Machine Learning, STOR 565 Clustering: Overview and Basic Methods

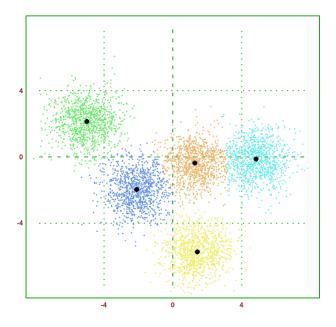
Andrew Nobel

February, 2021

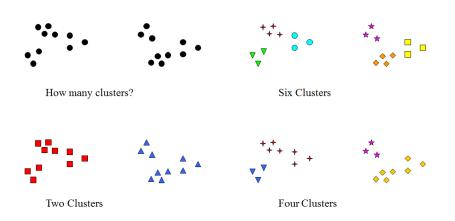
Overview

Task: Divide a set of objects (e.g. data points) into a small number of disjoint groups such that objects in the same group are close together, and objects in different groups are far apart.

Example (http://rosettacode.org)



Example (https://apandre.files.wordpress.com)



General Setting

Given: Objects x_1, \ldots, x_n in feature space \mathcal{X}

b Dissimilarity or distance $d(x_i, x_j)$ between pairs of objects

Goal: Divide x_1, \ldots, x_n into disjoint groups C_1, \ldots, C_k , called *clusters*, s.t.

- Objects in same cluster are close together
- Objects in different clusters are far apart
- Number of clusters k is small

Distinction: Clustering is *complete* if it partitions \mathcal{X} and *incomplete* if it partitions only x_1, \ldots, x_n .

Clustering: Areas of Application

Genomics, Biology

Data Compression

Psychology

Computer Science

Social and Political Science

Feature Vectors

Objects $\mathbf{x} \in \mathcal{X}$ typically represented by a *feature vector*

$$\mathbf{x} = (x_1, \dots, x_p)^t$$

where x_i is a numerical/categorical measurement of interest:

- ▶ $x_i \in \mathbb{R}$ numerical feature
- ▶ $x_i \in \{a, b, \ldots\}$ categorical feature

Examples

Medicine

- Object = patient
- Feature x_i = outcome of a diagnostic test on patient

Microarrays (Genomics)

- Object = tissue sample
- Feature x_i = measured expression level of gene *i* in that sample

Data Mining

- Object = consumer
- Features x_i = type, location, or amount of recent purchases

Dissimilarities/Distances Between Feature Vectors

Euclidean
$$d(\mathbf{u}, \mathbf{v}) = \sqrt{\sum_i (u_i - v_i)^2}$$

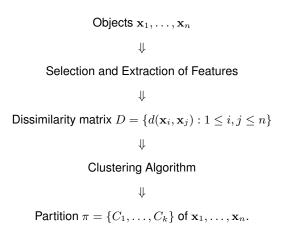
Manhattan
$$d(\mathbf{u}, \mathbf{v}) = \sum_{i} |u_i - v_i|$$

Correlation
$$d(\mathbf{u}, \mathbf{v}) = 1 - \operatorname{corr}(u, v)$$

Hamming
$$d(\mathbf{u}, \mathbf{v}) = \sum_{i} I\{u_i \neq v_i\}$$

Mixtures of these

Basic Steps in Clustering



Some Clustering Methods

Hierarchical: Candidate divisions of data described by a binary tree

- Agglomerative (bottom-up)
- Divisive (top-down)

Iterative: Search for local minimum of simple cost function

- k-means and variants
- partitioning around medioids, self organizing maps

Model-based: Fit feature vectors with a finite mixture model

Spectral: Threshold eigenvectors of Laplacian of Dissimilarity Matrix

Features of clusters can affect the performance of different procedures, e.g., whether clusters are

- Spherical or elliptical in shape
- Similar in overall variance/spread
- Similar in size (number of points)

The k-Means Algorithm

The k-Means Algorithm

Setting: Objects $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ are vectors. Seek k clusters

Approach: Focus on cluster centers

- Find good cluster centers $\mathbf{c}_1, \ldots, \mathbf{c}_k \in \mathbb{R}^p$
- Let cluster C_j = vectors \mathbf{x}_i closer to \mathbf{c}_j than other centers \mathbf{c}_l

Optimization: Select centers to minimize sum of squares (SoS) cost function

$$\mathsf{Cost}(\mathbf{c}_1,\ldots,\mathbf{c}_k) = \sum_{i=1}^n \min_{1 \le j \le k} ||\mathbf{x}_i - \mathbf{c}_j||^2$$

Problem: Exact solution of optimization problem not feasible. Resort to iterative methods that find local minimum

Ingredient 1: Centroids

Definition: The centroid of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{R}^p$ is their (vector) average

$$\mathbf{c} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{v}_i$$

• Centroid c is the center of mass of the point configuration v_1, \ldots, v_m

• Centroid c is an *optimal representative* for v_1, \ldots, v_m , in the sense that

$$\sum_{i=1}^{m} ||\mathbf{v}_i - \mathbf{c}||^2 \le \sum_{i=1}^{m} ||\mathbf{v}_i - \mathbf{v}||^2$$

for every vector $\mathbf{v} \in \mathbb{R}^p$

Ingredient 2: Nearest Neighbor Partitions

Idea: Given centers $c_1, \ldots, c_k \in \mathbb{R}^p$ one can partition \mathbb{R}^p into corresponding cells A_1, \ldots, A_k where

$$A_j = \{\mathbf{x} : ||\mathbf{x} - \mathbf{c}_j|| \le ||\mathbf{x} - \mathbf{c}_s|| \text{ all } l \ne j\}$$

contains vectors that are closer to center c_j than any other center c_s (where we break ties by index)

Definition: Cells $\{A_1, \ldots, A_k\}$ called the *nearest neighbor* or *Voronoi* partition of \mathbb{R}^p generated by centers $\mathbf{c}_1, \ldots, \mathbf{c}_k$

Note: $A_j = \bigcap_{s \neq j} \{ \mathbf{x} : ||\mathbf{x} - \mathbf{c}_j|| \le ||\mathbf{x} - \mathbf{c}_l|| \}$ is an intersection of half-spaces

The k-Means Algorithm

Initialize: Centers $C_0 = {\mathbf{a}_1, \dots, \mathbf{a}_k}$

Iterate: For m = 1, 2, ...do:

Let π_m be the nearest neighbor partition of the centers C_{m-1} .

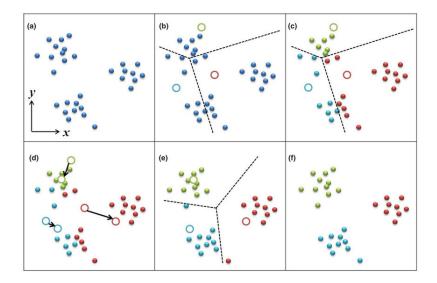
• Let C_m be the centroids of the vectors in each cell of π_m

Stop: When $Cost(C_m)$ is close to $Cost(C_{m+1})$

Key Fact: Cost function decreases at each iteration of algorithm. Recall

$$\mathsf{Cost}(\mathbf{c}_1,\ldots,\mathbf{c}_k) = \sum_{i=1}^n \min_{1 \le j \le k} ||\mathbf{x}_i - \mathbf{c}_j||^2$$

k-means (Yu-Zhong Chen, ResearchGate)



The k-Means Algorithm

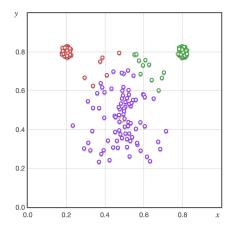
In practice

- Choose multiple initial sets of representative vectors $C_0 = \{c_1, \ldots, c_k\}$
- Run the iterative k-means procedure
- Choose the partition associated with the smallest final cost

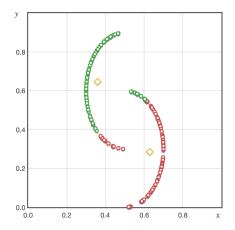
Example: http://onmyphd.com/?p=k-means.clustering.

K-Means tends to perform best when clusters are spherical, similar in variance and size

3-means (onmyphd.com)



2-Means (onmyphd.com)



Agglomerative Clustering

Binary Trees

- 1. Distinguished node called the root with zero or two children but no parent
- 2. Every other node has one parent and zero or two children
 - Nodes with no children are called leaves
 - Nodes with two children are called internal

Note: Tree usually drawn upside-down, with root node at the top

Agglomerative Clustering

Stage 0: Assign each object x_i to its own cluster

Stage k:

- Find the two *closest* clusters at stage k 1
- Combine them into a single cluster

Stop: When all objects x_i belong to a single cluster

Output: Binary tree T called a *dendrogram*

Note: Closeness of clusters C, C' can be measured in different ways

Distances Between Clusters

Single Linkage

$$d_s(C,C') = \min_{x_i \in C, x_j \in C'} d(x_i, x_j)$$

Average Linkage

$$d_a(C, C') = \frac{1}{|C| |C'|} \sum_{x_i \in C, x_j \in C'} d(x_i, x_j)$$

Total Linkage

$$d_t(C,C') = \max_{x_i \in C, x_j \in C'} d(x_i, x_j)$$

Binary tree associated with the agglomerative clustering procedure: it is a graphical record of the clustering process

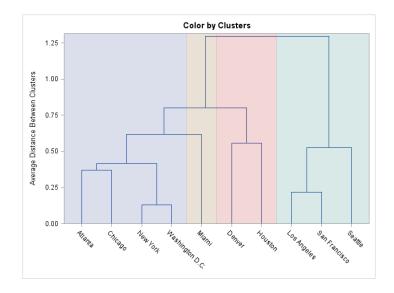
Initialize: Each singleton cluster $\{x_i\}$ corresponds to a node at height 0

Update: If two clusters C, C' are combined, their respective nodes are joined to a parent node at height d(C, C')

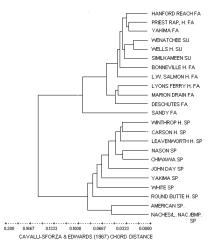
Each node of dendrogram corresponds to a set of objects. Objects associated with two nodes are merged when forming their parent

- Leaves correspond to individual objects
- The root corresponds to all objects

Cities by Distance (blogs.sas.com)



Salmon by Genetic Similarity



Dendrogram, cont.

Note: Dendrogram T represents many possible clusterings, one for each (rooted) subtree.

Methods for selecting a clustering/subtree

- Ad hoc selection (by eye)
- "Cutting" dendrogram at fixed level
- Penalized pruning

Visualization of clustering structure

- Order objects in the same way as the leaves of the dendrogram
- Caveat: many orderings possible

Cars Data

Samples: 32 unique cars

Variables: 11 descriptive variables, including gas mileage, horsepower, number of cylinders, etc.

Freely available in R: data(mtcars)

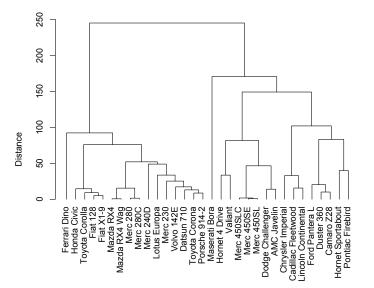
Distance

0

Single Linkage Clustering on Cars data

4 Drive Wag 5 Maserati Bora **Duster 360** Camaro Z28 Chrysler Imperial -leetwood Continental 450SL Dodge Challenger AMC Javelin Valiant Ferrari Dino Honda Civic Foyota Corolla Fiat 128 Fiat X1-9 280 800 142E Toyota Corona 914-2 Ford Pantera L Sportabout Firebirc 450SE Merc 240D otus Europa Ř 280 450SL Merc Datsun Merc Mazda Mazda RX4 Merc /olvo Porsche Merc Merc . Hornet Pontiac Merc Cadillac Hornet -incoln

Average Linkage Clustering on Cars data



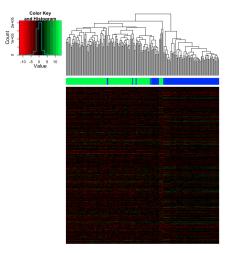
TCGA Data

Gene expression data from The Cancer Genome Atlas (TCGA)

Samples

- 95 Luminal A breast tumors
- 122 Basal breast tumors
- Variables: 2000 randomly selected genes

TCGA Data



- Clustered samples (breast tumor subtype)
- Colors: Luminal A and Basal

Important Questions

What is the right number of clusters?

- What is right measure of distance?
- What is the best clustering method for the data?
- How robust is an observed clustering to small perturbations of the data?
- What significance can be assigned to the clusters?