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Overview

Given: Data set Dn = (x1, y1), . . . , (xn, yn) ∈ X × {0, 1}

Task: Produce a classification rule φ̂n(x) = φn(x : Dn) from data Dn

Classification Procedures

1. Non-parametric: Histogram rules, Nearest Neighbor rules

2. Based on distributional assumptions

I Naive Bayes: conditional independence of features given the response

I LDA and QDA: multivariate normality of class conditional distributions

I Logistic Regression: linearity of log-odds ratio



Assessing Performance

Task: Assess performance of rule φ̂n produced from data set Dn

Approach 1: Training error

I Examine error rate n−1∑n
i=1 I(φ̂n(Xi) 6= Yi) of rule on Dn

I Tends to be optimistic as φ̂n was trained on Dn

Approach 2: Test error

I Let Dm = (X̃1, Ỹ1), . . . , (X̃m, Ỹm) be a test set independent of Dn

I Consider error rate m−1∑m
j=1 I(φ̂n(X̃j) 6= Ỹj) of rule on test data

I More accurate than training error, requires additional observations



Histogram Rules



Histogram Rules

I Observations Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1}

I Partition π = {A1, . . . , AK} of X into disjoint sets called cells

I Let π(x) = cell Ak of π containing x

Definition: The histogram classification rule for π is given by

φπn(x : Dn) = φ̂πn(x) = maj-vote{Yi : Xi ∈ π(x)}

I Classifies x using “local” data in the same cell as x

I No assumptions about the distribution of (X,Y )

I Decision regions of rule determined by cells of π



Histogram Rules, Theory

Fact: When n is large, the histogram rule

φ̂πn(x) ≈ φ∗π(x) :=

{
1 if P(Y = 1 |X ∈ π(x)) ≥ 1/2

0 otherwise

Upshot: For large n the histogram rule mimics a “lumpy” version of the
Bayes rule based on the partition π

Modifications and Extensions

I Let partition π depend on the number of observations

I Decision trees and random forests select π based on Dn



Nearest Neighbor Rules



Nearest Neighbor Rules

Idea: Classify x ∈ Rd based on the labels of the nearest feature vectors in
the dataset: if it walks like a duck and quacks like a duck...

Observations: Dn = (X1, Y1), . . . , (Xn, Yn) ∈ Rd × {0, 1}

Defn: For x ∈ Rd let X(1)(x), . . . , X(n)(x) be reordering of X1, . . . , Xn s.t.

||x−X(1)(x)|| ≤ ||x−X(2)(x)|| ≤ · · · ≤ ||x−X(n)(x)||

and let Y(j)(x) = label of X(j)(x).

Terminology: X(k)(x) called kth nearest neighbor of x



Nearest Neighbor Rules

Definition: For k ≥ 1 odd, the k-nearest neighbor rule takes a majority vote
among the class labels of the k nearest neighbors of x, that is

φk-NN
n (x : Dn) = φ̂k-NN

n (x) = majority-vote{Y(1)(x), . . . , Y(k)(x)}

Special case k = 1 yields 1-nearest neighbor rule φ̂1-NN
n (x) = Y(1)(x)

I NN-rules rely on local information to classify feature vector x

I Choice of k determines how local estimates are

I No assumptions about distribution of (X,Y )

I Decision regions of NN rules are complicated



Asymptotic Performance of 1-NN Rule

Theorem (T. Cover): As the number of samples n tends to infinity,

ER(φ̂1-NN
n ) → 2E[η(X)(1− η(X))] ≤ 2R∗

In words, the asymptotic probability of error of the 1-NN rule is at most twice
the Bayes risk (the best performance of any classification rule)!



Example: MNIST Database

MNIST database (LeCun, Cortes, Burges)

I Images of handwritten digits (0-9)

I Each image is 28× 28 matrix of gray-scale pixel intensities

I Pixel intensity is an integer between 0 (white) and 255 (black)



Example: Handwritten Digits

Figure: Examples of labeled digits (S.R. Young)



MNIST Training and Test Sets

Digit Train Test
0 476 105
1 617 130
2 508 98
3 488 75
4 460 108
5 447 99
6 489 91
7 523 111
8 478 89
9 514 94



Performance of kNN on MNIST



Confusion Matrix of kNN with k = 3



Overview: Classification Methods from Stochastic Assumptions

Begin with assumptions about class-conditional distributions f0, f1 or
conditional probability η resulting in simplified statistical model

⇓

Use training data Dn to fit statistical model via MLE or gradient descent,
and to estimate π0, π1 if needed

⇓

Produce estimate η̂ of η using fitted model

⇓

Classify new samples following Bayes rule, using η̂ instead of η,

φ̂n(x) =

{
1 if η̂(x) ≥ 1/2

0 otherwise



Naive Bayes



Naive Bayes

Setting: Observe (X,Y ) where X = (X1, . . . , Xd)
t has d components

Assumption: Given label Y components X1, . . . , Xd of X are independent

Equivalently, class-conditional distributions factor as a product of univariate
distributions. For k = 0, 1

f(x1, . . . , xd |Y = k) = f1(x1 |Y = k) · · · fd(xd |Y = k)

Approach

I Estimate marginal distributions fj(xj |Y = k) one at a time

I Estimate f(x |Y = k) by a product of the marginal estimates

I Combine with estimates of π0, π1 to approximate Bayes rule



Estimating Marginal (Univariate) Distributions

Parametric: Assume marginal distribution comes from a parametric family

I Estimate parameters using MLE or method of moments

I Plug in parameters to get estimate of distribution (pmf or pdf)

Non-Parametric: No assumptions about univariate distribution

I Discrete case: Estimate mass function using relative frequencies

I Continuous case: Use histogram or kernel methods to estimate density



Outline of Naive Bayes

Observations: (X1, Y1), . . . , (Xn, Yn) where Xi = (Xi1, . . . , Xid)
t

Step 1: Estimate prior of class k by π̂k = n−1∑n
i=1 I(Yi = k)

Step 2: For 1 ≤ j ≤ d and k = 0, 1 use univariate data {Xij : Yi = k} to form
estimate f̂j(xj |Y = k). Estimate class conditional by product

f̂(x |Y = k) =

d∏
j=1

f̂j(xj |Y = k)

Step 3: Define φ̂NB
n (x) = argmaxk=0,1 P̂(Y = k |X = x) where

P̂(Y = k |X = x) =
π̂kf̂(x |Y = k)

π̂0f̂(x |Y = 0) + π̂1f̂(x |Y = 1)



Naive Bayes, Smoking Cessation

Example: Predict who will benefit from smoking cessation program

Observation: Response Y ∈ {0, 1}, feature vector X with components

I Usage U ∈ {1, . . . , 10} × 10 cigarettes/day, model with general pmf

I Number A ∈ {0, 1, . . .} of previous attempts to quit, model as Poisson

I Time T ∈ (0,∞) in days since last attempt to quit, model as Exponential

Naive Bayes: Assume that class conditionals factor as

P(X = (u, a, t)t |Y = k) = pk(u) qk(a) fk(t)



Naive Bayes, Estimating Marginal Distributions

1. Estimate pmf of usage based on relative frequencies

p̂k(u) =

n∑
i=1

I(ui = u and yi = k)/
n∑
i=1

I(yi = k)

2. Estimate pmf of quitting attempts by q̂k = Poiss(λ̂k) where

λ̂k =
n∑
i=1

ai I(yi = k)/

n∑
i=1

I(yi = k)

3. Estimate density of time since last attempt by f̂k(t) = Exp(γ̂k) where

γ̂k =

(
n∑
i=1

ti I(yi = k)/

n∑
i=1

I(yi = k)

)−1



Naive Bayes, Pluses and Minuses

Minuses: Naive Bayes is based on strong assumption of conditional
independence of features, which does not hold in most settings

Pluses

I Conditional independence may hold approximately in some cases

I NB classifier is fast/easy to compute

I Easily handles mix of discrete, categorical, continuous features

I Does not require intimate domain knowledge

I Not affected by features that are independent of class label



Linear and Quadratic Discriminant Analysis



Hyperplanes and Half-Spaces

Definition: Given vector u ∈ Rd with ||u|| = 1 and b ∈ R let

I Hyperplane H = {x : 〈x, u〉 = b}

I Half-space H+ = {x : 〈x, u〉 > b} contains points “above” H

I Half-space H− = {x : 〈x, u〉 < b} contains points “below” H

Note

I u called normal vector, b called offset

I H is translation of (n− 1)-dimensional subspace {x : 〈x, u〉 = 0}

I Signed distance from x to H is equal to 〈x, u〉 − b



Another Look at the Bayes Rule

Fact: Bayes rule φ∗ for pair (X,Y ) is 1 if and only if

0 ≤ log
η(x)

1− η(x)
= log

P(Y = 1|X = x)

P(Y = 0|X = x)
= log

π1f1(x)

π0f0(x)

Thus the Bayes rule can be written as

φ∗(x) = I(δ1(x) ≥ δ0(x)) = argmax
k=0,1

δk(x)

where δk(x) = log(πk fk(x)) is the discriminant function for class k. Decision
boundary of Bayes rule given by

B = {x : δ1(x) = δ0(x)}



Overview: Linear and Quadratic Discriminant Analysis

Idea: Assume class-conditional densities are multivariate normal

fk = Nd(µk,Σk) for k = 0, 1

In this case the discriminant function δk(x) = log(πk fk(x)) has the form

δk(x) = −1

2
xtΣ−1

k x+ 〈x,Σ−1
k µk〉 −

1

2

{
log[(2π)dπ−2

k det(Σk)] + µtkΣ−1
k µk

}

1. LDA: Assume that covariance matrices are equal, i.e., Σ0 = Σ1

2. QDA: Allow covariance matrices Σ0 and Σ1 to be different



Models for Linear and Quadratic Discriminant Analysis

Recall: Bayes rule φ∗(x) = argmaxk δk(x)

LDA: Assume Σ0 = Σ1 = Σ. Then decision boundary of φ∗ is a hyperplane

B = {x : δ1(x) = δ0(x)} = {x : xt Σ−1(µ1 − µ0) + (c0 − c1) = 0}

where c0, c1 are constants. [Quadratic terms in δ0(x), δ1(x) cancel]

QDA: Allow Σ0 6= Σ1. Decision boundary of φ∗ is a quadratic surface

B =

{
x : −1

2
xt(Σ−1

1 − Σ−1
0 )x+ xt(Σ−1

1 µ1 − Σ−1
0 µ0) + (c0 − c1) = 0

}

In practice: Estimate unknown quantities πk, µk, and Σk via MLE



Using Data: Maximum Likelihood Estimates of Parameters

1. Prior probabilities: π̂k = n−1∑n
i=1 I(Yi = k)

2. Mean vectors: µ̂k =
∑n
i=1Xi I(Yi = k)/

∑n
j=1 I(Yj = k)

3. Variance matrix: Individual/pooled estimates

Σ̂k =

∑n
i=1(Xi − µ̂k)(Xi − µ̂k)t I(Yi = k)∑n

j=1 I(Yj = k)

Σ̂ = (n− 2)−1
∑
k=0,1

n∑
i=1

(Xi − µ̂k)(Xi − µ̂k)tI(Yi = k)

Important: Covariance estimates Σ̂k, Σ̂ are not invertible if p > n



Linear Discriminant Analysis in Practice

I Use (x1, y1), . . . , (xn, yn) to estimate parameters πk, µk,Σ

I Form empirical discriminant functions δ̂k by replacing πk, µk,Σ with
maximum likelihood estimates π̂k, µ̂k, Σ̂

Upshot: LDA rule φ̂LDA
n (x) = argmaxk δ̂k(x) can be written in the linear form

φ̂LDA
n (x) =

 1 if 〈 Σ̂−1x, (µ̂1 − µ̂0) 〉 ≥ τ̂

0 otherwise

In particular, the decision boundary is a hyperplane

Limitation: Vanilla LDA rule not defined if p > n



Quadratic Discriminant Analysis (QDA)

QDA Prediction Rule

I Use data (x1, y1), . . . , (xn, yn) to estimate πk, µk,Σk

I Form empirical discrimination functions δ̂k from estimates π̂k, µ̂k, Σ̂k

I QDA rule is φ̂QDA
n (x) = argmaxk δ̂k(x)

QDA rule is non linear, with quadratic decision boundary

Limitation: Vanilla QDA rule not defined if p > n



Cousin of LDA

Recall: LDA rule can be written in the form

φ̂n(x) =

 1 if 〈 Σ̂−1x, (µ̂1 − µ̂0) 〉 ≥ τ̂

0 otherwise

If Gaussian assumption does not hold, one can still use the LDA-type rule

φ̂LDA
n (x) =

 1 if 〈 Σ̂−1x, (µ̂1 − µ̂0) 〉 ≥ τ̃

0 otherwise

where the threshold τ̃ selected to minimize number of missclassifications



Logistic Regression



Conditional Odds Ratio

Recall: Bayes rule for pair (X,Y ) has form φ∗(x) = I(logO(x) ≥ 0) where

O(x) =
P(Y = 1|X = x)

P(Y = 0|X = x)
=

η(x)

1− η(x)
∈ [0,∞]

is the conditional odds ratio of Y = 1 given X = x.

Basic Idea: Model logO(x) as a linear function of x.

Preliminary: Augment predictors by adding zeroth coordinate equal to 1

x = (1, x1, . . . , xd)
t ∈ Rd+1



Logistic Regression Model

LogReg Model: For some coefficient vector β ∈ Rd+1 we have

log
η(x)

1− η(x)
= β0 +

d∑
i=1

βi xi = 〈β, x〉

Note: The model can be written in the equivalent form

η(x : β) =
e〈β,x〉

1 + e〈β,x〉

where η(x : β) indicates that η(x) depends on the vector β



Logistic Regression Model

Recall: The logistic regression model has the form

log
η(x : β)

1− η(x : β)
= β0 +

d∑
i=1

βi xi = 〈β, x〉

Interpretation of coefficient vector

I β0 = offset, baseline bias for Y = 1 vs Y = 0

I βi = effect on log odds ratio resulting from unit change in xi

I βi = 0: odds ratio does not depend on xi

I βi > 0: increasing xi makes Y = 1 more likely

I βi < 0: increasing xi makes Y = 1 less likely



Logistic Regression in Practice

1. Data Dn = (x1, y1), . . . , (xn, yn) ∈ Rd+1 × {0, 1}

2. Estimate coefficient vector β by maximizing the conditional log-likelihood

`(β) = log Pβ(Y = y1 |X = x1)× · · · × Pβ(Y = yn |X = xn)

where

Pβ(Y = y |X = x) =

 e〈β,x〉/(1 + e〈β,x〉) if y = 1

1/(1 + e〈β,x〉) if y = 0

3. Given estimate β̂ of β the logistic regression prediction rule is

φ̂LR
n (x) =

 1 if e〈β̂,x〉/(1 + e〈β̂,x〉) ≥ 1/2

0 otherwise



Maximizing the Conditional Log-Likelihood

Fact: Note that ` : Rd+1 → R depends on Dn. For each β ∈ Rd+1

I ∇`(β) =
∑n
i=1 xi(I(yi = 1)− η(xi : β))

I ∇2`(β) < 0 so ∇2`(β) invertible and `(·) is concave

Approach: Find β̂n = argmaxβ `(β) by solving equation ∇`(β) = 0

I Equation can’t be solved in closed form, but we can find an approximate
solution using Newton’s method

I Use fitted η(x : β̂) to classify unlabeled examples

I Test and interpret components of coefficient vector β̂: features for which
βi = 0, features that increase or decrease the log odds ratio



Working Adults Data

Overview: Data on n = 32, 561 working adults in the US from 1994 Census

I Xi = demographic info (age, race, education, etc.) about adult i

I Yi = 1 if adult i makes ≥ $50k a year, Yi = 0 otherwise

1 > summary ( adu l t )
2 age workclass educat ion num m a r i t a l s ta tus occupat ion
3 Min . :17 .00 Government : 4351 Min . : 1.00 Divorced : 4443 Blue − C o l l a r :10062
4 1 s t Qu. : 2 8 . 0 0 Other / Unknown : 1857 1 s t Qu . : 9.00 Marr ied :15417 Other / Unknown : 1852
5 Median :37.00 Pr i va te :22696 Median :10.00 Separated : 1025 Pro fess iona l : 4140
6 Mean :38.58 Sel f −Employed : 3657 Mean :10.08 Sing le :10683 Sales : 3650
7 3rd Qu. : 4 8 . 0 0 3rd Qu. : 1 2 . 0 0 Widowed : 993 Serv ice : 5021
8 Max . :90 .00 Max . :16.00 White− C o l l a r : 7836
9 race sex hours per week income

10 Amer−Indian −Eskimo : 311 Female :10771 Min . : 1.00 <=50K:24720
11 Asian −Pac− Is l ande r : 1039 Male :21790 1 s t Qu. : 4 0 . 0 0 >50K : 7841
12 Black : 3124 Median :40.00
13 Other : 271 Mean :40.44
14 White :27816 3rd Qu. : 4 5 . 0 0
15 Max . :99.00



Working Adults Data
1 > m1 <− glm ( income ˜ . , data = adu l t , f a m i l y = b inomia l ( ’ l o g i t ’ ) )
2 > summary (m1)
3
4 Ca l l :
5 glm ( formula = income ˜ . , f a m i l y = b inomia l ( ” l o g i t ” ) , data = adu l t )
6
7 Deviance Residuals :
8 Min 1Q Median 3Q Max
9 −2.7268 −0.5846 −0.2562 −0.0692 3.5080

10
11 C o e f f i c i e n t s :
12 Est imate Std . E r ro r z value Pr(>|z | )
13 ( I n t e r c e p t ) −9.467139 0.250563 −37.783 < 2e−16 * * *
14 age 0.029430 0.001470 20.024 < 2e−16 * * *
15 workclassOther / Unknown −1.587717 0.720358 −2.204 0.02752 *
16 workc lassPr iva te 0.054364 0.047837 1.136 0.25577
17 workc lassSel f −Employed −0.175373 0.061803 −2.838 0.00455 * *
18 educat ion num 0.318807 0.008392 37.990 < 2e−16 * * *
19 m a r i t a l s ta tusMar r ied 1.987371 0.059766 33.252 < 2e−16 * * *
20 m a r i t a l s tatusSeparated −0.135370 0.144532 −0.937 0.34896
21 m a r i t a l s ta tusS ing le −0.513678 0.074089 −6.933 4.11e−12 * * *
22 m a r i t a l statusWidowed −0.029609 0.134118 −0.221 0.82527
23 occupat ionOther / Unknown 1.228633 0.720030 1.706 0.08794 .
24 occupat ionPro fess iona l 0.753587 0.060190 12.520 < 2e−16 * * *
25 occupat ionSales 0.515410 0.056694 9.091 < 2e−16 * * *
26 occupat ionServ ice 0.172611 0.060073 2.873 0.00406 * *
27 occupationWhite − C o l l a r 0.803544 0.046961 17.111 < 2e−16 * * *
28 raceAsian −Pac− Is l ande r 0.290622 0.222968 1.303 0.19243
29 raceBlack 0.388039 0.213560 1.817 0.06922 .
30 raceOther −0.228417 0.320930 −0.712 0.47663
31 raceWhite 0.589683 0.204381 2.885 0.00391 * *
32 sexMale 0.391584 0.046322 8.453 < 2e−16 * * *
33 hours per week 0.031120 0.001454 21.397 < 2e−16 * * *
34 −−−
35 S i g n i f . codes : 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0.1 ’ ’ 1



Logistic Regression vs. LDA

Model

I Both methods assume log of η(x)/(1− η(x)) is a linear function of x

I Given π0 and π1, LDA specifies overall distribution of (X,Y )

I LogReg only specifies the conditional distribution of Y given X

Fitting

I LDA: maximize full likelihood via MLEs of unknown parameters

I LogReg: maximize conditional likelihood using Newton’s method


