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Low-Dimensional Approximation of High-Dimensional Data



General Setting and Goals

Given: Data set x1, . . . ,xn ∈ Rp centered so that
∑

i xi = 0

Goal: Find a subspace V of Rp such that

I dim(V ) much less than p and n

I V captures most of the variability in the data points xi

Fitting criterion: Sum of squared distance between samples and projections

Err({xi}, V ) =

n∑
i=1

‖xi − projV (xi)‖2



Overview of PCA

Step 1: Use samples x1, . . . ,xn to construct

I Data matrix X ∈ Rn×p with rows xt
1, . . . ,x

t
n

I Sample covariance matrix S = n−1 XtX ∈ Rp×p

Step 2: Eigenanalysis of S

I Principal component directions are eigenvectors v1, . . . ,vp of S ordered
by eigenvalues λ1 ≥ · · · ≥ λp ≥ 0

I Vk = span(v1, . . . ,vk) minimizes Err({xi}, V ) over all k-dim subspaces

I Err({xi}, Vk) =
∑p

j=k+1 λj



Data Matrix and Sample Covariance Matrix



Data Matrix

Given: Dataset x1, . . . ,xn ∈ Rp

I Measurements of p numerical features on each of n samples

I Assume data centered so that
∑

i xi = 0

Form: Data matrix X ∈ Rn×p with n rows and p columns

I i’th row xi· = (xi1, . . . , xip) = xt
i transpose of the ith sample

I j’th col x·j = (x1j , . . . , xnj) contains measurements of jth feature



Sample Covariance Matrix

Definition: The sample covariance matrix of X is given by

S =
1

n
Xt X =

1

n

n∑
i=1

xix
t
i

Note: S ∈ Rp×p and for each 1 ≤ j, k ≤ p

Sj,k =
1

n

n∑
i=1

xij xik = s(x·j ,x·k)

is the sample covariance of features j and k



Properties of the Sample Covariance

1. S is symmetric and non-negative definite

2. S has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

3.
∑p

k=1 λk = n−1||X||2

4.
∑p

k=1 λk =
∑p

j=1 s
2(x·j), the aggregate variance of the features

5. rank(S) = rank(Xt X) = rank(X) ≤ min(n, p)

6. If p > n then rank(S) < p and S is not invertible.



Principal Component Analysis (PCA)

One-dimensional case



Best One-Dimensional Subspace

Given: Data x1, . . . ,xn ∈ Rp find 1-dim subspace V to minimize

Err({xi}, V ) =
n∑

i=1

‖xi − projV (xi)‖2

I Any 1-dim V = {αv : α ∈ R} for some v ∈ Rp with ‖v‖ = 1

I In this case, projV (xi) = 〈xi,v〉v

I Easy calculation shows Err({xi}, V ) =
∑n

i=1 ||xi||2 −
∑n

i=1〈xi,v〉2

Upshot: The following two optimization problems are equivalent

I Minimize Err({xi}, V ) over 1-dim subspaces V

I Maximize n−1 ∑n
i=1〈xi,v〉2 over v ∈ Rp with ‖v‖ = 1



Best One-Dimensional Subspace

Fact: For each v ∈ Rp with ‖v‖ = 1

1. n−1 ∑n
i=1〈xi,v〉2 = s2(〈x1,v〉, . . . , 〈xn,v〉)

2. n−1 ∑n
i=1〈xi,v〉2 = vtSv

Solution (at last!)

Fischer-Courant theorem tells us that vtSv is maximized when v is an
eigenvector of S with maximum eigenvalue.



Principal Component Analysis (PCA)

General case



Principal Component Analysis

Recall setting

I Data x1, . . . ,xn ∈ Rp with
∑

i xi = 0

I Data matrix X (n× p) with rows xt
1, . . . ,x

t
n

I S = n−1XtX sample covariance of X

Definition: Let λ1 ≥ · · · ≥ λp ≥ 0 be eigenvalues of S, with corresponding
orthonormal eigenvectors v1, . . . ,vp

I vj called the j’th principal component direction of x1, . . . ,xn

I projection 〈xi,vj〉vj is called the jth principal component of xi



Higher Order Principal Components

Definition: For 1 ≤ k ≤ p let Vk = span{v1, . . . ,vk} = span of k leading
eigenvectors of S. Easy to show that

projVk
(x) =

k∑
j=1

〈x,vj〉vj

Fact: The subspace Vk minimizes

1

n

n∑
i=1

‖xi − projV (xi)‖2

over k-dimensional subspaces V of Rp. Moreover

1

n

n∑
i=1

‖xi − projVk
(xi)‖2 =

p∑
i=k+1

λi



Proportion of Variation Explained

Definition: The proportion of variation explained by the first k principal
components, equivalently the subspace Vk, is given by

γk =

∑n
i=1 ‖projVk

(xi)‖2∑n
i=1 ‖xi‖2

=

∑k
i=1 λi∑p
i=1 λi

In practice γk can be close to 1 for values of k as small as 4 or 5, meaning
that first few PCs capture most of the variation in the data.



Variable Selection vs. Dimension Reduction

Variable selection methods remove selected features from consideration in
downstream analyses. Underlying coordinates unchanged

x = (x1, x2, x3, x4, x5)
t 7→ x̃ = (x2, x5)

t

Dimension reduction methods like PCA replace observed features by
smaller number of derived features, for example

x = (x1, x2, x3, x4, x5)
t 7→ x̃ = 〈x,v1〉v1 + 〈x,v2〉v2

I The derived features v1,v2 constitute new coordinate system

I Each derived feature may depend on all the observed features



Principal Component Analysis (PCA)

Examples



Women’s Heptathlon Scores

Background: Seven-event competition over two days. Data from 25 athletes
competing in the 1988 Olympics, in Seoul 1

I Scores for each event

I Overall score

Questions

I What is a good way of combining individual scores to get overall score?

I If we use a linear combination, should each event be weighed the same?

Idea: Consider principle components

1From Everitt & Hothorn (2011). An introduction to applied multivariate analysis with R



1988 Women’s Heptathlon Scores (n = 25, p = 7)



Principal Component Analysis

I Standardize the scores from each event, so each column of data matrix
has mean 0 and variance 1

I Apply PCA to the resulting data matrix

1 R > hepta th lon pca <− prcomp ( hepta th lon [ , −c ( ” score ” ) ] , sca le = TRUE)
2 R > summary ( hepta th lon pca )
3

4 PC1 PC2 PC3 PC4 PC5 PC6 PC7
5

6 St . Dev . 2.0793 0.9482 0.9109 0.68320 0.54619 0.33745 0.26204
7

8 Prop . o f Var . 0.6177 0.1284 0.1185 0.06668 0.04262 0.01627 0.00981
9

10 Cum. Prop . 0.6177 0.7461 0.8646 0.93131 0.97392 0.99019 1.00000



Principal Component Analysis, cont.

I Approximately 75% of the variation is explained by the first two PCs.

I The overall score is highly correlated (r = −.993) with the first PC



Loadings of First Principal Components

Event PC1 PC2 PC3
hurdles 0.4504 -0.0577 -0.1739

highjump -0.3145 -0.6513 0.2088
shot -0.4025 -0.0220 0.1535

run200m 0.4271 -0.1850 0.1301
longjump -0.4510 -0.0249 0.2698

javelin -0.2423 -0.3257 -0.8807
run800m 0.3029 -0.6565 0.1930

Note: Signs of loadings in PC1 coincide with ordering of scores

I Events where higher scores are better have negative coefficients

I Events where lower scores are better have positive coefficients



Text Analysis: The Federalist Papers

Federalist Papers

I 85 documents in all

I released between 1787 and 1788

I promoting the U.S. Constitution

I written by John Jay, James Madison, and Alexander Hamilton

Authorship

I authorship of 70 papers known

I 3 are collaborative

I authorship of remaining 12 disputed



From Documents to Data

Samples: Text of each document n = 70

I Ordered sequence of words

Variables: Counts of p = 70 function words

I Function words: common words used without much deliberation

I Examples: a, to, and, more, upon

Preprocessing: Standardize columns

I Center word counts to have mean zero

I Scale word counts to have variance one



PCA on Federalist Paper Data

PC1
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Figure: Projections of normalized word count data onto the first four principal
components of the Federalist dataset. Colors represent known authorship:
Madison = green, Jay = red, Hamilton = black



First PC Loadings: 8 words with largest +/- coefficients

”in”,0.151791749764273
”there”,0.157087053819256
”the”,0.195915748087175
”a”,0.198175928753355
”an”,0.198737890289868
”this”,0.233402747982087
”upon”,0.241427130517209
”of”,0.253236889522879

”and”,-0.296914872485316
”one”,-0.231054740057054
”more”,-0.219232323121311
”their”,-0.209819034770272
”also”,-0.18953520090149
”into”,-0.164657827937641
”than”,-0.129280268238455
”our”,-0.125302378571939


