,

then one can increase the corresponding λi to make the Lagrangian arbitrarily large. Using

the last display above, argue informally that the primal problem can be written as

p∗ = min
w,b

max
λ≥0

L(w, b, λ)

28. Let Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1} be a data set for classification. For each

region A ⊆ X let |A| denote the number of points xi in A and let p(A) = |A|−1
∑

xi∈A yi be

the fraction of points xi ∈ A labeled 1. Suppose that the region A can be expressed as the

disjoint union A = A1 ∪A2 of two other regions.

a. Using the definition, show that

p(A) =
|A1|
|A|

p(A1) +
|A2|
|A|

p(A2)

b. Show that |A| = |A1| + |A2|. Conclude from this and part (a) that for any concave

function f : [0, 1]→ R

f(p(A))− |A1|
|A|

f(p(A1))−
|A2|
|A|

f(p(A2)) ≥ 0

This establishes that the impurity differences defined in the lecture for the misclassi-

fication, Gini, and entropy impurity measures are non-negative.

c. Let m(p) = min(p, 1 − p). Show that |A|m(p(A)) is the number of misclassifications

if every point in A is assigned to the majority class.

d. Consider two partitions γ1 and γ2 of X that are identical except that a cell A of γ1

is split into two cells A1 and A2 in γ2. What can you say about the training error of

the corresponding histogram classification rules (based on majority voting in cells)?

29. Let Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1} be a data set for classification and let

γ = {A1, . . . , AK} be a partition of X . Define the histogram classification rule φ̂γ based on

γ. Show that φ̂γ minimizes the training error Rn(φ) over all classification rules φ that are

constant on the cells of γ, meaning φ(u) = φ(v) if u, v are in the same cell of γ.
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30. Recall that the Bayes Rule φ∗ for a jointly distributed pair (X,Y ) with response

Y ∈ {0, 1} is defined by

φ∗(x) = argmax
k=0,1

P(Y = k |X = x)

a. How would you modify this definition in the case where the response takes values in

the finite set {0, 1, . . . ,K}, that is, each feature vector x is associated with one of K

possible outcomes?

b. Show that in the binary case Y ∈ {0, 1} the Bayes Rule has the form

φ∗(x) =

 1 if η(x) ≥ 1/2

0 otherwise
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