Convexity

Andrew Nobel

September, 2021

Convex Sets and Functions

Convex Sets

Definition: A set $C \subseteq \mathbb{R}^{d}$ is convex if for every pair of points $x, y \in C$ and every $\alpha \in[0,1]$ the point $\alpha x+(1-\alpha) y \in C$.

Interpretation

- Vector $\alpha x+(1-\alpha) y$ called convex combination of x, y with weight α
- Set $\{\alpha x+(1-\alpha) y: \alpha \in[0,1]\}$ is just the line between x and y
- So C is convex if the line between any two points in C is contained in C

Examples of Convex Sets

- In 1-d convex sets are intervals, e.g., $[0,1],(-2,5),(0, \infty)$, and \mathbb{R}
- More generally: $\emptyset,\{0\}$, and line $C=\{\gamma x: \gamma \in \mathbb{R}\}$ are convex in \mathbb{R}^{d}
- Ball of radius r centered at $x_{0}, B\left(x_{0}, r\right):=\left\{x:\left\|x-x_{0}\right\|<r\right\}$
- Halfspace with direction w and offset $b, H(w, b)=\left\{x: w^{t} x \geq b\right\}$
- Hyperplane $\partial H(w, b)=\left\{x: w^{t} x=b\right\}$, boundary of halfspace $H(w, b)$
- Polyhedron $\{x: A x \leq c\}$ where \leq understood componentwise
- Probability simplex $\left\{u: u_{i} \geq 0\right.$ and $\left.\sum_{i=1}^{d} u_{i}=1\right\}$

Basic Properties of Convex Sets

Fact: If C_{1}, C_{2}, \ldots are convex sets, then so is their intersection $\cap_{i \geq 1} C_{i}$
Note: A union of convex sets is generally not convex

Fact: Other ways of combining convex sets to get new ones

- If $A, B \subseteq \mathbb{R}^{d}$ are convex then so is $A+B=\{u+v: u \in A$ and $v \in B\}$
- If $A \subseteq \mathbb{R}^{d}$ is convex and $c \in \mathbb{R}$ then $c A=\{c u: u \in A\}$ is convex

Convex Functions

Definition: Let $C \subseteq \mathbb{R}^{d}$ be convex. A function $f: C \rightarrow \mathbb{R}$ is convex if for every $x, y \in C$ and every $\alpha \in(0,1)$,

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)(*)
$$

Convexity of C ensures that $f(\cdot)$ is defined at each point $\alpha x+(1-\alpha) y$

Interpretation: Line connecting $(x, f(x))$ and $(y, f(y))$ lies above the graph of f

Related Definitions

- $\alpha x+(1-\alpha) y$ is called a convex combination of x and y
- $f: C \rightarrow \mathbb{R}$ is strictly convex if $(*)$ holds with \leq replaced by $<$
- $f: C \rightarrow \mathbb{R}$ is concave if $(*)$ holds with \leq replaced by \geq

How to Verify Convexity or Concavity of Functions

1. Check the definition: In many cases it is possible to directly check the definition
2. Second derivative condition:

- $f: C \rightarrow \mathbb{R}$ is convex if the matrix $\nabla^{2} f(x)$ of second partials derivatives is non-negative definite for each $x \in C$
- $f: C \rightarrow \mathbb{R}$ is concave if the matrix $\nabla^{2} f(x)$ of second partial derivatives is non-positive definite for each $x \in C$

Special case: A twice-differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if $f^{\prime \prime} \geq 0$ and is concave if $f^{\prime \prime} \leq 0$

Examples of Convex/Concave Functions

Case $d=1$

- $f(x)=|x|$ is convex, but not strictly convex
- $f(x)=x^{2}, e^{x}, e^{-x}, x^{-1}$, and $x \log x$ are strictly convex
- $f(x)=\log x, \sqrt{x}$ are strictly concave

Case $d \geq 2$

- $f(x)=\|x\|$ is convex
- $f(x)=\langle x, u\rangle+b$, affine function, is convex and concave
- $f(x)=\max _{u \in A}\langle x, u\rangle$, where $A \subseteq \mathbb{R}^{d}$ is bounded, is convex
- $f(x)=x^{t} A x$, quadratic form, is convex if $A \geq 0$, concave if $A \leq 0$

Basic Properties of Convex Functions

Fact

(a) If $f: C \rightarrow \mathbb{R}$ is convex then $-f$ is concave, and vice-versa
(b) If $f_{1}, \ldots, f_{m}: C \rightarrow \mathbb{R}$, are convex then $f(x)=\max _{1 \leq i \leq m} f_{i}(x)$ is convex

Fact: If $f: C \rightarrow \mathbb{R}$ is convex, then for every $u \in C$ there is a vector $v \in \mathbb{R}^{d}$ such that

$$
f(x) \geq f(u)+\langle v, x-u\rangle \text { for each } x \in C
$$

- The vector v is called a subgradient of f at u (not necessarily unique)
- Lower bound $h_{u}(x):=f(u)+\langle v, x-u\rangle$ is affine in x with $h_{u}(u)=f(u)$
- Graph of function h_{u} is a hyperplane supporting the graph of f at u

Subgradient Illustration (credit: John Lambert)

Jensen's Inequality

Jensen's Inequality in 1-Dimension

Theorem: Let $X \in(a, b)$ be a random variable
(1) The expected value $\mathbb{E} X \in(a, c)$
(2) If $f:(a, b) \rightarrow \mathbb{R}$ is convex then $f(\mathbb{E} X) \leq \mathbb{E} f(X)$.
(3) If $f:(a, b) \rightarrow \mathbb{R}$ is concave then $f(\mathbb{E} X) \geq \mathbb{E} f(X)$.

Proof: In increasing generality

- When X has two possible values, (2) is just the definition of a convex function
- Case of finite valued X follows by induction
- General case follows from the existence of subgradient at the point $u=\mathbb{E} X$

Some Applications of Jensen's Inequality

Fact: Provided all expectations are well defined

- $\mathbb{E}|X| \geq|\mathbb{E} X|$ and $\mathbb{E} X^{2} \geq(\mathbb{E} X)^{2}$ and $\mathbb{E} e^{X} \geq e^{\mathbb{E} X}$
- If $X>0$ then $\mathbb{E}(X \log X) \geq(\mathbb{E} X) \log (\mathbb{E} X)$
- If $X>0$ then $\mathbb{E} \log X \leq \log \mathbb{E} X$ and $\mathbb{E} \sqrt{X} \leq \sqrt{\mathbb{E} X}$

AM-GM inequality: If $a_{1}, \ldots, a_{n}>0$ then $\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i}$

Cauchy-Schwartz: If X and Y are r.v. then $\mathbb{E}|X Y| \leq \sqrt{\mathbb{E} X^{2} \mathbb{E} Y^{2}}$

Somewhat Fancier Stuff

Jensen's Inequality in Higher Dimensions

Recall: The expected value of a random vector $X=\left(X_{1}, \ldots, X_{d}\right)^{t}$ is defined by

$$
\mathbb{E} X=\left(\mathbb{E} X_{1}, \ldots, \mathbb{E} X_{d}\right)^{t} \in \mathbb{R}^{d}
$$

Jensen's Inequality: Let $C \subseteq \mathbb{R}^{d}$ be convex and suppose that $X \in C$. Provided that all expectations are well-defined, the following hold.
(1) The expectation $\mathbb{E} X \in C$
(2) If $f: C \rightarrow \mathbb{R}$ is convex then $f(\mathbb{E} X) \leq \mathbb{E} f(X)$. If f is strictly convex and X is not constant then the inequality is strict.
(3) If $f: C \rightarrow \mathbb{R}$ is concave then $f(\mathbb{E} X) \geq \mathbb{E} f(X)$. If f is strictly concave and X is not constant then the inequality is strict.

Note: Definition of convexity is a special case of (2) for a random vector $X \in C$ with $\mathbb{P}(X=x)=\alpha$ and $\mathbb{P}(X=y)=1-\alpha$

Jensen's Inequality, Case $d \geq 2$

Fact: Let $X \in \mathbb{R}^{d}$ be a random vector. Provided that the expectations are well defined

- $\mathbb{E}(\langle X, \mathbf{u}\rangle+b)=\langle\mathbb{E} X, \mathbf{u}\rangle+b$ (by linearity)
- $\mathbb{E}\|X\| \geq\|\mathbb{E} X\|$
- $\mathbb{E}\left(X^{t} \mathbf{A} X\right) \leq(\mathbb{E} X)^{t} \mathbf{A}(\mathbb{E} X)$ if $\mathbf{A} \leq 0$

Holder's Inequality

Fact: Let $a, b \geq 0$ and $1<p, q<\infty$ be such that $1 / p+1 / q=1$. Then

$$
p^{-1} a^{p}+q^{-1} b^{q} \geq a b
$$

Holder's Inequality: Let $1<p, q<\infty$ be such that $1 / p+1 / q=1$. If X, Y are random variables such that $\mathbb{E}|X|^{p}$ and $\mathbb{E}|Y|^{q}$ are finite, then

$$
|\mathbb{E} X Y| \leq \mathbb{E}|X Y| \leq\left(\mathbb{E}|X|^{p}\right)^{1 / p}\left(\mathbb{E}|Y|^{q}\right)^{1 / q}
$$

Corollary (Cauchy-Schwartz): If $\mathbb{E} X^{2}$ and $\mathbb{E} Y^{2}$ finite then $\mathbb{E}|X Y| \leq \sqrt{\mathbb{E} X^{2} \mathbb{E} Y^{2}}$

Integral Version of Holder's Inequality

Theorem: If $p, q \geq 0$ satisfy $1 / p+1 / q=1$ and $f, g, h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $h \geq 0$ then

$$
\int|f(x) g(x)| h(x) d x \leq\left(\int|f(x)|^{p} h(x) d x\right)^{1 / p}\left(\int|g(x)|^{q} h(x) d x\right)^{1 / q}
$$

provided that all the integrals are finite.

