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Overview

Given: Data set D,, = (z1,41),---, (Tn,yn) € X x {0,1}

Task: Produce a classification rule ¢, (z) = ¢, (z : D,,) from data D,,

Classification Procedures
1. Non-parametric: Histogram rules, Nearest Neighbor rules

2. Based on distributional assumptions
» Naive Bayes: conditional independence of features given the response
» DA and QDA: multivariate normality of class conditional distributions

» Logistic Regression: linearity of log-odds ratio



Assessing Performance

Task: Assess performance of rule ¢,, produced from data set D,,

Approach 1: Training error
> Examine error rate n=' 37", I($n(X;) # ;) of rule on D,

» Tends to be optimistic as ¢,, was trained on D,,

Approach 2: Test error
> Let D,, = (X1,Y1),...,(Xom, Ym) be a test set independent of D,,
> Consider error rate = 527" (¢, (X;) # Y;) of rule on test data

Jj=1

» More accurate than training error, requires additional observations



Histogram Rules



Histogram Rules

» Observations D, = (X1,Y1),...,(Xn,Yn) € X x {0,1}
» Partition m = {A4, ..., Ax} of X into disjoint sets called cells

> Let w(z) = cell A; of 7 containing =

Definition: The histogram classification rule for 7 is given by

¢ (z: Dn) = ér(z) = maj-vote{V; : X; € w(x)}

> Classifies x using “local” data in the same cell as =
> No assumptions about the distribution of (X,Y")

» Decision regions of rule determined by cells of =



Histogram Rules, Theory

Fact: When n is large, the histogram rule

on(x) ~ ¢;

(1 Ry =1]X en(@) > 1/2
(@) := 0 otherwise

Upshot: For large n the histogram rule mimics a “lumpy” version of the
Bayes rule based on the partition 7

Modifications and Extensions
> Let partition = depend on the number of observations

» Decision trees and random forests select = based on D,,



Nearest Neighbor Rules



Nearest Neighbor Rules

Idea: Classify = € R based on the labels of the nearest feature vectors in
the dataset: if it walks like a duck and quacks like a duck...

Observations: D,, = (X1,Y1),...,(Xn, Yn) € RY x {0,1}

Defn: For z € R? let X(1)(), ..., X(»)(z) be reordering of Xi,..., X, s.t.
llz — Xy @) < llz — X (@)l| -+ < |z — Xy (@)]]
and let Y{;)(x) = label of X;)(x).

Terminology: X (x) called kth nearest neighbor of x



Nearest Neighbor Rules

Definition: For £ > 1 odd, the k-nearest neighbor rule takes a majority vote
among the class labels of the k nearest neighbors of z, that is

#M(@: D) = ¢ (x) = majority-vote{Y(1(z), ..., Yx) ()}

Special case k = 1 yields 1-nearest neighbor rule $\;"(z) = Y1)(z)

> NN-rules rely on local information to classify feature vector «
> Choice of k determines how local estimates are
> No assumptions about distribution of (X,Y")

» Decision regions of NN rules are complicated



Asymptotic Performance of 1-NN Rule

Theorem (T. Cover): As the number of samples n tends to infinity,
ER(¢p™) = 2E[n(X)(1 - n(X))] < 2R"

In words, the asymptotic probability of error of the 1-NN rule is at most twice
the Bayes risk (the best performance of any classification rule)!



Example: MNIST Database

MNIST database (LeCun, Cortes, Burges)
» Images of handwritten digits (0-9)
» Each image is 28 x 28 matrix of gray-scale pixel intensities

» Pixel intensity is an integer between 0 (white) and 255 (black)



Example: Handwritten Digits
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Figure: Examples of labeled digits (S



MNIST Training and Test Sets

Digit | Train | Test
0 476 | 105
1 617 | 130
2 508 98
3 488 75
4 460 | 108
5 447 99
6 489 91
7 523 | 111
8 478 89
9 514 94




Performance of kNN on MNIST

MNIST KNN Error Rate vs K
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Confusion Matrix of KNN with &k = 3
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Overview: Classification Methods from Stochastic Assumptions

Begin with assumptions about class-conditional distributions fo, f1 or
conditional probability n resulting in simplified statistical model

I

Use training data D,, to fit statistical model via MLE or gradient descent,
and to estimate mo, m if needed

I

Produce estimate 7 of n using fitted model

I

Classify new samples following Bayes rule, using 7 instead of 7,

. Lifa(e) > 1/2

0 otherwise



Naive Bayes



Naive Bayes
Setting: Observe (X,Y) where X = (X1,..., X4)" has d components

Assumption: Given label Y components X;,..., X, of X are independent

Equivalently, class-conditional distributions factor as a product of univariate
distributions. For k =0, 1

[l zalY =k) = filed|Y = k) fa(za|Y = k)

Approach
» Estimate marginal distributions f;(x; |Y = k) one at a time
> Estimate f(z|Y = k) by a product of the marginal estimates

» Combine with estimates of 7y, 71 to approximate Bayes rule



Estimating Marginal (Univariate) Distributions

Parametric: Assume marginal distribution comes from a parametric family
» Estimate parameters using MLE or method of moments

» Plug in parameters to get estimate of distribution (pmf or pdf)

Non-Parametric: No assumptions about univariate distribution
» Discrete case: Estimate mass function using relative frequencies

» Continuous case: Use histogram or kernel methods to estimate density



Outline of Naive Bayes

Observations: (X1,Y1),...,(Xx, Yn) where X; = (X, ..., Xia)"
Step 1: Estimate prior of class k by 7, =n~' S0 | I(Y; = k)

Step 2: For 1 < j < dand k = 0,1 use univariate data {X;; : ¥; = k} to form
estimate f;(z; | Y = k). Estimate class conditional by product

d
f(xz|Y =k) :H (z;|Y = k)

Step 3: Define ¢\(z) = argmax,_, ; P(Y = k| X = x) where

fef(z|Y =k)
#of(z|Y =0) + w1 f(z|Y =1)

P(Y=k|X =2z) =



Naive Bayes, Smoking Cessation

Example: Predict who will benefit from smoking cessation program

Observation: Response Y € {0, 1}, feature vector X with components
» Usage U € {1,...,10} x 10 cigarettes/day, model with general pmf
» Number A € {0,1,...} of previous attempts to quit, model as Poisson

» Time T € (0, 00) in days since last attempt to quit, model as Exponential

Naive Bayes: Assume that class conditionals factor as

P(X = (u,a,1)" | Y = k) = pr(u) qi(a) fi(t)



Naive Bayes, Estimating Marginal Distributions
1. Estimate pmf of usage based on relative frequencies

pe(u) = Zﬂ(ui =yandy; = k)/ZH(yi k)

2. Estimate pmf of quitting attempts by g, = Poiss(\x) where

A = Zai I(y; = k)/Z]I(yi =k)

3. Estimate density of time since last attempt by /i (t) = Exp(5x) where

A = <Z tiI(y: = k)/Zﬂ(yi = k))



Naive Bayes, Pluses and Minuses

Minuses: Naive Bayes is based on strong assumption of conditional
independence of features, which does not hold in most settings

Pluses

v

Conditional independence may hold approximately in some cases

v

NB classifier is fast/easy to compute

v

Easily handles mix of discrete, categorical, continuous features

v

Does not require intimate domain knowledge

v

Not affected by features that are independent of class label



Linear and Quadratic Discriminant Analysis



Hyperplanes and Half-Spaces

Definition: Given vector u € R? with [|u|| = 1 and b € R let
» Hyperplane H = {z : (z,u) = b}
> Half-space Hy = {z : (z,u) > b} contains points “above” H

> Half-space H_ = {z : (x,u) < b} contains points “below” H

Note
» u called normal vector, b called offset
» H is translation of (n — 1)-dimensional subspace {z : (z,u) = 0}

» Signed distance from z to H is equal to (z,u) — b



Another Look at the Bayes Rule

Fact: Bayes rule ¢ for pair (X,Y) is 1 if and only if

Thus the Bayes rule can be written as

¢"(z) = 1(01(z) > do(z)) = aig:%l?mk(w)

where 65 (x) = log(mi frx(x)) is the discriminant function for class k. Decision
boundary of Bayes rule given by

B={z:8(z) =do(z)}



Overview: Linear and Quadratic Discriminant Analysis

Idea: Assume class-conditional densities are multivariate normal
fe = Na(uk, X) fork=0,1

In this case the discriminant function 5 (z) = log(mx fx(z)) has the form

Sk(z) = ,,x It (2, 2 ) {log (2m)*my 2det(Sy)] + kX ,uk}

1. LDA: Assume that covariance matrices are equal, i.e., Xo = 31

2. QDA: Allow covariance matrices Xo and X; to be different



Models for Linear and Quadratic Discriminant Analysis
Recall: Bayes rule ¢*(x) = argmax;, 0 (z)

LDA: Assume ¥, = X; = X. Then decision boundary of ¢* is a hyperplane
B = {z:01(x) =6o(x)} = {x:2"2" " (w1 — po) + (co — c1) = 0}

where co, ¢, are constants. [Quadratic terms in do(x), d1(x) cancel]

QDA: Allow Xy # X,. Decision boundary of ¢* is a quadratic surface

1 _ _ _ _
B= {m : —§xt(21 oo De 4+ 2" (ST — 25 o) + (co — 1) = O}

In practice: Estimate unknown quantities m, ux, and 3 via MLE



Using Data: Maximum Likelihood Estimates of Parameters

1. Prior probabilities: 7, = n~' 327 I(Y; = k)

=1
2. Mean vectors: fu, = >°7, X I(Y; = k)/ >0, 1(Y; = k)

3. Variance matrix: Individual/pooled estimates

i (X — fu) (X — ) ' I(Yi = k)

2k — i=1 -
Zj:l I(Y; = k)
S=m-27" Y0 (X — ) L(Y: = k)
k=0,1 i=1

Important: Covariance estimates 3, 3 are not invertible if p > n



Linear Discriminant Analysis in Practice

» Use (z1,91), ..., (Zn, yn) to estimate parameters m, pix, &

» Form empirical discriminant functions Sk by replacing 7, pr, X with
maximum likelihood estimates 7, fix, >

Upshot: LDA rule ¢:**(z) = argmax,, dx(x) can be written in the linear form

. S—1 ~ ~ ~
(Z);DA(x) _ Lot (X7 2, (i — o)) > 7
0 otherwise

In particular, the decision boundary is a hyperplane

Limitation: Vanilla LDA rule not definedif p > n



Quadratic Discriminant Analysis (QDA)

QDA Prediction Rule
» Usedata (z1,v1),. .-, (zn, yn) to estimate mx, uk, X
» Form empirical discrimination functions & from estimates 7, jix, S«

> QDA rule is $%(z) = argmax,, o5 (z)

QDA rule is non linear, with quadratic decision boundary

Limitation: Vanilla QDA rule not definedif p > n



Cousin of LDA

Recall: LDA rule can be written in the form

bn(z) =

. 1 if (57, (= fio)) > 7
0 otherwise

If Gaussian assumption does not hold, one can still use the LDA-type rule

0 otherwise

on 1 it (S e, (fn — fuo)) > 7
P () =

where the threshold 7 selected to minimize number of missclassifications



Logistic Regression



Conditional Odds Ratio

Recall: Bayes rule for pair (X,Y") has form ¢*(z) = I(log O(z) > 0) where

_PY=1X=2z) _ n(z)
O = sy —ox=2) ~ Ton@ € O

is the conditional odds ratio of Y = 1 given X = .

Basic Idea: Model log O(z) as a linear function of z.

Preliminary: Augment predictors by adding zeroth coordinate equal to 1

z=(1,21,...,2q4)" € R



Logistic Regression Model

LogReg Model: For some coefficient vector 5 € R4™" we have

d
log 257+ — Bt 3o = (8,0

Note: The model can be written in the equivalent form

(8.

n(x:pB) = T3 oo

where n(z : 8) indicates that n(x) depends on the vector 3



Logistic Regression Model

Recall: The logistic regression model has the form

n(z : B) -
logm = /80+;/3i55i = (B, )

Interpretation of coefficient vector
» [y = offset, baseline biasforY =1vsY =0
> j3; = effect on log odds ratio resulting from unit change in z;
» (3, = 0: odds ratio does not depend on z;
> (; > 0: increasing x; makes Y = 1 more likely

> [; < 0:increasing x; makes Y = 1 less likely



Logistic Regression in Practice
1. Data D,, = (z1,%1), ..., (Zn, yn) € R x {0, 1}

2. Estimate coefficient vector s by maximizing the conditional log-likelihood
0B) = logPg(Y = g1 | X =a1) x -+ X Pg(Y =y | X = 2,)

where
e J(14ePm) ity =1

Pe(Y =y| X =2) = 5 ,
1/(1 4 eP=)) ify =0

3. Given estimate 3 of 3 the logistic regression prediction rule is

) { 1 if e /(1 4By > 172

0 otherwise



Maximizing the Conditional Log-Likelihood

Fact: Note that ¢ : R**' — R depends on D,,. For each g € R4*!
> VeB) =3 wi(l(ys = 1) — n(zi : B))

> V24(B) < 0so V() invertible and £4(-) is concave

Approach: Find 3, = argmax ¢(3) by solving equation V¢(3) = 0

» Equation can’t be solved in closed form, but we can find an approximate
solution using Newton’s method

» Use fitted n(z : 3) to classify unlabeled examples

> Test and interpret components of coefficient vector 3: features for which
Bi = 0, features that increase or decrease the log odds ratio



Working Adults Data

Overview: Data on n = 32,561 working adults in the US from 1994 Census
» X, = demographic info (age, race, education, etc.) about adult

» Y; = 1if adult : makes > $50k a year, Y; = 0 otherwise

1
2 workclass education .num marital _status occupation
3 Government 1 4351 Min. : 1.00 Divorced : 4443  Blue-Collar :10062
4 Other/Unknown: 1857  1st Qu.: 9.00 Married :15417  Other/Unknown: 1852
5 Private 122696 Median :10.00 Separated: 1025 Professional : 4140
6 Self-Employed: 3657 Mean :10.08 Single 110683 Sales : 3650
7 3rd Qu.:48.00 3rd Qu.:12.00  Widowed : 993  Service 1 5021
8  Max. :90.00 Max. :16.00 White-Collar : 7836
9 race sex hours _per _week income

10 Amer-Indian-Eskimo: 311 Female:10771 Min. : 1.00 <=50K:24720

11 Asian-Pac-Islander: 1039 Male :21790 1st Qu.:40.00 >50K : 7841

12 Black : 3124 Median :40.00

13 Other 2N Mean 140.44

14 White 127816 3rd Qu.:45.00

15 Max. :99.00



Working Adults Data

1 > ml <- glm(income ~ ., data = adult, family = binomial(’logit’))
2 > summary(mi)

3

4 Call:

5 glm(formula = income ~ ., family = binomial("logit”), data = adult)
6

7 Deviance Residuals:

8 Min 1Q  Median 3Q Max

9 -2.7268 -0.5846 -0.2562 -0.0692 3.5080

10

11 Coefficients:

12 Estimate Std. Error z value Pr(>|z])

13 (Intercept) -9.467139  0.250563 -37.783 < 2e-16 »++
14 age 0.029430  0.001470 20.024 < 2e-16 **«
15 workclassOther/Unknown -1.587717 0.720358 -2.204 0.02752 «
16 workclassPrivate 0.054364 0.047837 1.136 0.25577

17 workclassSelf -Employed -0.175373 0.061803 -2.838 0.00455 «=
18 education_num 0.318807 0.008392 37.990 < 2e-16 =+~

19 marital -statusMarried 1.987371 0.059766 33.252 < 2e-16 *+~
20 marital -statusSeparated -0.135370 0.144532 -0.937 0.34896
21 marital _statusSingle -0.513678 0.074089 -6.933 4.11e-12
22 marital _statusWidowed -0.029609  0.134118 -0.221 0.82527
23 occupationOther/Unknown 1.228633 0.720030 1.706 0.08794 .
24 occupationProfessional 0.753587 0.060190 12.520 < 2e-16 =
25 occupationSales 0.515410 0.056694 9.091 < 2e-16 *x»
26 occupationService 0.172611 0.060073  2.873 0.00406 =«
27 occupationWhite-Collar 0.803544 0.046961 17.111 < 2e-16 **~
28 raceAsian-Pac-Islander 0.290622 0.222968 1.303 0.19243

29 raceBlack 0.388039 0.213560 1.817 0.06922

30 raceOther -0.228417 0.320930 -0.712 0.47663

31 raceWhite 0.589683 0.204381 2.885 0.00391 «=
32 sexMale 0.391584 0.046322 8.453 < 2e-16 »++
33 hours_per_week 0.031120 0.001454 21.397 < 2e-16 ==
34 -

35 Signif. codes: 0 '+++’ 0.001 '+’ 0.01 '+’ 0.05 '.” 0.1 1



Logistic Regression vs. LDA

Model
» Both methods assume log of n(x)/(1 — n(x)) is a linear function of =
» Given mo and =1, LDA specifies overall distribution of (X,Y")

» LogReg only specifies the conditional distribution of Y given X

Fitting
» LDA: maximize full likelihood via MLEs of unknown parameters

> LogReg: maximize conditional likelihood using Newton’s method



