Machine Learning, STOR 565

Random Vectors and the Multivariate Normal

Andrew Nobel

September, 2021



Review of the Univariate Case



Variance and Covariance

Recall: The variance of a random variable X is
Var(X) = E(X —EX)? = EX? — (EX)?
and the covariance of random variables X, Y is

Cov(X,Y) = E[(X —EX)(Y —EY)] = E(XY) — (EX)(EY)

Basic Properties
» Cov(aX 4+ b,cY +d) = acCov(X,Y)
> Var(X) = Cov(X, X)

» Var(X +Y) = Var(X) +2Cov(X,Y) + Var(Y)



Univariate Normal

Recall: Given . € R and o > 0 the NV (i, 0%) distribution has the
(bell-shaped) density function

f(@) = ﬁeXP{*%} — 00 < < 00

> 1 € R and o > 0 called parameters; fully determine f

» standard normal is special case = 0 and o = 1

Notation: If X has density f above, write X ~ N (p, 0%)



Univariate Normal

Basic Properties: If X ~ A(p, o) then
> EX = pand Var(X) = o2
» X £ 57+ puwhere Z ~ N(0,1)

> aX +b~ N(ap+b,a’0?)

Fact: If X ~ N (u,0%) and Y ~ N (n, 7%) are independent then

X+Y ~N(p+n,0°+7°)



Random Vectors



Random Vectors

Definition: A d-dimensional random vector is a vector of d random variables
X = (X, -, Xq) € R
The expected value of X is

E(X) = (EX1,--- ,EX,)" € R

Basic Properties: Let a € R, v € R¢, and A € R**? be non-random
> E(X +Y) = E(X) +E(Y)
> E(aX+v)=aEX)+v

> AX € RF is a random vector and E(AX) = AE(X)



Variance Matrix of a Random Vector

Definition: The covariance matrix of a d-dimensional random vector X is

Var(X) = E[(X — E(X))(X — E(X))] € R**¢

Basic Properties: Let v € R? and A € R¥*? be non-random
» Var(X) is symmetric and non-negative definite
» Var(X);; = Cov(X;, X;)
» Var(X + v) = Var(X)

> Var(AX) = A Var(X) A" (ak x k matrix)



The Multivariate Normal



Multivariate Normal

Definition: A random vector X € R? is multinormal if for each v € R? the
random variable (X, v) is univariate normal

Fact: If X = (X1,..., X4)" is multinormal then X1,..., X, are univariate
normal. However, the converse is not true.

Notation: If X € R? is multinormal with E(X) = x and Var(X) = ¥ write
X ~ Na(p, %)

Write X ~ N if X € R? is multinormal, mean variance unspecified



Standard Multinormal

Example: Let Z = (Z1,..., Z4)" where Z1, ..., Z, are iid N'(0,1). Then
E(Z) = 0 and Var(Z) = I,

Moreover, Z is multinormal. Thus we have Z ~ N (0, 1,).

Terminology: Z is called the standard d-dimensional multinormal



Singular Multinormal

Example: Let Z be iid (0, 1) and define Y = (Z, Z)*. Then

]E(Y):[g} andVaur(Y):[1 1}

Moreover, Y is multinormal. Thus we can write

(IR



Basic Properties of Multivariate Normal

Fact: Suppose that X = (X1, ..., Xa)" ~ Na(p, X)

> IfAcR*>andv e RFthen Y = AX +v ~ N (Ap+ v, ATAY)

> X, Il X, iff Cov(X;,X;)=0

> If Y ~ Na(p',X') is independent of X then

X+Y ~ Na(p+p/,E+3)



Multivariate Normal Representation Theorem

Theorem: If X is multinormal with mean ¢ and variance X then

d

X £ Y274,

» < means equality in distribution
> %!/2 > (is such that ©'/2x1/2 = %

> Z is a standard multinormal, has iid A/(0, 1) components

Upshot: Any multinormal random vector can be expressed as an affine
transformation of a standard multinormal



Multivariate Normal Density

Note: Density of A'(i, o%) can be written in the form

50) = Gy P {50 -0 0= 0}

Fact: If X ~ Ny(u, Y) with © > 0 then X has density

1

1 t 1
flz) = WGXP{—g(‘W—H) DY (SU—H)}

Proof: Note & > 0 implies det(X) > 0 and X~ exists. Applying change of
variables theorem to representation X = x'/2Z + 1, gives density f(z).



Density of Standard Multinormal

Example: Standard multinormal vector Z ~ A,4(0, I) has density

1) = ﬁexp{ *“} U e"p{‘%?}

Note: Here z = (21, ..., z4)". Product form follows as components of Z are
independent standard normals.



Bivariate Normal Density

Ex: Random vector (X, Y)* ~ N2 with Corr(X,Y) = p has joint density

2 2
0% ox0y oy

1 [(w—MX)Q_2p($—ux)(y—lw)+(y—lw)T}

> Here ux = EX, uy = EY, 0% = Var(X), 0% = Var(Y)
» Density is definedonly if -1 < p < 1

» X and Y are independent if and only if p =0



