The Classification Problem and Statistical Framework

Andrew Nobel

September, 2021

Unsupervised vs. Supervised Learning

Unsupervised: Find structure in unlabeled data x_1, \ldots, x_n

PCA and SVD

Clustering

Supervised: Use labeled data $(x_1, y_1), \ldots, (x_n, y_n)$ to make predictions about an unlabeled sample x

- Classification: response y_i is binary or categorical
- **•** Regression: response y_i is numerical, real-valued

The Classification Problem

Classification

Data: Labeled pairs $(x_1, y_1), \ldots, (x_n, y_n)$ with

- $x_i \in \mathcal{X}$ space of *predictors* (often $\mathcal{X} \subseteq \mathbb{R}^d$)
- ▶ $y_i \in \{0, 1\}$ response or *class label*

Goal: Given an *unlabeled* predictor $x \in \mathcal{X}$, assign it to class 0 or 1

- Classification of examples may be of financial or scientific importance
- Obtaining labels may be expensive or difficult

Idea: Use labeled examples to classify unlabeled ones

Example: Spam Recognition

Predictor: x = vector of features extracted from text of email, e.g.,

- presence of keywords ("cheap", "cash", "medicine")
- presence of key phrases ("Dear Sir/Madam")
- use of words in all-caps ("VIAGRA")
- point of origin of email

Response: y = 1 if email is spam, y = 0 otherwise

Task: Given sample $(x_1, y_1), \ldots, (x_n, y_n)$ of labeled emails, construct a prediction rule to classify future email messages as spam or not-spam

Examples

Medical Testing

- x contains the (numerical) results of d diagnostic tests
- y = 1 if patient is at risk for a disease, y = 0 if not

Loan Default Prediction

- x contains features related to credit history of loan applicant
- y = 1 if applicant defaults, y = 0 if applicant repays loan

Overview

- Prediction rules, decision regions, and zero-one loss
- Classification in a stochastic setting
- Optimality: Bayes rule and the Bayes risk

Measuring Errors in Prediction

Definition: A *prediction rule* is a map $\phi : \mathcal{X} \to \{0, 1\}$. Regard $\phi(x)$ as a prediction of the class label associated with x

Zero-One loss: Performance of ϕ on pair (x, y) given by

$$\ell(\phi(x), y) = \mathbb{I}(\phi(x) \neq y) = \begin{cases} 1 & \text{if } \phi(x) \neq y \\ 0 & \text{if } \phi(x) = y \end{cases}$$

Summary table. Four possible outcomes: two correct, two errors

	$\phi(x) = 1$	$\phi(x) = 0$
y = 1	correct (1,1)	error (1,0)
y = 0	error (0,1)	correct (0,0)

Decision Regions and Decision Boundary

Note: Every rule $\phi : \mathcal{X} \to \{0, 1\}$ partitions \mathcal{X} into two sets

$$\mathcal{X}_0(\phi) = \{x \in \mathcal{X} : \phi(x) = 0\}$$

$$\mathcal{X}_1(\phi) = \{x \in \mathcal{X} : \phi(x) = 1\}$$

Terminology

- Sets $\mathcal{X}_0(\phi), \mathcal{X}_1(\phi)$ called *decision regions* of ϕ
- ▶ Interface between $X_0(\phi)$ and $X_1(\phi)$ called *decision boundary* of ϕ

Classification Problem Revisited

Picture

- Write sample $(x_1, y_1), \ldots, (x_n, y_n)$ as points $x_i \in \mathcal{X}$ with labels y_i
- Look for decision regions that (mostly) separate zeros and ones

Two Related Issues

- Tradeoff between complexity and separation
- Will selected rule perform well on future, unlabeled, samples?

The Stochastic Setting

Stochastic Setting

Assumptions

- Observations $D_n = (X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ random
- (X_i, Y_i) drawn independently from distribution P on $\mathcal{X} \times \{0, 1\}$
- Future observation (X, Y) drawn independently from same distribution P

Key Stochastic Quantities

- 1. Prior probabilities of Y = 0 and Y = 1
- 2. Conditional probability of Y = 1 given X = x
- 3. Conditional distribution of X given Y = 0 and Y = 1

Prior Probabilities

Given: Joint pair $(X, Y) \in \mathcal{X} \times \{0, 1\}$

Define: Prior probabilities $\pi_0 = \mathbb{P}(Y = 0)$ and $\pi_1 = \mathbb{P}(Y = 1)$

Notes

- Probability of seeing class Y = 0 or Y = 1 prior to observing X
- \blacktriangleright π_0, π_1 represent relative abundance of class 1 and 1
- Note that $\pi_0 + \pi_1 = 1$
- Cases in which $\pi_1 >> \pi_0$ or vice versa can be difficult

Unconditional and Conditional Densities of X

Given: Joint pair $(X, Y) \in \mathbb{R}^d \times \{0, 1\}$

Define: Unconditional and conditional densities of X

• f(x) = unconditional density of X

$$\mathbb{P}(X \in A) = \int_A f(x) \, dx \quad A \subseteq \mathcal{X}$$

• $f_0(x), f_1(x) = class-conditional densities of X$

$$\mathbb{P}(X \in A \mid Y = y) = \int_A f_y(x) \, dx \quad A \subseteq \mathcal{X}$$

Note: f_0 and f_1 tell us about separability of 0s and 1s

Conditional Distribution of Y Given X

Given: Joint pair $(X, Y) \in \mathcal{X} \times \{0, 1\}$

Define: Conditional probability $\eta(x) = \mathbb{P}(Y = 1 | X = x)$

• Posterior probability that Y = 1 given that X = x

Note that
$$\mathbb{P}(Y = 0 | X = x) = 1 - \eta(x)$$
.

Regimes:

• $\eta(x) \approx 1 \Rightarrow Y$ is likely to be 1 given X = x

•
$$\eta(x) \approx 0 \Rightarrow Y$$
 is likely to be 0 given $X = x$

•
$$\eta(x) \approx 1/2 \Rightarrow$$
 value of Y uncertain given $X = x$

Relations Among Distributions

1. By the law of total probability we have

$$f(x) = \pi_0 f_0(x) + \pi_1 f_1(x)$$

Moreover, as f_0 and f_1 are densities $\int f_0(x) dx = \int f_1(x) dx = 1$

2. By Bayes theorem we know

$$\eta(x) = \frac{\pi_1 f_1(x)}{f(x)} = \frac{\pi_1 f_1(x)}{\pi_0 f_0(x) + \pi_1 f_1(x)}$$

Risk of a Prediction Rule

Recall: Performance of rule ϕ on single pair (x, y) given by zero-one loss

$$\ell(\phi(x), y) \ = \ \mathbb{I}(\phi(x) \neq y) \ = \ \begin{cases} 1 & \text{if } \phi(x) \neq y \\ 0 & \text{if } \phi(x) = y \end{cases}$$

Definition: The *risk* of a fixed prediction rule ϕ on a random pair (X, Y) is its *expected loss*

$$R(\phi) = \mathbb{E}[\mathbb{I}(\phi(X) \neq Y)] = \mathbb{P}(\phi(X) \neq Y)$$

which is just the probability that ϕ misclassifies X

Optimality and the Bayes Rule

Bayes Rule and Bayes Risk

Definition: The *Bayes Rule* ϕ^* for the pair (X, Y) is

$$\phi^*(x) = \underset{k=0,1}{\operatorname{argmax}} \mathbb{P}(Y = k \mid X = x)$$

• $\phi^*(x)$ is the most likely value of Y given X = x

• $\phi^*(x)$ depends on distribution of (X, Y), usually unknown

Definition: The *Bayes risk* R^* for (X, Y) is the risk of the Bayes rule

$$R^* = R(\phi^*) = \mathbb{P}(\phi^*(X) \neq Y)$$

Optimality of the Bayes Rule

Note: For binary Y the Bayes Rule has the form

$$\phi^*(x) = \begin{cases} 1 & \text{if } \eta(x) \ge 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Theorem: The Bayes rule ϕ^* for (X, Y) is optimal: for every classification rule $\phi : \mathcal{X} \to \{0, 1\}$ we have $R^* \leq R(\phi)$.

Fact: The Bayes risk R^* can be written in the form

$$R^* = \mathbb{E}\min\{\eta(X), 1 - \eta(X)\}$$

Understanding the Bayes Risk

Fact: Let $(X, Y) \in \mathcal{X} \times \{0, 1\}$ be a jointly distributed pair

1. Bayes risk $R^* \in [0, 1/2]$

2. $R^* = 0$ iff $\eta(x) \in \{0, 1\}$ iff Y is a function of X

3. $R^* = 1/2$ iff $\eta(x) \equiv 1/2$ which implies that $Y \perp X$

4. If $Y \perp X$ then $\phi^*(x)$ is constant (1 if $\pi_1 \ge \pi_0$ and 0 if $\pi_0 < \pi_1$)

Fixed vs. Data Dependent Prediction Rules

Observations $D_n = (X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ iid $\sim (X, Y)$

Fixed rule $\phi : \mathcal{X} \to \{0, 1\}$

• $\phi(x)$ predicts class label of x without regard to D_n

• Risk
$$R(\phi) = \mathbb{P}(\phi(X) \neq Y)$$
 is a constant

Data-dependent rule $\hat{\phi} : \mathcal{X} \times (\mathcal{X} \times \{0,1\})^n \to \{0,1\}$

• $\hat{\phi}(x) = \hat{\phi}(x:D_n)$ predicts class label of x based on D_n

▶ Risk $R(\hat{\phi}) = \mathbb{P}(\hat{\phi}(X) \neq Y | D_n)$ is a random variable