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Review of the Univariate Case



Variance and Covariance

Recall: The variance of a random variable X is

Var(X) = E(X − EX)2 = EX2 − (EX)2

and the covariance of random variables X, Y is

Cov(X,Y ) = E[(X − EX)(Y − EY )] = E(XY )− (EX)(EY )

Basic Properties

I Cov(aX + b, cY + d) = acCov(X,Y )

I Var(X) = Cov(X,X)

I Var(X + Y ) = Var(X) + 2 Cov(X,Y ) + Var(Y )



Univariate Normal

Recall: Given µ ∈ R and σ2 > 0 the N (µ, σ2) distribution has the
(bell-shaped) density function

f(x) =
1√
2πσ

exp

{
− (x− µ)2

2σ2

}
−∞ < x <∞

I µ ∈ R and σ > 0 called parameters; fully determine f

I standard normal is special case µ = 0 and σ2 = 1

Notation: If X has density f above, write X ∼ N (µ, σ2)



Univariate Normal

Basic Properties: If X ∼ N (µ, σ2) then

I EX = µ and Var(X) = σ2

I X
d
= σZ + µ where Z ∼ N (0, 1)

I aX + b ∼ N (aµ+ b, a2σ2)

Fact: If X ∼ N (µ, σ2) and Y ∼ N (η, τ2) are independent then

X + Y ∼ N (µ+ η, σ2 + τ2)



Random Vectors



Random Vectors

Definition: A d-dimensional random vector is a vector of d random variables

X = (X1, · · · , Xd)t ∈ Rd

The expected value of X is

E(X) = (EX1, · · · ,EXd)t ∈ Rd

Basic Properties: Let a ∈ R, v ∈ Rd, and A ∈ Rk×d be non-random

I E(X + Y) = E(X) + E(Y)

I E(aX + v) = aE(X) + v

I AX ∈ Rk is a random vector and E(AX) = AE(X)



Variance Matrix of a Random Vector

Definition: The covariance matrix of a d-dimensional random vector X is

Var(X) = E[(X− E(X))(X− E(X))t] ∈ Rd×d

Basic Properties: Let v ∈ Rd and A ∈ Rk×d be non-random

I Var(X) is symmetric and non-negative definite

I Var(X)ij = Cov(Xi, Xj)

I Var(X + v) = Var(X)

I Var(AX) = AVar(X)At (a k × k matrix)



The Multivariate Normal



Multivariate Normal

Definition: A random vector X ∈ Rd is multinormal if for each v ∈ Rd the
random variable 〈X, v〉 is univariate normal

Fact: If X = (X1, . . . , Xd)t is multinormal then X1, . . . , Xd are univariate
normal. However, the converse is not true.

Notation: If X ∈ Rd is multinormal with E(X) = µ and Var(X) = Σ write

X ∼ Nd(µ,Σ)

Write X ∼ Nd if X ∈ Rd is multinormal, mean variance unspecified



Standard Multinormal

Example: Let Z = (Z1, . . . , Zd)t where Z1, . . . , Zd are iid N (0, 1). Then

E(Z) = 0 and Var(Z) = Id

Moreover, Z is multinormal. Thus we have Z ∼ N (0, Id).

Terminology: Z is called the standard d-dimensional multinormal



Singular Multinormal

Example: Let Z be iid N (0, 1) and define Y = (Z,Z)t. Then

E(Y ) =

[
0
0

]
and Var(Y ) =

[
1 1
1 1

]

Moreover, Y is multinormal. Thus we can write

Y ∼ N
([

0
0

]
,

[
1 1
1 1

])



Basic Properties of Multivariate Normal

Fact: Suppose that X = (X1, . . . , Xd)t ∼ Nd(µ,Σ)

I If A ∈ Rk×d and v ∈ Rk then Y = AX + v ∼ Nk(Aµ+ v,AΣAt)

I Xi ⊥⊥ Xj iff Cov(Xi, Xj) = 0

I If Y ∼ Nd(µ′,Σ′) is independent of X then

X + Y ∼ Nd(µ+ µ′,Σ + Σ′)



Multivariate Normal Representation Theorem

Theorem: If X is multinormal with mean µ and variance Σ then

X
d
= Σ1/2Z + µ

I d
= means equality in distribution

I Σ1/2 ≥ 0 is such that Σ1/2Σ1/2 = Σ

I Z is a standard multinormal, has iid N (0, 1) components

Upshot: Any multinormal random vector can be expressed as an affine
transformation of a standard multinormal



Multivariate Normal Density

Note: Density of N (µ, σ2) can be written in the form

g(v) =
1

(2π)1/2 σ
exp

{
−1

2
(v − µ)(σ2)−1(v − µ)

}

Fact: If X ∼ Nd(µ,Σ) with Σ > 0 then X has density

f(x) =
1

(2π)d/2 det(Σ)1/2
exp

{
−1

2
(x− µ)t Σ−1 (x− µ)

}

Proof: Note Σ > 0 implies det(Σ) > 0 and Σ−1 exists. Applying change of
variables theorem to representation X

d
= Σ1/2Z + µ gives density f(x).



Density of Standard Multinormal

Example: Standard multinormal vector Z ∼ Nd(0, I) has density

f(z) =
1

(2π)d/2
exp

{
−1

2
ztz

}
=

d∏
i=1

1

(2π)1/2
exp

{
−z

2
i

2

}

Note: Here z = (z1, . . . , zd)t. Product form follows as components of Z are
independent standard normals.



Bivariate Normal Density

Ex: Random vector (X,Y )t ∼ N2 with Corr(X,Y ) = ρ has joint density

f(x, y) =
1

2πσXσY

√
1− ρ2

×

exp

{
− 1

2(1− ρ2)

[
(x− µX)2

σ2
X

− 2ρ
(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2
Y

]}

I Here µX = EX, µY = EY , σ2
X = Var(X), σ2

Y = Var(Y )

I Density is defined only if −1 < ρ < 1

I X and Y are independent if and only if ρ = 0


