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Unsupervised vs. Supervised Learning

Unsupervised: Find structure in unlabeled data x1, . . . , xn

I PCA and SVD

I Clustering

Supervised: Use labeled data (x1, y1), . . . , (xn, yn) to make predictions
about an unlabeled sample x

I Classification: response yi is binary or categorical

I Regression: response yi is numerical, real-valued



The Classification Problem



Classification

Data: Labeled pairs (x1, y1), . . . , (xn, yn) with

I xi ∈ X space of predictors (often X ⊆ Rd)

I yi ∈ {0, 1} response or class label

Goal: Given an unlabeled predictor x ∈ X , assign it to class 0 or 1

I Classification of examples may be of financial or scientific importance

I Obtaining labels may be expensive or difficult

Idea: Use labeled examples to classify unlabeled ones



Example: Spam Recognition

Predictor: x = vector of features extracted from text of email, e.g.,

I presence of keywords (“cheap”, “cash”, “medicine”)

I presence of key phrases (“Dear Sir/Madam”)

I use of words in all-caps (“VIAGRA”)

I point of origin of email

Response: y = 1 if email is spam, y = 0 otherwise

Task: Given sample (x1, y1), . . . , (xn, yn) of labeled emails, construct a
prediction rule to classify future email messages as spam or not-spam



Examples

Medical Testing

I x contains the (numerical) results of d diagnostic tests

I y = 1 if patient is at risk for a disease, y = 0 if not

Loan Default Prediction

I x contains features related to credit history of loan applicant

I y = 1 if applicant defaults, y = 0 if applicant repays loan



Overview

I Prediction rules, decision regions, and zero-one loss

I Classification in a stochastic setting

I Optimality: Bayes rule and the Bayes risk



Measuring Errors in Prediction

Definition: A prediction rule is a map φ : X → {0, 1}. Regard φ(x) as a
prediction of the class label associated with x

Zero-One loss: Performance of φ on pair (x, y) given by

`(φ(x), y) = I(φ(x) 6= y) =

{
1 if φ(x) 6= y

0 if φ(x) = y

Summary table. Four possible outcomes: two correct, two errors

φ(x) = 1 φ(x) = 0

y = 1 correct (1,1) error (1,0)
y = 0 error (0,1) correct (0,0)



Decision Regions and Decision Boundary

Note: Every rule φ : X → {0, 1} partitions X into two sets

X0(φ) = {x ∈ X : φ(x) = 0}

X1(φ) = {x ∈ X : φ(x) = 1}

Terminology

I Sets X0(φ),X1(φ) called decision regions of φ

I Interface between X0(φ) and X1(φ) called decision boundary of φ



Classification Problem Revisited

Picture

I Write sample (x1, y1), . . . , (xn, yn) as points xi ∈ X with labels yi

I Look for decision regions that (mostly) separate zeros and ones

Two Related Issues

I Tradeoff between complexity and separation

I Will selected rule perform well on future, unlabeled, samples?



The Stochastic Setting



Stochastic Setting

Assumptions

I Observations Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1} random

I (Xi, Yi) drawn independently from distribution P on X × {0, 1}

I Future observation (X,Y ) drawn independently from same distribution P

Key Stochastic Quantities

1. Prior probabilities of Y = 0 and Y = 1

2. Conditional probability of Y = 1 given X = x

3. Conditional distribution of X given Y = 0 and Y = 1



Prior Probabilities

Given: Joint pair (X,Y ) ∈ X × {0, 1}

Define: Prior probabilities π0 = P(Y = 0) and π1 = P(Y = 1)

Notes

I Probability of seeing class Y = 0 or Y = 1 prior to observing X

I π0, π1 represent relative abundance of class 1 and 1

I Note that π0 + π1 = 1

I Cases in which π1 >> π0 or vice versa can be difficult



Unconditional and Conditional Densities of X

Given: Joint pair (X,Y ) ∈ Rd × {0, 1}

Define: Unconditional and conditional densities of X

I f(x) = unconditional density of X

P(X ∈ A) =

∫
A

f(x) dx A ⊆ X

I f0(x), f1(x) = class-conditional densities of X

P(X ∈ A |Y = y) =

∫
A

fy(x) dx A ⊆ X

Note: f0 and f1 tell us about separability of 0s and 1s



Conditional Distribution of Y Given X

Given: Joint pair (X,Y ) ∈ X × {0, 1}

Define: Conditional probability η(x) = P(Y = 1 |X = x)

I Posterior probability that Y = 1 given that X = x

I Note that P(Y = 0 |X = x) = 1− η(x).

Regimes:

I η(x) ≈ 1 ⇒ Y is likely to be 1 given X = x

I η(x) ≈ 0 ⇒ Y is likely to be 0 given X = x

I η(x) ≈ 1/2 ⇒ value of Y uncertain given X = x



Relations Among Distributions

1. By the law of total probability we have

f(x) = π0f0(x) + π1 f1(x)

Moreover, as f0 and f1 are densities
∫
f0(x)dx =

∫
f1(x)dx = 1

2. By Bayes theorem we know

η(x) =
π1f1(x)

f(x)
=

π1f1(x)

π0f0(x) + π1 f1(x)



Risk of a Prediction Rule

Recall: Performance of rule φ on single pair (x, y) given by zero-one loss

`(φ(x), y) = I(φ(x) 6= y) =

{
1 if φ(x) 6= y

0 if φ(x) = y

Definition: The risk of a fixed prediction rule φ on a random pair (X,Y ) is its
expected loss

R(φ) = E[I(φ(X) 6= Y )] = P(φ(X) 6= Y )

which is just the probability that φ misclassifies X



Optimality and the Bayes Rule



Bayes Rule and Bayes Risk

Definition: The Bayes Rule φ∗ for the pair (X,Y ) is

φ∗(x) = argmax
k=0,1

P(Y = k |X = x)

I φ∗(x) is the most likely value of Y given X = x

I φ∗(x) depends on distribution of (X,Y ), usually unknown

Definition: The Bayes risk R∗ for (X,Y ) is the risk of the Bayes rule

R∗ = R(φ∗) = P(φ∗(X) 6= Y )



Optimality of the Bayes Rule

Note: For binary Y the Bayes Rule has the form

φ∗(x) =

{
1 if η(x) ≥ 1/2

0 otherwise

Theorem: The Bayes rule φ∗ for (X,Y ) is optimal: for every classification
rule φ : X → {0, 1} we have R∗ ≤ R(φ).

Fact: The Bayes risk R∗ can be written in the form

R∗ = Emin{η(X), 1− η(X)}



Understanding the Bayes Risk

Fact: Let (X,Y ) ∈ X × {0, 1} be a jointly distributed pair

1. Bayes risk R∗ ∈ [0, 1/2]

2. R∗ = 0 iff η(x) ∈ {0, 1} iff Y is a function of X

3. R∗ = 1/2 iff η(x) ≡ 1/2 which implies that Y ⊥⊥ X

4. If Y ⊥⊥ X then φ∗(x) is constant (1 if π1 ≥ π0 and 0 if π0 < π1)



Fixed vs. Data Dependent Prediction Rules

Observations Dn = (X1, Y1), . . . , (Xn, Yn) ∈ X × {0, 1} iid ∼ (X,Y )

Fixed rule φ : X → {0, 1}

I φ(x) predicts class label of x without regard to Dn

I Risk R(φ) = P(φ(X) 6= Y ) is a constant

Data-dependent rule φ̂ : X × (X × {0, 1})n → {0, 1}

I φ̂(x) = φ̂(x : Dn) predicts class label of x based on Dn

I Risk R(φ̂) = P(φ̂(X) 6= Y |Dn) is a random variable


