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Convex Sets and Functions



Convex Sets

Definition: A set C ⊆ Rd is convex if for every pair of points x, y ∈ C and every
α ∈ [0, 1] the point αx+ (1− α)y ∈ C.

Interpretation

I Vector αx+ (1− α)y called convex combination of x, y with weight α

I Set {αx+ (1− α)y : α ∈ [0, 1]} is just the line between x and y

I So C is convex if the line between any two points in C is contained in C



Examples of Convex Sets

I In 1-d convex sets are intervals, e.g., [0, 1], (−2, 5), (0,∞), and R

I More generally: ∅, {0}, and line C = {γ x : γ ∈ R} are convex in Rd

I Ball of radius r centered at x0, B(x0, r) := {x : ||x− x0|| < r}

I Halfspace with direction w and offset b, H(w, b) = {x : wtx ≥ b}

I Hyperplane ∂H(w, b) = {x : wtx = b}, boundary of halfspace H(w, b)

I Polyhedron {x : Ax ≤ c} where ≤ understood componentwise

I Probability simplex {u : ui ≥ 0 and
∑d

i=1 ui = 1}



Basic Properties of Convex Sets

Fact: If C1, C2, . . . are convex sets, then so is their intersection ∩i≥1 Ci

Note: A union of convex sets is generally not convex

Fact: Other ways of combining convex sets to get new ones

I If A,B ⊆ Rd are convex then so is A+B = {u+ v : u ∈ A and v ∈ B}

I If A ⊆ Rd is convex and c ∈ R then cA = {cu : u ∈ A} is convex



Convex Functions

Definition: Let C ⊆ Rd be convex. A function f : C → R is convex if for every
x, y ∈ C and every α ∈ (0, 1),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (∗)

Convexity of C ensures that f(·) is defined at each point αx+ (1− α)y

Interpretation: Line connecting (x, f(x)) and (y, f(y)) lies above the graph of f

Related Definitions

I αx+ (1− α)y is called a convex combination of x and y

I f : C → R is strictly convex if (∗) holds with ≤ replaced by <

I f : C → R is concave if (∗) holds with ≤ replaced by ≥



How to Verify Convexity or Concavity of Functions

1. Check the definition: In many cases it is possible to directly check the definition

2. Second derivative condition:

I f : C → R is convex if the matrix ∇2f(x) of second partials derivatives is
non-negative definite for each x ∈ C

I f : C → R is concave if the matrix ∇2f(x) of second partial derivatives is
non-positive definite for each x ∈ C

Special case: A twice-differentiable function f : R→ R is convex if f ′′ ≥ 0 and is
concave if f ′′ ≤ 0



Examples of Convex/Concave Functions

Case d = 1

I f(x) = |x| is convex, but not strictly convex

I f(x) = x2, ex, e−x, x−1, and x log x are strictly convex

I f(x) = log x,
√
x are strictly concave

Case d ≥ 2

I f(x) = ||x|| is convex

I f(x) = 〈x, u〉+ b, affine function, is convex and concave

I f(x) = maxu∈A〈x, u〉, where A ⊆ Rd is bounded, is convex

I f(x) = xtAx, quadratic form, is convex if A ≥ 0, concave if A ≤ 0



Basic Properties of Convex Functions

Fact

(a) If f : C → R is convex then −f is concave, and vice-versa

(b) If f1, . . . , fm : C → R, are convex then f(x) = max1≤i≤m fi(x) is convex

Fact: If f : C → R is convex, then for every u ∈ C there is a vector v ∈ Rd such that

f(x) ≥ f(u) + 〈v, x− u〉 for each x ∈ C

I The vector v is called a subgradient of f at u (not necessarily unique)

I Lower bound hu(x) := f(u) + 〈v, x− u〉 is affine in x with hu(u) = f(u)

I Graph of function hu is a hyperplane supporting the graph of f at u



Subgradient Illustration (credit: John Lambert)



Jensen’s Inequality



Jensen’s Inequality in 1-Dimension

Theorem: Let X ∈ (a, b) be a random variable

(1) The expected value EX ∈ (a, c)

(2) If f : (a, b)→ R is convex then f(EX) ≤ Ef(X).

(3) If f : (a, b)→ R is concave then f(EX) ≥ Ef(X).

Proof: In increasing generality

I When X has two possible values, (2) is just the definition of a convex function

I Case of finite valued X follows by induction

I General case follows from the existence of subgradient at the point u = EX



Some Applications of Jensen’s Inequality

Fact: Provided all expectations are well defined

I E|X| ≥ |EX| and EX2 ≥ (EX)2 and EeX ≥ eEX

I If X > 0 then E(X logX) ≥ (EX) log(EX)

I If X > 0 then E logX ≤ logEX and E
√
X ≤

√
EX

AM-GM inequality: If a1, . . . , an > 0 then
(∏n

i=1 ai
)1/n ≤ 1

n

∑n
i=1 ai

Cauchy-Schwartz: If X and Y are r.v. then E|XY | ≤
√
EX2 EY 2



Somewhat Fancier Stuff



Jensen’s Inequality in Higher Dimensions

Recall: The expected value of a random vector X = (X1, . . . , Xd)
t is defined by

EX = (EX1, . . . ,EXd)
t ∈ Rd

Jensen’s Inequality: Let C ⊆ Rd be convex and suppose that X ∈ C. Provided that
all expectations are well-defined, the following hold.

(1) The expectation EX ∈ C

(2) If f : C → R is convex then f(EX) ≤ Ef(X). If f is strictly convex and X is not
constant then the inequality is strict.

(3) If f : C → R is concave then f(EX) ≥ Ef(X). If f is strictly concave and X is
not constant then the inequality is strict.

Note: Definition of convexity is a special case of (2) for a random vector X ∈ C
with P(X = x) = α and P(X = y) = 1− α



Jensen’s Inequality, Case d ≥ 2

Fact: Let X ∈ Rd be a random vector. Provided that the expectations are well defined

I E(〈X,u〉+ b) = 〈EX,u〉+ b (by linearity)

I E||X|| ≥ ||EX||

I E(XtAX) ≤ (EX)tA (EX) if A ≤ 0



Holder’s Inequality

Fact: Let a, b ≥ 0 and 1 < p, q <∞ be such that 1/p+ 1/q = 1. Then

p−1 ap + q−1 bq ≥ ab

Holder’s Inequality: Let 1 < p, q <∞ be such that 1/p+ 1/q = 1. If X,Y are
random variables such that E|X|p and E|Y |q are finite, then

|EXY | ≤ E|XY | ≤ (E|X|p)1/p (E|Y |q)1/q

Corollary (Cauchy-Schwartz): If EX2 and EY 2 finite then E|XY | ≤
√
EX2 EY 2



Integral Version of Holder’s Inequality

Theorem: If p, q ≥ 0 satisfy 1/p+ 1/q = 1 and f, g, h : Rd → R with h ≥ 0 then

∫
|f(x)g(x)|h(x) dx ≤

(∫
|f(x)|ph(x) dx

)1/p (∫
|g(x)|qh(x) dx

)1/q

provided that all the integrals are finite.


