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Overview

Task: Divide a set of objects (e.g. data points) into a small number of disjoint
groups such that objects in the same group are close together, and objects in
different groups are far apart.



Example (http://rosettacode.org)



Example (https://apandre.files.wordpress.com)



General Setting

Given: Objects x1, . . . , xn in feature space X

I Dissimilarity or distance d(xi, xj) between pairs of objects

Goal: Divide x1, . . . , xn into disjoint groups C1, . . . , Ck, called clusters, s.t.

I Objects in same cluster are close together

I Objects in different clusters are far apart

I Number of clusters k is small

Distinction: Clustering is complete if it partitions X and incomplete if it
partitions only x1, . . . , xn.



Clustering: Areas of Application

Genomics, Biology

Data Compression

Psychology

Computer Science

Social and Political Science



Feature Vectors

Objects x ∈ X typically represented by a feature vector

x = (x1, . . . , xp)
t

where xi is a numerical/categorical measurement of interest:

I xi ∈ R numerical feature

I xi ∈ {a, b, . . .} categorical feature



Examples

Medicine

I Object = patient

I Feature xi = outcome of a diagnostic test on patient

Microarrays (Genomics)

I Object = tissue sample

I Feature xi = measured expression level of gene i in that sample

Data Mining

I Object = consumer

I Features xi = type, location, or amount of recent purchases



Dissimilarities/Distances Between Feature Vectors

Euclidean d(u,v) =
√∑

i(ui − vi)2

Manhattan d(u,v) =
∑

i |ui − vi|

Correlation d(u,v) = 1− corr(u, v)

Hamming d(u,v) =
∑

i I{ui 6= vi}

Mixtures of these



Basic Steps in Clustering

Objects x1, . . . ,xn

⇓

Selection and Extraction of Features

⇓

Dissimilarity matrix D = {d(xi,xj) : 1 ≤ i, j ≤ n}

⇓

Clustering Algorithm

⇓

Partition π = {C1, . . . , Ck} of x1, . . . ,xn.



Some Clustering Methods

Hierarchical: Candidate divisions of data described by a binary tree

I Agglomerative (bottom-up)

I Divisive (top-down)

Iterative: Search for local minimum of simple cost function

I k-means and variants

I partitioning around medioids, self organizing maps

Model-based: Fit feature vectors with a finite mixture model

Spectral: Threshold eigenvectors of Laplacian of Dissimilarity Matrix



Features of Clusters

Features of clusters can affect the performance of different procedures, e.g.,
whether clusters are

I Spherical or elliptical in shape

I Similar in overall variance/spread

I Similar in size (number of points)



The k-Means Algorithm



The k-Means Algorithm

Setting: Objects x1, . . . ,xn ∈ Rp are vectors. Seek k clusters

Approach: Focus on cluster centers

I Find good cluster centers c1, . . . , ck ∈ Rp

I Let cluster Cj = vectors xi closer to cj than other centers cl

Optimization: Select centers to minimize sum of squares (SoS) cost function

Cost(c1, . . . , ck) =

n∑
i=1

min
1≤j≤k

||xi − cj ||2

Problem: Exact solution of optimization problem not feasible. Resort to
iterative methods that find local minimum



Ingredient 1: Centroids

Definition: The centroid of vectors v1, . . . ,vm ∈ Rp is their (vector) average

c =
1

m

m∑
i=1

vi

I Centroid c is the center of mass of the point configuration v1, . . . ,vm

I Centroid c is an optimal representative for v1, . . . ,vm, in the sense that

m∑
i=1

||vi − c||2 ≤
m∑
i=1

||vi − v||2

for every vector v ∈ Rp



Ingredient 2: Nearest Neighbor Partitions

Idea: Given centers c1, . . . , ck ∈ Rp one can partition Rp into corresponding
cells A1, . . . , Ak where

Aj = {x : ||x− cj || ≤ ||x− cs|| all l 6= j}

contains vectors that are closer to center cj than any other center cs (where
we break ties by index)

Definition: Cells {A1, . . . , Ak} called the nearest neighbor or Voronoi
partition of Rp generated by centers c1, . . . , ck

Note: Aj =
⋂

s6=j{x : ||x− cj || ≤ ||x− cl||} is an intersection of half-spaces



The k-Means Algorithm

Initialize: Centers C0 = {a1, . . . ,ak}

Iterate: For m = 1, 2, . . . do:

I Let πm be the nearest neighbor partition of the centers Cm−1.

I Let Cm be the centroids of the vectors in each cell of πm

Stop: When Cost(Cm) is close to Cost(Cm+1)

Key Fact: Cost function decreases at each iteration of algorithm. Recall

Cost(c1, . . . , ck) =
n∑

i=1

min
1≤j≤k

||xi − cj ||2



k-means (Yu-Zhong Chen, ResearchGate)



The k-Means Algorithm

In practice

I Choose multiple initial sets of representative vectors C0 = {c1, . . . , ck}

I Run the iterative k-means procedure

I Choose the partition associated with the smallest final cost

Example: http://onmyphd.com/?p=k-means.clustering.

K-Means tends to perform best when clusters are spherical, similar in
variance and size

http://onmyphd.com/?p=k-means.clustering


3-means (onmyphd.com)



2-Means (onmyphd.com)



Agglomerative Clustering



Binary Trees

1. Distinguished node called the root with zero or two children but no parent

2. Every other node has one parent and zero or two children

I Nodes with no children are called leaves

I Nodes with two children are called internal

Note: Tree usually drawn upside-down, with root node at the top



Agglomerative Clustering

Stage 0: Assign each object xi to its own cluster

Stage k:

I Find the two closest clusters at stage k − 1

I Combine them into a single cluster

Stop: When all objects xi belong to a single cluster

Output: Binary tree T called a dendrogram

Note: Closeness of clusters C,C′ can be measured in different ways



Distances Between Clusters

Single Linkage
ds(C,C

′) = min
xi∈C, xj∈C′

d(xi, xj)

Average Linkage

da(C,C
′) =

1

|C| |C′|
∑

xi∈C, xj∈C′

d(xi, xj)

Total Linkage
dt(C,C

′) = max
xi∈C, xj∈C′

d(xi, xj)



Dendrogram

Binary tree associated with the agglomerative clustering procedure: it is a
graphical record of the clustering process

Initialize: Each singleton cluster {xi} corresponds to a node at height 0

Update: If two clusters C,C′ are combined, their respective nodes are joined
to a parent node at height d(C,C′)

Each node of dendrogram corresponds to a set of objects. Objects
associated with two nodes are merged when forming their parent

I Leaves correspond to individual objects

I The root corresponds to all objects



Cities by Distance (blogs.sas.com)



Salmon by Genetic Similarity



Dendrogram, cont.

Note: Dendrogram T represents many possible clusterings, one for each
(rooted) subtree.

Methods for selecting a clustering/subtree

I Ad hoc selection (by eye)

I “Cutting” dendrogram at fixed level

I Penalized pruning

Visualization of clustering structure

I Order objects in the same way as the leaves of the dendrogram

I Caveat: many orderings possible



Cars Data

I Samples: 32 unique cars

I Variables: 11 descriptive variables, including gas mileage, horsepower,
number of cylinders, etc.

I Freely available in R: data(mtcars)
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TCGA Data

Gene expression data from The Cancer Genome Atlas (TCGA)

I Samples

I 95 Luminal A breast tumors

I 122 Basal breast tumors

I Variables: 2000 randomly selected genes



TCGA Data

I Clustered samples (breast tumor subtype)
I Colors: Luminal A and Basal



Important Questions

I What is the right number of clusters?

I What is right measure of distance?

I What is the best clustering method for the data?

I How robust is an observed clustering to small perturbations of the data?

I What significance can be assigned to the clusters?


