Machine Learning, STOR 565
 The Singular Value Decomposition

Andrew Nobel

January, 2021

Preliminaries

Fact: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is any matrix then

- $\mathbf{A A}^{t} \in \mathbb{R}^{m \times m}$ is symmetric, non-negative definite
- $\mathbf{A}^{t} \mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, non-negative definite
- $r:=\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{t} \mathbf{A}\right)=\operatorname{rank}\left(\mathbf{A A}^{t}\right) \leq \min (m, n)$
- $\mathbf{A A}^{t}$ and $\mathbf{A}^{t} \mathbf{A}$ have same non-zero eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$

The Singular Value Decomposition (SVD)

Theorem (SVD): Any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be written in the form

$$
\mathbf{A}=\mathbf{U D V}^{t}
$$

- $\mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{m}\right] \in \mathbb{R}^{m \times m}$ is orthogonal. Its columns \mathbf{u}_{i} are the (orthonormal) eigenvectors of $\mathbf{A} \mathbf{A}^{t}$, called left singular vectors
- $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n \times n}$ is orthogonal. Its columns \mathbf{v}_{i} are the (orthonormal) eigenvectors of $\mathbf{A}^{t} \mathbf{A}$, called right singular vectors
- $\mathbf{D}=\operatorname{diag}\left(\sigma_{1}(\mathbf{A}), \ldots, \sigma_{r}(\mathbf{A})\right)$ is an $m \times n$ diagonal matrix. Here

$$
\sigma_{1}(\mathbf{A}) \geq \ldots \geq \sigma_{r}(\mathbf{A}) \geq 0 \text { with } \sigma_{i}(\mathbf{A})=\sqrt{\lambda_{i}\left(\mathbf{A} \mathbf{A}^{t}\right)}
$$

are called the singular values of \mathbf{A}, and $r=\operatorname{rank}(\mathbf{A})$

The SVD, cont.

By expanding the expression $\mathbf{A}=\mathbf{U D V}^{t}$ we find that SVD can be written in the equivalent form

$$
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i}(\mathbf{A}) \mathbf{u}_{i} \mathbf{v}_{i}^{t}
$$

- A is a weighted sum of r rank- 1 matrices $\mathbf{u}_{i} \mathbf{v}_{i}^{t}$ with $\left\|\mathbf{u}_{i} \mathbf{v}_{i}^{t}\right\|=1$
- $\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{r}\left\|\sigma_{i}(\mathbf{A}) \mathbf{u}_{i} \mathbf{v}_{i}^{t}\right\|^{2}=\sum_{i=1}^{r} \sigma_{i}(\mathbf{A})^{2}$
- $\sigma_{i}(\mathbf{A}) \geq \sigma_{i+1}(\mathbf{A}) \geq 0$ so terms in sum are ordered by weight

SVD and Low-Rank Matrix Approximation

Idea: First d terms in the SVD give a rank d approximation of \mathbf{A}

$$
\hat{\mathbf{A}}_{d}:=\sum_{i=1}^{d} \sigma_{i}(\mathbf{A}) \mathbf{u}_{i} \mathbf{v}_{i}^{t}, \quad d=1, \ldots, r
$$

- $\left\|\hat{\mathbf{A}}_{d}\right\|^{2}=\sum_{i=1}^{d} \sigma_{i}(\mathbf{A})^{2}$
- $\left\|\mathbf{A}-\hat{\mathbf{A}}_{d}\right\|^{2}=\sum_{i=d+1}^{r} \sigma_{i}(\mathbf{A})^{2}$
- $\hat{\mathbf{A}}_{d}$ minimizes $\|\mathbf{A}-\mathbf{B}\|$ over all rank d matrices \mathbf{B}
- Proportion of variation explained by rank d approximation \mathbf{A}_{d} is

$$
\operatorname{PVE}\left(\hat{\mathbf{A}}_{d}\right)=\frac{\left\|\hat{\mathbf{A}}_{d}\right\|^{2}}{\|\mathbf{A}\|^{2}}=\frac{\sum_{i=1}^{d} \sigma_{i}(\mathbf{A})^{2}}{\sum_{i=1}^{r} \sigma_{i}(\mathbf{A})^{2}}
$$

Example of SVD on Image Data

- Matrix: $\mathbf{A}=458 \times 685$ matrix of pixel intensities
- Question: Will low rank approximation $\hat{\mathbf{A}}_{d}$ look good?

Proportion of Variation Explained

Image Reconstruction

$\mathrm{dim}=5, \mathrm{PVE}=84.4$

$\operatorname{dim}=10, \mathrm{PVE}=90.4$

Image Reconstruction: Ohio Theater Photo (H. Sugimoto)

SVD of Ohio Theater Photo (H. Sugimoto)

$\mathrm{dim}=1, \mathrm{PVE}=77.8$

$\operatorname{dim}=25, \mathrm{PVE}=93.2$

$\operatorname{dim}=5, \mathrm{PVE}=87.3$

$\operatorname{dim}=10, \mathrm{PVE}=90.3$

$\operatorname{dim}=100, \mathrm{PVE}=97.7$

