Classification Methods

Andrew Nobel

October, 2021

Overview

Given: Data set $D_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathcal{X} \times\{0,1\}$
Task: Produce a classification rule $\hat{\phi}_{n}(x)=\phi_{n}\left(x: D_{n}\right)$ from data D_{n}

Classification Procedures

1. Non-parametric: Histogram rules, Nearest Neighbor rules
2. Based on distributional assumptions

- Naive Bayes: conditional independence of features given the response
- LDA and QDA: multivariate normality of class conditional distributions
- Logistic Regression: linearity of log-odds ratio

Assessing Performance

Task: Assess performance of rule $\hat{\phi}_{n}$ produced from data set D_{n}

Approach 1: Training error

- Examine error rate $n^{-1} \sum_{i=1}^{n} \mathbb{I}\left(\hat{\phi}_{n}\left(X_{i}\right) \neq Y_{i}\right)$ of rule on D_{n}
- Tends to be optimistic as $\hat{\phi}_{n}$ was trained on D_{n}

Approach 2: Test error

- Let $D_{m}=\left(\tilde{X}_{1}, \tilde{Y}_{1}\right), \ldots,\left(\tilde{X}_{m}, \tilde{Y}_{m}\right)$ be a test set independent of D_{n}
- Consider error rate $m^{-1} \sum_{j=1}^{m} \mathbb{I}\left(\hat{\phi}_{n}\left(\tilde{X}_{j}\right) \neq \tilde{Y}_{j}\right)$ of rule on test data
- More accurate than training error, requires additional observations

Histogram Rules

Histogram Rules

- Observations $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathcal{X} \times\{0,1\}$
- Partition $\pi=\left\{A_{1}, \ldots, A_{K}\right\}$ of \mathcal{X} into disjoint sets called cells
- Let $\pi(x)=$ cell A_{k} of π containing x

Definition: The histogram classification rule for π is given by

$$
\phi_{n}^{\pi}\left(x: D_{n}\right)=\hat{\phi}_{n}^{\pi}(x)=\operatorname{maj}-\text { vote }\left\{Y_{i}: X_{i} \in \pi(x)\right\}
$$

- Classifies x using "local" data in the same cell as x
- No assumptions about the distribution of (X, Y)
- Decision regions of rule determined by cells of π

Histogram Rules, Theory

Fact: When n is large, the histogram rule

$$
\hat{\phi}_{n}^{\pi}(x) \approx \phi_{\pi}^{*}(x):= \begin{cases}1 & \text { if } \mathbb{P}(Y=1 \mid X \in \pi(x)) \geq 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Upshot: For large n the histogram rule mimics a "lumpy" version of the Bayes rule based on the partition π

Modifications and Extensions

- Let partition π depend on the number of observations
- Decision trees and random forests select π based on D_{n}

Nearest Neighbor Rules

Nearest Neighbor Rules

Idea: Classify $x \in \mathbb{R}^{d}$ based on the labels of the nearest feature vectors in the dataset: if it walks like a duck and quacks like a duck...

Observations: $D_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathbb{R}^{d} \times\{0,1\}$

Defn: For $x \in \mathbb{R}^{d}$ let $X_{(1)}(x), \ldots, X_{(n)}(x)$ be reordering of X_{1}, \ldots, X_{n} s.t.

$$
\left\|x-X_{(1)}(x)\right\| \leq\left\|x-X_{(2)}(x)\right\| \leq \cdots \leq\left\|x-X_{(n)}(x)\right\|
$$

and let $Y_{(j)}(x)=$ label of $X_{(j)}(x)$.

Terminology: $X_{(k)}(x)$ called k th nearest neighbor of x

Nearest Neighbor Rules

Definition: For $k \geq 1$ odd, the k-nearest neighbor rule takes a majority vote among the class labels of the k nearest neighbors of x, that is

$$
\phi_{n}^{\mathrm{k}-\mathrm{NN}}\left(x: D_{n}\right)=\hat{\phi}_{n}^{\mathrm{k}-\mathrm{NN}}(x)=\text { majority-vote }\left\{Y_{(1)}(x), \ldots, Y_{(k)}(x)\right\}
$$

Special case $k=1$ yields 1-nearest neighbor rule $\hat{\phi}_{n}^{1-\mathrm{NN}}(x)=Y_{(1)}(x)$

- NN-rules rely on local information to classify feature vector x
- Choice of k determines how local estimates are
- No assumptions about distribution of (X, Y)
- Decision regions of NN rules are complicated

Asymptotic Performance of 1-NN Rule

Theorem (T. Cover): As the number of samples n tends to infinity,

$$
\mathbb{E} R\left(\hat{\phi}_{n}^{1-N N}\right) \rightarrow 2 \mathbb{E}[\eta(X)(1-\eta(X))] \leq 2 R^{*}
$$

In words, the asymptotic probability of error of the 1-NN rule is at most twice the Bayes risk (the best performance of any classification rule)!

Example: MNIST Database

MNIST database (LeCun, Cortes, Burges)

- Images of handwritten digits (0-9)
- Each image is 28×28 matrix of gray-scale pixel intensities
- Pixel intensity is an integer between 0 (white) and 255 (black)

Example: Handwritten Digits

Figure: Examples of labeled digits (S.R. Young)

MNIST Training and Test Sets

Digit	Train	Test
0	476	105
1	617	130
2	508	98
3	488	75
4	460	108
5	447	99
6	489	91
7	523	111
8	478	89
9	514	94

Performance of kNN on MNIST

MNIST KNN Error Rate vs K

Confusion Matrix of kNN with $k=3$

Overview: Classification Methods from Stochastic Assumptions

Begin with assumptions about class-conditional distributions f_{0}, f_{1} or conditional probability η resulting in simplified statistical model
\Downarrow
Use training data D_{n} to fit statistical model via MLE or gradient descent, and to estimate π_{0}, π_{1} if needed
\Downarrow
Produce estimate $\hat{\eta}$ of η using fitted model
\Downarrow
Classify new samples following Bayes rule, using $\hat{\eta}$ instead of η,

$$
\hat{\phi}_{n}(x)= \begin{cases}1 & \text { if } \hat{\eta}(x) \geq 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Naive Bayes

Naive Bayes

Setting: Observe (X, Y) where $X=\left(X_{1}, \ldots, X_{d}\right)^{t}$ has d components

Assumption: Given label Y components X_{1}, \ldots, X_{d} of X are independent
Equivalently, class-conditional distributions factor as a product of univariate distributions. For $k=0,1$

$$
f\left(x_{1}, \ldots, x_{d} \mid Y=k\right)=f_{1}\left(x_{1} \mid Y=k\right) \cdots f_{d}\left(x_{d} \mid Y=k\right)
$$

Approach

- Estimate marginal distributions $f_{j}\left(x_{j} \mid Y=k\right)$ one at a time
- Estimate $f(x \mid Y=k)$ by a product of the marginal estimates
- Combine with estimates of π_{0}, π_{1} to approximate Bayes rule

Estimating Marginal (Univariate) Distributions

Parametric: Assume marginal distribution comes from a parametric family

- Estimate parameters using MLE or method of moments
- Plug in parameters to get estimate of distribution (pmf or pdf)

Non-Parametric: No assumptions about univariate distribution

- Discrete case: Estimate mass function using relative frequencies
- Continuous case: Use histogram or kernel methods to estimate density

Outline of Naive Bayes

Observations: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ where $X_{i}=\left(X_{i 1}, \ldots, X_{i d}\right)^{t}$
Step 1: Estimate prior of class k by $\hat{\pi}_{k}=n^{-1} \sum_{i=1}^{n} \mathbb{I}\left(Y_{i}=k\right)$

Step 2: For $1 \leq j \leq d$ and $k=0,1$ use univariate data $\left\{X_{i j}: Y_{i}=k\right\}$ to form estimate $\hat{f}_{j}\left(x_{j} \mid Y=k\right)$. Estimate class conditional by product

$$
\hat{f}(x \mid Y=k)=\prod_{j=1}^{d} \hat{f}_{j}\left(x_{j} \mid Y=k\right)
$$

Step 3: Define $\hat{\phi}_{n}^{\mathrm{NB}}(x)=\operatorname{argmax}_{k=0,1} \hat{\mathbb{P}}(Y=k \mid X=x)$ where

$$
\hat{\mathbb{P}}(Y=k \mid X=x)=\frac{\hat{\pi}_{k} \hat{f}(x \mid Y=k)}{\hat{\pi}_{0} \hat{f}(x \mid Y=0)+\hat{\pi}_{1} \hat{f}(x \mid Y=1)}
$$

Naive Bayes, Smoking Cessation

Example: Predict who will benefit from smoking cessation program

Observation: Response $Y \in\{0,1\}$, feature vector X with components

- Usage $U \in\{1, \ldots, 10\} \times 10$ cigarettes/day, model with general pmf
- Number $A \in\{0,1, \ldots\}$ of previous attempts to quit, model as Poisson
- Time $T \in(0, \infty)$ in days since last attempt to quit, model as Exponential

Naive Bayes: Assume that class conditionals factor as

$$
\mathbb{P}\left(X=(u, a, t)^{t} \mid Y=k\right)=p_{k}(u) q_{k}(a) f_{k}(t)
$$

Naive Bayes, Estimating Marginal Distributions

1. Estimate pmf of usage based on relative frequencies

$$
\hat{p}_{k}(u)=\sum_{i=1}^{n} \mathbb{I}\left(u_{i}=u \text { and } y_{i}=k\right) / \sum_{i=1}^{n} \mathbb{I}\left(y_{i}=k\right)
$$

2. Estimate pmf of quitting attempts by $\hat{q}_{k}=\operatorname{Poiss}\left(\hat{\lambda}_{k}\right)$ where

$$
\hat{\lambda}_{k}=\sum_{i=1}^{n} a_{i} \mathbb{I}\left(y_{i}=k\right) / \sum_{i=1}^{n} \mathbb{I}\left(y_{i}=k\right)
$$

3. Estimate density of time since last attempt by $\hat{f}_{k}(t)=\operatorname{Exp}\left(\hat{\gamma}_{k}\right)$ where

$$
\hat{\gamma}_{k}=\left(\sum_{i=1}^{n} t_{i} \mathbb{I}\left(y_{i}=k\right) / \sum_{i=1}^{n} \mathbb{I}\left(y_{i}=k\right)\right)^{-1}
$$

Naive Bayes, Pluses and Minuses

Minuses: Naive Bayes is based on strong assumption of conditional independence of features, which does not hold in most settings

Pluses

- Conditional independence may hold approximately in some cases
- NB classifier is fast/easy to compute
- Easily handles mix of discrete, categorical, continuous features
- Does not require intimate domain knowledge
- Not affected by features that are independent of class label

Linear and Quadratic Discriminant Analysis

Hyperplanes and Half-Spaces

Definition: Given vector $\mathbf{u} \in \mathbb{R}^{d}$ with $\|u\|=1$ and $b \in \mathbb{R}$ let

- Hyperplane $H=\{x:\langle x, u\rangle=b\}$
- Half-space $H_{+}=\{x:\langle x, u\rangle>b\}$ contains points "above" H
- Half-space $H_{-}=\{x:\langle x, u\rangle<b\}$ contains points "below" H

Note

- u called normal vector, b called offset
- H is translation of $(n-1)$-dimensional subspace $\{x:\langle x, u\rangle=0\}$
- Signed distance from x to H is equal to $\langle x, u\rangle-b$

Another Look at the Bayes Rule

Fact: Bayes rule ϕ^{*} for pair (X, Y) is 1 if and only if

$$
0 \leq \log \frac{\eta(x)}{1-\eta(x)}=\log \frac{\mathbb{P}(Y=1 \mid X=x)}{\mathbb{P}(Y=0 \mid X=x)}=\log \frac{\pi_{1} f_{1}(x)}{\pi_{0} f_{0}(x)}
$$

Thus the Bayes rule can be written as

$$
\phi^{*}(x)=\mathbb{I}\left(\delta_{1}(x) \geq \delta_{0}(x)\right)=\underset{k=0,1}{\operatorname{argmax}} \delta_{k}(x)
$$

where $\delta_{k}(x)=\log \left(\pi_{k} f_{k}(x)\right)$ is the discriminant function for class k. Decision boundary of Bayes rule given by

$$
B=\left\{x: \delta_{1}(x)=\delta_{0}(x)\right\}
$$

Overview: Linear and Quadratic Discriminant Analysis

Idea: Assume class-conditional densities are multivariate normal

$$
f_{k}=\mathcal{N}_{d}\left(\mu_{k}, \Sigma_{k}\right) \text { for } k=0,1
$$

In this case the discriminant function $\delta_{k}(x)=\log \left(\pi_{k} f_{k}(x)\right)$ has the form

$$
\delta_{k}(x)=-\frac{1}{2} x^{t} \Sigma_{k}^{-1} x+\left\langle x, \Sigma_{k}^{-1} \mu_{k}\right\rangle-\frac{1}{2}\left\{\log \left[(2 \pi)^{d} \pi_{k}^{-2} \operatorname{det}\left(\Sigma_{k}\right)\right]+\mu_{k}^{t} \Sigma_{k}^{-1} \mu_{k}\right\}
$$

1. LDA: Assume that covariance matrices are equal, i.e., $\Sigma_{0}=\Sigma_{1}$
2. QDA: Allow covariance matrices Σ_{0} and Σ_{1} to be different

Models for Linear and Quadratic Discriminant Analysis

Recall: Bayes rule $\phi^{*}(x)=\operatorname{argmax}_{k} \delta_{k}(x)$

LDA: Assume $\Sigma_{0}=\Sigma_{1}=\Sigma$. Then decision boundary of ϕ^{*} is a hyperplane

$$
B=\left\{x: \delta_{1}(x)=\delta_{0}(x)\right\}=\left\{x: x^{t} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)+\left(c_{0}-c_{1}\right)=0\right\}
$$

where c_{0}, c_{1} are constants. [Quadratic terms in $\delta_{0}(x), \delta_{1}(x)$ cancel]

QDA: Allow $\Sigma_{0} \neq \Sigma_{1}$. Decision boundary of ϕ^{*} is a quadratic surface

$$
B=\left\{x:-\frac{1}{2} x^{t}\left(\Sigma_{1}^{-1}-\Sigma_{0}^{-1}\right) x+x^{t}\left(\Sigma_{1}^{-1} \mu_{1}-\Sigma_{0}^{-1} \mu_{0}\right)+\left(c_{0}-c_{1}\right)=0\right\}
$$

In practice: Estimate unknown quantities π_{k}, μ_{k}, and Σ_{k} via MLE

Using Data: Maximum Likelihood Estimates of Parameters

1. Prior probabilities: $\hat{\pi}_{k}=n^{-1} \sum_{i=1}^{n} \mathbb{I}\left(Y_{i}=k\right)$
2. Mean vectors: $\hat{\mu}_{k}=\sum_{i=1}^{n} X_{i} \mathbb{I}\left(Y_{i}=k\right) / \sum_{j=1}^{n} \mathbb{I}\left(Y_{j}=k\right)$
3. Variance matrix: Individual/pooled estimates

$$
\begin{gathered}
\hat{\Sigma}_{k}=\frac{\sum_{i=1}^{n}\left(X_{i}-\hat{\mu}_{k}\right)\left(X_{i}-\hat{\mu}_{k}\right)^{t} \mathbb{I}\left(Y_{i}=k\right)}{\sum_{j=1}^{n} \mathbb{I}\left(Y_{j}=k\right)} \\
\hat{\Sigma}=(n-2)^{-1} \sum_{k=0,1} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}_{k}\right)\left(X_{i}-\hat{\mu}_{k}\right)^{t} \mathbb{I}\left(Y_{i}=k\right)
\end{gathered}
$$

Important: Covariance estimates $\hat{\Sigma}_{k}, \hat{\Sigma}$ are not invertible if $p>n$

Linear Discriminant Analysis in Practice

- Use $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ to estimate parameters π_{k}, μ_{k}, Σ
- Form empirical discriminant functions $\hat{\delta}_{k}$ by replacing π_{k}, μ_{k}, Σ with maximum likelihood estimates $\hat{\pi}_{k}, \hat{\mu}_{k}, \hat{\Sigma}$

Upshot: LDA rule $\hat{\phi}_{n}^{\text {LDA }}(x)=\operatorname{argmax}_{k} \hat{\delta}_{k}(x)$ can be written in the linear form

$$
\hat{\phi}_{n}^{\mathrm{LDA}}(x)= \begin{cases}1 & \text { if }\left\langle\hat{\Sigma}^{-1} x,\left(\hat{\mu}_{1}-\hat{\mu}_{0}\right)\right\rangle \geq \hat{\tau} \\ 0 & \text { otherwise }\end{cases}
$$

In particular, the decision boundary is a hyperplane

Limitation: Vanilla LDA rule not defined if $p>n$

Quadratic Discriminant Analysis (QDA)

QDA Prediction Rule

- Use data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ to estimate $\pi_{k}, \mu_{k}, \Sigma_{k}$
- Form empirical discrimination functions $\hat{\delta}_{k}$ from estimates $\hat{\pi}_{k}, \hat{\mu}_{k}, \hat{\Sigma}_{k}$
- QDA rule is $\hat{\phi}_{n}^{\mathrm{QDA}}(x)=\operatorname{argmax}_{k} \hat{\delta}_{k}(x)$

QDA rule is non linear, with quadratic decision boundary

Limitation: Vanilla QDA rule not defined if $p>n$

Cousin of LDA

Recall: LDA rule can be written in the form

$$
\hat{\phi}_{n}(x)= \begin{cases}1 & \text { if }\left\langle\hat{\Sigma}^{-1} x,\left(\hat{\mu}_{1}-\hat{\mu}_{0}\right)\right\rangle \geq \hat{\tau} \\ 0 & \text { otherwise }\end{cases}
$$

If Gaussian assumption does not hold, one can still use the LDA-type rule

$$
\hat{\phi}_{n}^{\mathrm{LD}}(x)= \begin{cases}1 & \text { if }\left\langle\hat{\Sigma}^{-1} x,\left(\hat{\mu}_{1}-\hat{\mu}_{0}\right)\right\rangle \geq \tilde{\tau} \\ 0 & \text { otherwise }\end{cases}
$$

where the threshold $\tilde{\tau}$ selected to minimize number of missclassifications

Logistic Regression

Conditional Odds Ratio

Recall: Bayes rule for pair (X, Y) has form $\phi^{*}(x)=\mathbb{I}(\log O(x) \geq 0)$ where

$$
O(x)=\frac{\mathbb{P}(Y=1 \mid X=x)}{\mathbb{P}(Y=0 \mid X=x)}=\frac{\eta(x)}{1-\eta(x)} \in[0, \infty]
$$

is the conditional odds ratio of $Y=1$ given $X=x$.

Basic Idea: Model $\log O(x)$ as a linear function of x.

Preliminary: Augment predictors by adding zeroth coordinate equal to 1

$$
x=\left(1, x_{1}, \ldots, x_{d}\right)^{t} \in \mathbb{R}^{d+1}
$$

Logistic Regression Model

LogReg Model: For some coefficient vector $\beta \in \mathbb{R}^{d+1}$ we have

$$
\log \frac{\eta(x)}{1-\eta(x)}=\beta_{0}+\sum_{i=1}^{d} \beta_{i} x_{i}=\langle\beta, x\rangle
$$

Note: The model can be written in the equivalent form

$$
\eta(x: \beta)=\frac{e^{\langle\beta, x\rangle}}{1+e^{\langle\beta, x\rangle}}
$$

where $\eta(x: \beta)$ indicates that $\eta(x)$ depends on the vector β

Logistic Regression Model

Recall: The logistic regression model has the form

$$
\log \frac{\eta(x: \beta)}{1-\eta(x: \beta)}=\beta_{0}+\sum_{i=1}^{d} \beta_{i} x_{i}=\langle\beta, x\rangle
$$

Interpretation of coefficient vector

- $\beta_{0}=$ offset, baseline bias for $Y=1$ vs $Y=0$
- $\beta_{i}=$ effect on log odds ratio resulting from unit change in x_{i}
- $\beta_{i}=0$: odds ratio does not depend on x_{i}
- $\beta_{i}>0$: increasing x_{i} makes $Y=1$ more likely
- $\beta_{i}<0$: increasing x_{i} makes $Y=1$ less likely

Logistic Regression in Practice

1. Data $D_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{d+1} \times\{0,1\}$
2. Estimate coefficient vector β by maximizing the conditional log-likelihood

$$
\ell(\beta)=\log \mathbb{P}_{\beta}\left(Y=y_{1} \mid X=x_{1}\right) \times \cdots \times \mathbb{P}_{\beta}\left(Y=y_{n} \mid X=x_{n}\right)
$$

where

$$
\mathbb{P}_{\beta}(Y=y \mid X=x)= \begin{cases}e^{\langle\beta, x\rangle} /\left(1+e^{\langle\beta, x\rangle}\right) & \text { if } y=1 \\ 1 /\left(1+e^{\langle\beta, x\rangle}\right) & \text { if } y=0\end{cases}
$$

3. Given estimate $\hat{\beta}$ of β the logistic regression prediction rule is

$$
\hat{\phi}_{n}^{\text {LR }}(x)= \begin{cases}1 & \text { if } e^{\langle\hat{\beta}, x\rangle} /\left(1+e^{\langle\hat{\beta}, x\rangle}\right) \geq 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Maximizing the Conditional Log-Likelihood

Fact: Note that $\ell: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ depends on D_{n}. For each $\beta \in \mathbb{R}^{d+1}$

- $\nabla \ell(\beta)=\sum_{i=1}^{n} x_{i}\left(\mathbb{I}\left(y_{i}=1\right)-\eta\left(x_{i}: \beta\right)\right)$
- $\nabla^{2} \ell(\beta)<0$ so $\nabla^{2} \ell(\beta)$ invertible and $\ell(\cdot)$ is concave

Approach: Find $\hat{\beta}_{n}=\operatorname{argmax}_{\beta} \ell(\beta)$ by solving equation $\nabla \ell(\beta)=0$

- Equation can't be solved in closed form, but we can find an approximate solution using Newton's method
- Use fitted $\eta(x: \hat{\beta})$ to classify unlabeled examples
- Test and interpret components of coefficient vector $\hat{\beta}$: features for which $\beta_{i}=0$, features that increase or decrease the log odds ratio

Working Adults Data

Overview: Data on $n=32,561$ working adults in the US from 1994 Census

- $X_{i}=$ demographic info (age, race, education, etc.) about adult i
- $Y_{i}=1$ if adult i makes $\geq \$ 50 k$ a year, $Y_{i}=0$ otherwise

Working Adults Data

```
>m1 <- glm(income ~ ., data = adult, family = binomial('logit'))
> summary (m1)
Call:
glm(formula = income ~ ., family = binomial("logit"), data = adult)
Deviance Residuals:
    Min 1Q Median 3Q Max
-2.7268 -0.5846 -0.2562 -0.0692 3.5080
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & value & \(\operatorname{Pr}(>|z|)\) & \\
\hline (Intercept) & -9.467139 & 0.250563 & -37.783 & < \(2 \mathrm{e}-16\) & \\
\hline e & 0.029430 & 0.001470 & 20.024 & < 2e-16 & \\
\hline orkclassOther/Unk & -1.587717 & 0.720358 & -2.204 & 0.02752 & \\
\hline orkclassPrivate & 0.054364 & 0.047837 & 1.136 & 0.25577 & \\
\hline rkclassSelf-Employed & -0.175373 & 0.061803 & -2.838 & 0.00455 & \\
\hline ation _num & 0.318807 & 0.008392 & 37.990 & < 2e-16 & \\
\hline ital _ statusMarried & 1.987371 & 0.059766 & 33.252 & \(<2 \mathrm{e}-16\) & \\
\hline
\end{tabular}
marital statusMarried 1.987371-0.059766
marital_statusSeparated -0.135370 0.144532 -0.937
marital_statusSingle -0.513678 0.074089 -6.933 4.11e-12 ***
marital_statusWidowed -0.029609 0.134118 -0.221 0.82527
occupationOther/Unknown}1.228633 0.720030 1.706 0.08794
occupationProfessional 0.753587 0.060190 12.520 < 2e-16 ***
occupationSales 0.515410 0.056694 9.091 < 2e-16 ****
occupationService }\quad0.172611 0.060073 2.873 0.00406 *******
occupationWhite-Collar 0.803544 0.046961 17.111 < 2e-16 ***
raceAsian-Pac-Islander 
raceBlack
    0.388039 0.213560 1.817 0.06922
raceOther -0.228417 0.320930
raceWhite 0.589683 0.204381 2.885 0.00391 **
sexMale 0.391584 0.046322 8.453 < 2e-16 ***
hours_per_week 0.031120 0.001454 21.397<2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Logistic Regression vs. LDA

Model

- Both methods assume log of $\eta(x) /(1-\eta(x))$ is a linear function of x
- Given π_{0} and π_{1}, LDA specifies overall distribution of (X, Y)
- LogReg only specifies the conditional distribution of Y given X

Fitting

- LDA: maximize full likelihood via MLEs of unknown parameters
- LogReg: maximize conditional likelihood using Newton's method

