Machine Learning, STOR 565
 Random Vectors and the Multivariate Normal

Andrew Nobel

September, 2021

Review of the Univariate Case

Variance and Covariance

Recall: The variance of a random variable X is

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}
$$

and the covariance of random variables X, Y is

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]=\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y)
$$

Basic Properties

- $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$
- $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)$

Univariate Normal

Recall: Given $\mu \in \mathbb{R}$ and $\sigma^{2}>0$ the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution has the (bell-shaped) density function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} \quad-\infty<x<\infty
$$

- $\mu \in \mathbb{R}$ and $\sigma>0$ called parameters; fully determine f
- standard normal is special case $\mu=0$ and $\sigma^{2}=1$

Notation: If X has density f above, write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

Univariate Normal

Basic Properties: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then

- $\mathbb{E} X=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$
- $X \stackrel{\text { d }}{=} \sigma Z+\mu$ where $Z \sim \mathcal{N}(0,1)$
- $a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Fact: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Y \sim \mathcal{N}\left(\eta, \tau^{2}\right)$ are independent then

$$
X+Y \sim \mathcal{N}\left(\mu+\eta, \sigma^{2}+\tau^{2}\right)
$$

Random Vectors

Random Vectors

Definition: A d-dimensional random vector is a vector of d random variables

$$
\mathbf{X}=\left(X_{1}, \cdots, X_{d}\right)^{t} \in \mathbb{R}^{d}
$$

The expected value of X is

$$
\mathbb{E}(\mathbf{X})=\left(\mathbb{E} X_{1}, \cdots, \mathbb{E} X_{d}\right)^{t} \in \mathbb{R}^{d}
$$

Basic Properties: Let $a \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^{d}$, and $\mathbf{A} \in \mathbb{R}^{k \times d}$ be non-random

- $\mathbb{E}(\mathbf{X}+\mathbf{Y})=\mathbb{E}(\mathbf{X})+\mathbb{E}(\mathbf{Y})$
- $\mathbb{E}(a \mathbf{X}+\mathbf{v})=a \mathbb{E}(\mathbf{X})+\mathbf{v}$
- $\mathbf{A X} \in \mathbb{R}^{k}$ is a random vector and $\mathbb{E}(\mathbf{A X})=\mathbf{A} \mathbb{E}(\mathbf{X})$

Variance Matrix of a Random Vector

Definition: The covariance matrix of a d-dimensional random vector \mathbf{X} is

$$
\operatorname{Var}(\mathbf{X})=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}(\mathbf{X}))(\mathbf{X}-\mathbb{E}(\mathbf{X}))^{t}\right] \in \mathbb{R}^{d \times d}
$$

Basic Properties: Let $\mathbf{v} \in \mathbb{R}^{d}$ and $\mathbf{A} \in \mathbb{R}^{k \times d}$ be non-random

- $\operatorname{Var}(\mathbf{X})$ is symmetric and non-negative definite
- $\operatorname{Var}(\mathbf{X})_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$
- $\operatorname{Var}(\mathbf{X}+\mathbf{v})=\operatorname{Var}(\mathbf{X})$
- $\operatorname{Var}(\mathbf{A X})=\mathbf{A} \operatorname{Var}(\mathbf{X}) \mathbf{A}^{t} \quad(\mathrm{a} k \times k$ matrix $)$

The Multivariate Normal

Multivariate Normal

Definition: A random vector $\mathbf{X} \in \mathbb{R}^{d}$ is multinormal if for each $v \in \mathbb{R}^{d}$ the random variable $\langle\mathbf{X}, v\rangle$ is univariate normal

Fact: If $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)^{t}$ is multinormal then X_{1}, \ldots, X_{d} are univariate normal. However, the converse is not true.

Notation: If $\mathbf{X} \in \mathbb{R}^{d}$ is multinormal with $\mathbb{E}(\mathbf{X})=\mu$ and $\operatorname{Var}(\mathbf{X})=\Sigma$ write

$$
\mathbf{X} \sim \mathcal{N}_{d}(\mu, \Sigma)
$$

Write $\mathbf{X} \sim \mathcal{N}_{d}$ if $\mathbf{X} \in \mathbb{R}^{d}$ is multinormal, mean variance unspecified

Standard Multinormal

Example: Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{d}\right)^{t}$ where Z_{1}, \ldots, Z_{d} are iid $\mathcal{N}(0,1)$. Then

$$
\mathbb{E}(\mathbf{Z})=\mathbf{0} \text { and } \operatorname{Var}(\mathbf{Z})=\mathbf{I}_{d}
$$

Moreover, \mathbf{Z} is multinormal. Thus we have $\mathbf{Z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$.

Terminology: \mathbf{Z} is called the standard d-dimensional multinormal

Singular Multinormal

Example: Let Z be iid $\mathcal{N}(0,1)$ and define $Y=(Z, Z)^{t}$. Then

$$
\mathbb{E}(Y)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { and } \operatorname{Var}(Y)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Moreover, Y is multinormal. Thus we can write

$$
Y \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)
$$

Basic Properties of Multivariate Normal

Fact: Suppose that $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)^{t} \sim \mathcal{N}_{d}(\mu, \Sigma)$

- If $\mathbf{A} \in \mathbb{R}^{k \times d}$ and $\mathbf{v} \in \mathbb{R}^{k}$ then $\mathbf{Y}=\mathbf{A X}+\mathbf{v} \sim \mathcal{N}_{k}\left(\mathbf{A} \mu+\mathbf{v}, \mathbf{A} \Sigma \mathbf{A}^{t}\right)$
- $X_{i} \Perp X_{j}$ iff $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$
- If $\mathbf{Y} \sim \mathcal{N}_{d}\left(\mu^{\prime}, \Sigma^{\prime}\right)$ is independent of \mathbf{X} then

$$
\mathbf{X}+\mathbf{Y} \sim \mathcal{N}_{d}\left(\mu+\mu^{\prime}, \Sigma+\Sigma^{\prime}\right)
$$

Multivariate Normal Representation Theorem

Theorem: If \mathbf{X} is multinormal with mean μ and variance Σ then

$$
\mathbf{X} \stackrel{d}{=} \Sigma^{1 / 2} \mathbf{Z}+\mu
$$

- $\stackrel{d}{=}$ means equality in distribution
- $\Sigma^{1 / 2} \geq 0$ is such that $\Sigma^{1 / 2} \Sigma^{1 / 2}=\Sigma$
- \mathbf{Z} is a standard multinormal, has iid $\mathcal{N}(0,1)$ components

Upshot: Any multinormal random vector can be expressed as an affine transformation of a standard multinormal

Multivariate Normal Density

Note: Density of $\mathcal{N}\left(\mu, \sigma^{2}\right)$ can be written in the form

$$
g(v)=\frac{1}{(2 \pi)^{1 / 2} \sigma} \exp \left\{-\frac{1}{2}(v-\mu)\left(\sigma^{2}\right)^{-1}(v-\mu)\right\}
$$

Fact: If $\mathbf{X} \sim \mathcal{N}_{d}(\mu, \Sigma)$ with $\Sigma>0$ then \mathbf{X} has density

$$
f(x)=\frac{1}{(2 \pi)^{d / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{t} \Sigma^{-1}(x-\mu)\right\}
$$

Proof: Note $\Sigma>0$ implies $\operatorname{det}(\Sigma)>0$ and Σ^{-1} exists. Applying change of variables theorem to representation $\mathbf{X} \stackrel{d}{=} \Sigma^{1 / 2} \mathbf{Z}+\mu$ gives density $f(x)$.

Density of Standard Multinormal

Example: Standard multinormal vector $\mathbf{Z} \sim \mathcal{N}_{d}(0, I)$ has density

$$
f(z)=\frac{1}{(2 \pi)^{d / 2}} \exp \left\{-\frac{1}{2} z^{t} z\right\}=\prod_{i=1}^{d} \frac{1}{(2 \pi)^{1 / 2}} \exp \left\{-\frac{z_{i}^{2}}{2}\right\}
$$

Note: Here $z=\left(z_{1}, \ldots, z_{d}\right)^{t}$. Product form follows as components of \mathbf{Z} are independent standard normals.

Bivariate Normal Density

Ex: Random vector $(X, Y)^{t} \sim \mathcal{N}_{2}$ with $\operatorname{Corr}(X, Y)=\rho$ has joint density

$$
\begin{aligned}
& f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \times \\
& \quad \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}-2 \rho \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right]\right\}
\end{aligned}
$$

- Here $\mu_{X}=\mathbb{E} X, \mu_{Y}=\mathbb{E} Y, \sigma_{X}^{2}=\operatorname{Var}(X), \sigma_{Y}^{2}=\operatorname{Var}(Y)$
- Density is defined only if $-1<\rho<1$
- X and Y are independent if and only if $\rho=0$

