Machine Learning, STOR 565
 Clustering: Overview and Basic Methods

Andrew Nobel

February, 2021

Overview

Task: Divide a set of objects (e.g. data points) into a small number of disjoint groups such that objects in the same group are close together, and objects in different groups are far apart.

Example (http://rosettacode.org)

Example (https://apandre.files.wordpress.com)

How many clusters?

Two Clusters

Six Clusters

Four Clusters

General Setting

Given: Objects x_{1}, \ldots, x_{n} in feature space \mathcal{X}

- Dissimilarity or distance $d\left(x_{i}, x_{j}\right)$ between pairs of objects

Goal: Divide x_{1}, \ldots, x_{n} into disjoint groups C_{1}, \ldots, C_{k}, called clusters, s.t.

- Objects in same cluster are close together
- Objects in different clusters are far apart
- Number of clusters k is small

Distinction: Clustering is complete if it partitions \mathcal{X} and incomplete if it partitions only x_{1}, \ldots, x_{n}.

Clustering: Areas of Application

Genomics, Biology
Data Compression

Psychology
Computer Science

Social and Political Science

Feature Vectors

Objects $\mathrm{x} \in \mathcal{X}$ typically represented by a feature vector

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{t}
$$

where x_{i} is a numerical/categorical measurement of interest:

- $x_{i} \in \mathbb{R}$ numerical feature
- $x_{i} \in\{a, b, \ldots\}$ categorical feature

Examples

Medicine

- Object $=$ patient
- Feature $x_{i}=$ outcome of a diagnostic test on patient

Microarrays (Genomics)

- Object $=$ tissue sample
- Feature $x_{i}=$ measured expression level of gene i in that sample

Data Mining

- Object = consumer
- Features $x_{i}=$ type, location, or amount of recent purchases

Dissimilarities/Distances Between Feature Vectors

Euclidean $d(\mathbf{u}, \mathbf{v})=\sqrt{\sum_{i}\left(u_{i}-v_{i}\right)^{2}}$

Manhattan $d(\mathbf{u}, \mathbf{v})=\sum_{i}\left|u_{i}-v_{i}\right|$

Correlation $d(\mathbf{u}, \mathbf{v})=1-\operatorname{corr}(u, v)$

Hamming $d(\mathbf{u}, \mathbf{v})=\sum_{i} I\left\{u_{i} \neq v_{i}\right\}$

Mixtures of these

Basic Steps in Clustering

$$
\begin{gathered}
\text { Objects } \mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \\
\Downarrow \\
\text { Selection and Extraction of Features } \\
\Downarrow \\
\text { Dissimilarity matrix } D=\left\{d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right): 1 \leq i, j \leq n\right\} \\
\Downarrow \\
\text { Clustering Algorithm } \\
\Downarrow \\
\text { Partition } \pi=\left\{C_{1}, \ldots, C_{k}\right\} \text { of } \mathbf{x}_{1}, \ldots, \mathbf{x}_{n} .
\end{gathered}
$$

Some Clustering Methods

Hierarchical: Candidate divisions of data described by a binary tree

- Agglomerative (bottom-up)
- Divisive (top-down)

Iterative: Search for local minimum of simple cost function

- k-means and variants
- partitioning around medioids, self organizing maps

Model-based: Fit feature vectors with a finite mixture model

Spectral: Threshold eigenvectors of Laplacian of Dissimilarity Matrix

Features of Clusters

Features of clusters can affect the performance of different procedures, e.g., whether clusters are

- Spherical or elliptical in shape
- Similar in overall variance/spread
- Similar in size (number of points)

The k-Means Algorithm

The k-Means Algorithm

Setting: Objects $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ are vectors. Seek k clusters
Approach: Focus on cluster centers

- Find good cluster centers $\mathbf{c}_{1}, \ldots, \mathbf{c}_{k} \in \mathbb{R}^{p}$
- Let cluster $C_{j}=$ vectors \mathbf{x}_{i} closer to \mathbf{c}_{j} than other centers \mathbf{c}_{l}

Optimization: Select centers to minimize sum of squares (SoS) cost function

$$
\operatorname{Cost}\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right)=\sum_{i=1}^{n} \min _{1 \leq j \leq k}\left\|\mathbf{x}_{i}-\mathbf{c}_{j}\right\|^{2}
$$

Problem: Exact solution of optimization problem not feasible. Resort to iterative methods that find local minimum

Ingredient 1: Centroids

Definition: The centroid of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{p}$ is their (vector) average

$$
\mathbf{c}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{v}_{i}
$$

- Centroid \mathbf{c} is the center of mass of the point configuration $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$
- Centroid \mathbf{c} is an optimal representative for $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$, in the sense that

$$
\sum_{i=1}^{m}\left\|\mathbf{v}_{i}-\mathbf{c}\right\|^{2} \leq \sum_{i=1}^{m}\left\|\mathbf{v}_{i}-\mathbf{v}\right\|^{2}
$$

for every vector $\mathbf{v} \in \mathbb{R}^{p}$

Ingredient 2: Nearest Neighbor Partitions

Idea: Given centers $\mathbf{c}_{1}, \ldots, \mathbf{c}_{k} \in \mathbb{R}^{p}$ one can partition \mathbb{R}^{p} into corresponding cells A_{1}, \ldots, A_{k} where

$$
A_{j}=\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{c}_{j}\right\| \leq\left\|\mathbf{x}-\mathbf{c}_{s}\right\| \text { all } l \neq j\right\}
$$

contains vectors that are closer to center \mathbf{c}_{j} than any other center \mathbf{c}_{s} (where we break ties by index)

Definition: Cells $\left\{A_{1}, \ldots, A_{k}\right\}$ called the nearest neighbor or Voronoi partition of \mathbb{R}^{p} generated by centers $\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}$

Note: $A_{j}=\bigcap_{s \neq j}\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{c}_{j}\right\| \leq\left\|\mathbf{x}-\mathbf{c}_{l}\right\|\right\}$ is an intersection of half-spaces

The k-Means Algorithm

Initialize: Centers $\mathcal{C}_{0}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$

Iterate: For $m=1,2, \ldots$ do:

- Let π_{m} be the nearest neighbor partition of the centers \mathcal{C}_{m-1}.
- Let \mathcal{C}_{m} be the centroids of the vectors in each cell of π_{m}

Stop: When $\operatorname{Cost}\left(\mathcal{C}_{m}\right)$ is close to $\operatorname{Cost}\left(\mathcal{C}_{m+1}\right)$

Key Fact: Cost function decreases at each iteration of algorithm. Recall

$$
\operatorname{Cost}\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right)=\sum_{i=1}^{n} \min _{1 \leq j \leq k}\left\|\mathbf{x}_{i}-\mathbf{c}_{j}\right\|^{2}
$$

k-means (Yu-Zhong Chen, ResearchGate)

The k-Means Algorithm

In practice

- Choose multiple initial sets of representative vectors $\mathcal{C}_{0}=\left\{c_{1}, \ldots, c_{k}\right\}$
- Run the iterative k -means procedure
- Choose the partition associated with the smallest final cost

Example: http:// onmyphd.com/?p=k-means.clustering.

K-Means tends to perform best when clusters are spherical, similar in variance and size

3-means (onmyphd.com)

2-Means (onmyphd.com)

Agglomerative Clustering

Binary Trees

1. Distinguished node called the root with zero or two children but no parent
2. Every other node has one parent and zero or two children

- Nodes with no children are called leaves
- Nodes with two children are called internal

Note: Tree usually drawn upside-down, with root node at the top

Agglomerative Clustering

Stage 0: Assign each object x_{i} to its own cluster

Stage k:

- Find the two closest clusters at stage $k-1$
- Combine them into a single cluster

Stop: When all objects x_{i} belong to a single cluster
Output: Binary tree T called a dendrogram

Note: Closeness of clusters C, C^{\prime} can be measured in different ways

Distances Between Clusters

Single Linkage

$$
d_{s}\left(C, C^{\prime}\right)=\min _{x_{i} \in C, x_{j} \in C^{\prime}} d\left(x_{i}, x_{j}\right)
$$

Average Linkage

$$
d_{a}\left(C, C^{\prime}\right)=\frac{1}{|C|\left|C^{\prime}\right|} \sum_{x_{i} \in C, x_{j} \in C^{\prime}} d\left(x_{i}, x_{j}\right)
$$

Total Linkage

$$
d_{t}\left(C, C^{\prime}\right)=\max _{x_{i} \in C, x_{j} \in C^{\prime}} d\left(x_{i}, x_{j}\right)
$$

Dendrogram

Binary tree associated with the agglomerative clustering procedure: it is a graphical record of the clustering process

Initialize: Each singleton cluster $\left\{x_{i}\right\}$ corresponds to a node at height 0

Update: If two clusters C, C^{\prime} are combined, their respective nodes are joined to a parent node at height $d\left(C, C^{\prime}\right)$

Each node of dendrogram corresponds to a set of objects. Objects associated with two nodes are merged when forming their parent

- Leaves correspond to individual objects
- The root corresponds to all objects

Cities by Distance (blogs.sas.com)

Salmon by Genetic Similarity

Dendrogram, cont.

Note: Dendrogram T represents many possible clusterings, one for each (rooted) subtree.

Methods for selecting a clustering/subtree

- Ad hoc selection (by eye)
- "Cutting" dendrogram at fixed level
- Penalized pruning

Visualization of clustering structure

- Order objects in the same way as the leaves of the dendrogram
- Caveat: many orderings possible

Cars Data

- Samples: 32 unique cars
- Variables: 11 descriptive variables, including gas mileage, horsepower, number of cylinders, etc.
- Freely available in R: data(mtcars)

Single Linkage Clustering on Cars data

Average Linkage Clustering on Cars data

TCGA Data

Gene expression data from The Cancer Genome Atlas (TCGA)

- Samples
- 95 Luminal A breast tumors
- 122 Basal breast tumors
- Variables: 2000 randomly selected genes

TCGA Data

- Clustered samples (breast tumor subtype)
- Colors: Luminal A and Basal

Important Questions

- What is the right number of clusters?
- What is right measure of distance?
- What is the best clustering method for the data?
- How robust is an observed clustering to small perturbations of the data?
- What significance can be assigned to the clusters?

