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Convex Sets and Functions



Convex Sets

Definition: A set C C R is convex if for every pair of points =,y € C and every
a € [0,1] the point ax + (1 — a)y € C.

Interpretation
> Vector ax + (1 — a)y called convex combination of x, y with weight «
> Set {az + (1 —a)y: «a € [0,1]} is just the line between x and y

> So C'is convex if the line between any two points in C is contained in C



Examples of Convex Sets

> In 1-d convex sets are intervals, e.g., [0, 1], (—2,5), (0, 00), and R

> More generally: §, {0}, and line C = {vx : v € R} are convex in R¢

> Ball of radius r centered at zg, B(zo,r) := {z : ||z — zo|| < 7}

> Halfspace with direction w and offset b, H (w, b) = {z : wtz > b}

> Hyperplane 0H (w,b) = {z : w'z = b}, boundary of halfspace H (w, b)
> Polyhedron {z : Az < ¢} where < understood componentwise

> Probability simplex {u : u; > 0and 3¢ u; =1}



Basic Properties of Convex Sets

Fact: If C1, C2, ... are convex sets, then so is their intersection N;>, C;

Note: A union of convex sets is generally not convex

Fact: Other ways of combining convex sets to get new ones
> If A, B C R are convex thensois A+ B={u+v:uc Aandv € B}

> If A C R%is convex and ¢ € R then cA = {cu : u € A} is convex



Convex Functions

Definition: Let C C R? be convex. A function f : C' — R is convex if for every
z,y € C and every a € (0,1),

flaz+ (1 —a)y) < af(@)+ (1 -a)f(y) (¥

Convexity of C ensures that f(-) is defined at each point az + (1 — a)y

Interpretation: Line connecting (z, f(z)) and (y, f(y)) lies above the graph of f

Related Definitions
> oz + (1 — o)y is called a convex combination of z and y
> f:C — Ris strictly convex if (x) holds with < replaced by <

> f:C — Ris concave if (x) holds with < replaced by >



How to Verify Convexity or Concavity of Functions

1. Check the definition: In many cases it is possible to directly check the definition

2. Second derivative condition:

> f:C — Ris convex if the matrix V2 f(z) of second partials derivatives is
non-negative definite for each z € C

> f:C — Ris concave if the matrix V2 f(x) of second partial derivatives is
non-positive definite for each z € C

Special case: A twice-differentiable function f : R — R is convex if f/ > 0 and is
concave if f/ <0



Examples of Convex/Concave Functions

Cased=1
> f(xz) = |x| is convex, but not strictly convex
> f(x) =22, e%, e %, 271, and z log = are strictly convex

> f(z) =logz, \/x are strictly concave

Cased > 2
> f(z) = ||z|| is convex
> f(z) = (z,u) + b, affine function, is convex and concave
> f(x) = max,e4(z,u), where A C R? is bounded, is convex

> f(x) = x* Az, quadratic form, is convex if A > 0, concave if A < 0



Basic Properties of Convex Functions

Fact
(a) If f: C — Ris convex then — f is concave, and vice-versa

(b) I f1,..., fm : C — R, are convex then f(x) = max;<;<m fi(x) is convex

Fact: If f : C — R is convex, then for every u € C there is a vector v € R? such that
f(x) > f(u) + (v,z —wu) foreach z € C
» The vector v is called a subgradient of f at u (not necessarily unique)
> Lower bound hy(z) := f(u) + (v,z — w) is affine in z with hy, (uv) = f(u)

» Graph of function h,, is a hyperplane supporting the graph of f at «



Subgradient lllustration (credit: John Lambert)

fl@1) +gf (2 — 1) .

/,f(Iz) +93 (2 — x2)

S CH R {CRS




Jensen’s Inequality



Jensen’s Inequality in 1-Dimension

Theorem: Let X € (a, b) be a random variable
(1) The expected value EX € (a,c)
(2) If f:(a,b) = Ris convex then f(EX) <Ef(X).

(8) If f: (a,b) — Ris concave then f(EX) > Ef(X).

Proof: In increasing generality
> When X has two possible values, (2) is just the definition of a convex function
> Case of finite valued X follows by induction

> General case follows from the existence of subgradient at the point u = EX



Some Applications of Jensen’s Inequality

Fact: Provided all expectations are well defined
> E|X| > |EX| and EX? > (EX)? and EeX > FX
> If X > 0then E(XlogX) > (EX)log(EX)
> If X >0then Elog X <logEX and EvX < VEX

AM-GM inequality: If i, ..., a, > 0then ([T, )"/ < L™ a

- n

Cauchy-Schwartz: If X and Y arer.v. then E|XY| < VEX2EY?2



Somewhat Fancier Stuff



Jensen’s Inequality in Higher Dimensions

Recall: The expected value of a random vector X = (X1, ..., X4)? is defined by

EX = (EX1,...,EXy)t € RY

Jensen’s Inequality: Let C C R? be convex and suppose that X € C. Provided that
all expectations are well-defined, the following hold.

(1) The expectation EX € C

(2) If f: C — Risconvexthen f(EX) < Ef(X). If fis strictly convex and X is not
constant then the inequality is strict.

(8) If f: C — Ris concave then f(EX) > Ef(X). If f is strictly concave and X is

not constant then the inequality is strict.

Note: Definition of convexity is a special case of (2) for a random vector X € C'
withP(X =z)=aandP(X =y)=1—«



Jensen’s Inequality, Case d > 2

Fact: Let X € R? be a random vector. Provided that the expectations are well defined
> E((X,u) +b) = (EX,u) + b (by linearity)
> E[|X|| > [[EX]|

> E(X'AX) < (EX)'A (EX)ifA <0



Holder’s Inequality

Fact: Leta,b>0and 1 < p,q < oo be suchthat1/p+1/¢ = 1. Then

p~lta? + ¢t b7 > ab

Holder’s Inequality: Let 1 < p,q < cobesuchthat1/p+1/¢g=1.1f X,Y are
random variables such that E| X |P and E|Y'|? are finite, then

[EXY| < EIXY| < (E|[X|?)"/? (BY|9)"/

Corollary (Cauchy-Schwartz): If EX? and EY? finite then E| XY | < VEX2EY?2



Integral Version of Holder’s Inequality

Theorem: If p,q > 0 satisfy 1/p +1/q = 1 and f, g, h : R — R with b > 0 then

/‘f(ff PihGe)de < (/'f JFhi) dm) (/lg(ﬂc [7h( :v)dz)l/q

provided that all the integrals are finite.



