
Computer Assignment 4 - Classification
Machine Learning, Fall 2021

YOUR NAME

Bayes Rule and Univariate Normal Simulations

As mentioned in our first few Computing Assignments, R can simulate a number of distributions, including
the normal distribution:

W � N p�2, 1.2q & V � N p2, 1.2q.

For this next exercise, we are going to simulate 300 observations from W and 200 observations from V, and
create another variable Y that classifies from which normal distribution each observation came. Indeed,

W_obs = rnorm(300, mean = -2, sd = 1.2)
V_obs = rnorm(200, mean = 2, sd = 1.2)
Y_class = c(rep(0, times = length(W_obs)), rep(1, times = length(V_obs)))
train_data = data.frame(X = c(W_obs, V_obs), Y = Y_class)

Since we have specified ourselves the model for our data (here: two different normals), we can assess the
performance of any classification technique we use on this data. We will illustrate this by calculating the
Bayes rule for our train_data.

Bayes Rule

Recall that the Bayes rule provides a prediction of the value of Y when only the value of X is available. To
do this, it is necessary to find how likely it is that Y � 1 (and Y � 0) given X � x. In this case, since X is
continuous, this is represented by:

ηpxq � P pY � 1|X � xq �
fx,ypx, 1q
fxpxq

�
π1fx|ypx|1q
fxpxq

,

and, analogously:

1� ηpxq � P pY � 0|X � xq �
π0fx|ypx|0q
fxpxq

.

Once we know both conditional probabilities, we can find the Bayes rule. It consists of always predicting
the value of Y that is the most likely. In general, we say that:

φ�pxq �

#
1 if ηpxq ¡ 1� ηpxq

0 otherwise
�

#
1 if ηpxq ¡ 1

2
0 otherwise.
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Since both values are being divided by the same constant fxpxq, we can reduce our decision as what follows:

φ�pxq �

#
1 if π1fx|ypx|1q ¡ π0fx|ypx|0q
0 otherwise.

In the following chunk, we provide an example of how to find an estimate of the density fxpxq on the value
x � �0.1 based on our training data.

# Example of PDF estimation
x_obs = -0.1
full_density = density(train_data$X) ## Find an estimate of the entire density function f_x.
index_of_density = sum(full_density$x <= x_obs)

if(index_of_density == 0){
pdf_value_of_x_obs = 0 ## If all observations are above x_obs density = 0

} else {
pdf_value_of_x_obs = full_density$y[index_of_density]

}

## To visualize what was done.
plot(x = full_density$x, ## Plot of the density f_x.

y = full_density$y,
type = "l",
xlim = c(-6,6),
main = "Marginal Density of X",
xlab = "x",
ylab = "f_x")

abline(h = 0, col = "grey") ## Drawing the x axis.
segments(x0 = x_obs, y0 = 0, ## Drawing the density on x = -0.1

x1 = x_obs, y1 = pdf_value_of_x_obs,
col = "red")

text(x = x_obs, y = pdf_value_of_x_obs/2, ## Adding nice label.
labels = paste("Value of f_x(x) = ", round(pdf_value_of_x_obs, digits = 3)),
col = "red", pos = 4)
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Question 1:

1. What are the values of π1 and π0?
2. Based on the code previously provided, find an estimation of the conditional densities fx|ypx|1q and
fx|ypx|0q for the value x � 1.3.

3. With the newly found values of fx|ypx|1q and fx|ypx|0q on x � 1.3, find the value of π1fx|ypx|1q and
π0fx|ypx|0q.

4. Which of the two weighted densities is larger? What would be the Bayes rule on x � 1.3?

## Find pi1 and pi0.

## Use this value of X:
x_obs = 1.3

## Find the density of X given Y = 0

## Find the density of X given Y = 1

## Do comparisson of the products.

ANSWERS

1. HERE.
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2. HERE.
3. HERE.
4. HERE.

Finding the Bayes Rule

Once we know how to find the Bayes rule for a single value of X � x, we can utilize a for loop to find the
Bayes rule for all of the values of x for a certain range of x. Since the distributions of X|Y � 1 and X|Y � 0
are normal, the decision boundary will consist of a single point. In the next question, the goal is to find the
Bayes rule, and find the decision boundary.

Recall that the Bayes rule is determined by the values of the weighted densities π1fx|ypx|1q and π0fx|ypx|0q.
More specifically, we know that φ�pxq � 1 if π1fx|ypx|1q ¡ π0fx|ypx|0q and φ�pxq � 0 if π0fx|ypx|0q ¡
π1fx|ypx|1q. Therefore, the a useful plot for discussing the Bayes rule is to simultaneously visualize the two
weigthed densities.

The following chunk shows how to create a plot of 2 functions over a given range of values. Use this as a
basis for your answer in the next question.

## The functions we will consider are normal densities:
x = seq(from = 7, to = 13, length.out = 1000)
y1 = dnorm(x =x, mean = 10, sd = 0.25)
y2 = dnorm(x =x, mean = 9, sd = 0.15)

plot(x = x,
y = y1,
type = "l",
xlim = c(7,13),
ylim = c(0, max(y1,y2)),
main = "Example of double plot",
xlab = "x",
ylab = "f_x",
col = "red")

lines(x = x,
y = y2,
col = "blue")
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Question 2:

1. Create a vector of uniformly spaced values between -6 and 6 of size 1000. (Hint: use seq)
2. Modify your code from Q1 to find the weighted densities π1fx|ypx|1q and π0fx|ypx|0q for all the values

of x between -6 and 6.
3. Find the Bayes rule for all values of x between -6 and 6. What is the decision boundary?
4. Create a plot that contains both weighted densities. Use a vertical line to mark where the decision

boundary is.
5. Comment on the position of the decision boundary. Is it located in a special location? If so, provide

an intuitive reason for why is it located there.

## Create fine grid of values between -6 and 6.

## Find the weigthed conditional densities for all values between -6 and 6.

## Create a plot with both weighted densities and represent the Bayes rule

ANSWERS

1. HERE.
2. HERE.
3. HERE.
4. HERE.
5. HERE.
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Bayes Rule and Estimation Error.

The Bayes rule can be used as an “educated guess” of what the value of Y is when only the value of X � x
is available. Since ultimately the value of Y is random, there will be an intrinsic error in our predictions.
To measure the quality of our estimation, we can find the “risk” of our estimate. This is the percentage of
missclassified observations. In general, the smaller the risk is, the better a classifier is.

Question 3:

1. Modify the code used in Q2, to find the Bayes rule on the X values from our data: x1, x2, ..., x500. The
result must be a vector φ� � pφ�1 , φ

�
2 , ..., φ

�
500q.

2. Create a contingency table, where you contrast the actual values of y1, ..., y500 from our data, with the
predictions of the Bayes rule. What is the percentage of missclassified observations (the risk)?

3. Is there any misclassified observation with xi ¥ 1? Is there any missclassified observation with xi ¤ �1?
4. Find the maximum and minimum values of x that were misclassified. Are most missclassified observa-

tions near the decision boundary? Why?

YOUR CODE HERE

ANSWERS:

1.

2.

3.

4.

k-Nearest Neighbors

Question 4:

1. Fit a k nearest neighbors model for all k � 1, 2, ..., 10. For each model find the risk of each model. Are
there any trends?

2. Generate a plot where the x-axis is the numbers k � 1, 2, ..., 10, and the y-axis is the risk of each model.
Comment on the results.

3. Why does k = 1 do so well? What is it doing that gives it such great performance?

library(class)

# Example for k = 1
train_data_classifiers = as.factor(train_data$Y)
train_data_observations = data.frame(train_data$X)
knn.1 <- knn(train_data_observations, train_data_observations, cl = train_data_classifiers, k = 5)
R_knn_1 = 100 * sum(train_data_classifiers == knn.1)/length(knn.1)
R_knn_1

YOUR CODE, AND ANALYSIS, HERE.

## Hint:
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## Error = rep(0, 10)
## for(k in 1:10){
## "fit model with k-NN"
## Error[k] = "error of the model"
## }

ANSWERS:

1.

2.

3.

Linear Discriminant Analysis

Now let’s do the same thing with Fisher’s Linear Discriminate Analysis (LDA). Don’t forget that you can
type ?lda or ?predict in the console to see the documentation for these functions.

Question 5

1. Run Fisher’s LDA on the training data from the previous exercises.
2. Use the recently fitted model and predict to create the predictions of LDA on the training data.
3. Find the risk. Comment on how it compares to the risk of the Bayes rule.

4. Create a fine grid of values between -6 to 6. Using the predict function, find the prediction of the
LDA algorithm on the values of x between -6 and 6.

5. Use this to determine the decision boundary of the LDA model. Is it similar to that of the Bayes rule?

library(MASS)
library(dplyr)

?lda
?predict.lda
# Fit the model using the 'lda' function
YOUR CODE HERE

# Make predictions using the 'predict' function
YOUR CODE HERE

# Compute the percentage of missclassified observations.
YOUR CODE HERE

ANSWERS:

1.

2.

3.

4.

5.
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Method Evaluation on New Data

Now that we have explored Bayes’ Rule, k-nearest neighbors, and LDA, we will see how each method performs
on new data that was NOT used to fit them. Consider the following new data set drawn from the same
distributions.

W_obs = rnorm(150, mean = -2, sd = 1.2)
V_obs = rnorm(100, mean = 2, sd = 1.2)
Y_class_test = c(rep(0, times = length(W_obs)), rep(1, times = length(V_obs)))
test_data = data.frame(X = c(W_obs, V_obs), Y = Y_class_test)

Question 6:

1. Using the decision boundary of the Bayes rule obtained in Q2, classify the new available data. Find
the risk on these new observations.

2. Using the decision boundary of the LDA procedure obtained in Q5, classify the new available data.
Find the risk on these new observations.

3. Use the function knn to determine the predicted class of the new data given the training data with
k � 1, 5, 10. Find the risk on these new observations.

## Find the risk of the estimated Bayes rule.

## Find the risk of the estimated LDA classification rule.

## Find the risk of the KNN algorithm for k = 1.

## Find the risk of the KNN algorithm for k = 5.

## Find the risk of the KNN algorithm for k = 10.

1.

2.

3.

Now, let’s do this 1000 more times!

Question 7:

1. Use the code we provide below, and your code from Q6 to find the risk of the Bayes rule, LDA and
KNN with k � 1, 5, 10 on 1000 different replications of new data. Save the risk on the corresponding
vectors.

2. Create a plot with multiple boxplots, with which you can compare how the errors of Bayes, LDA and
the KNN models behave.

3. Which model has the lowest average risk? Is the difference large?
4. Which model has the lowest variability in the risk? Are the result of different models highly variable?

set.seed(13)
all_bayes_risks = c()
all_knn_risks = c()
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all_lda_risks = c()

for(iteration in 1:1000){
W_obs = rnorm(150, mean = -2)
V_obs = rnorm(50, mean = 2)
Y_class_test = c(rep(0, times = length(W_obs)), rep(1, times = length(V_obs)))
test_data = data.frame(X = c(W_obs, V_obs), Y = Y_class_test)

YOUR MODEL CODE HERE

bayes_risk = YOUR CODE HERE
knn_risk1 = YOUR CODE HERE
knn_risk5 = YOUR CODE HERE
knn_risk10 = YOUR CODE HERE
lda_risk = YOUR CODE HERE

all_bayes_risks = c(all_bayes_risks, bayes_risk)
all_knn_risks = c(all_knn_risks, knn_risk)
all_lda_risks = c(all_lda_risks, lda_risk)

}

## Create boxplot here.

ANSWERS:

1.

2.

3.

4.

1994 Census Data

Let’s walk through real example. First, load the adults.csv data (downloaded originally from here).

adult = read.csv("adults.csv")
adult$X = NULL

Next, we will run the logistic regression model to predict the class income, which marks whether a given
adult makes ¤ $50k (coded as a 0) or ¥ $50k (coded as a 1). To assess the performance of our model, we
will only build the model on 75% of our data so that we can later use the remaining 25% as a testing data
set.

set.seed(13)
training_size <- round(.75 * nrow(adult)) # training set size
indices = sample(1:nrow(adult), training_size)
training_set <- adult[indices,]
testing_set <- adult[-(indices),]
m1 <- glm(income ~ ., data = training_set, family = binomial('logit'))
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Question 8:

1. Examine the summary of our logistic regression model. Comment on the significance of each of our
predictors.

2. Do any of the significant predictors surprise you?

3. Provide an interpretation of what the Estimate value is for the predictor age. Your answer should say
something about this value’s relation to the log-odds.

YOUR CODE HERE

ANSWERS:

1.

2.

3.

Question 9:

1. Now that you have created a model on the training_data, use the predict function in R to use
your model to classify the data in the testing_data.

2. What proportion of values were classified correctly? Find the risk on the testing data.

YOUR CODE, AND ANALYSIS, HERE

ANSWERS:

1.

2.

Next we would like to fit an LDA model for comparison. Unfortunately, there is a slight problem: most of
the predictors in the dataset are categorical. Recall that LDA assumes that the class conditional densities
are Gaussian. Obviously this does not make sense for categorical variables. Luckily, R has a way around
this. For a categorical variable that takes on d different values, R will automatically replace that variable
with d � 1 binary variables representing the levels of the original categorical variable. When all of these
binary variables are equal to 0, the implied category is the one that was left out. For example, in the adults
dataset, the variable sex takes on two values: Female and Male. As described above, sex can be recoded as
a single binary variable, sexMale, which is equal to 1 when sex == Male and 0 when sex == Female. With
these new binary variables in place, we can run LDA. Thus, when you run LDA on the adults dataset, you
will not see a binary variable for Female.

Question 10:

1. Build an LDA model on the training_data, and see how well it performs classifying the observations
in the testing_data.

2. Compare the risk (percentage of missclassified observations) of the LDA and the logistic regression.
Which method gives the best performance?
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YOUR CODE, AND ANALYSIS, HERE

ANSWERS:

1.

2.
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