Miscellaneous Calculus

Andrew Nobel

September, 2021

Taylor's Theorem in One Dimension

Taylor's Theorem, First Order

Fact 1: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ have continuous derivative g^{\prime}. Then for each x and h

$$
g(x+h)=g(x)+h g^{\prime}(\tilde{x})
$$

where \tilde{x} lies between x and $x+h$. As a consequence, if h is small

$$
g(x+h) \approx g(x)+h g^{\prime}(x)
$$

Idea: Linear approximation of g in a neighborhood of the point x

Taylor's Theorem, Second Order

Fact 2: If g has two continuous derivatives g^{\prime} and $g^{\prime \prime}$, then for each x and h

$$
g(x+h)=g(x)+h g^{\prime}(x)+h^{2} g^{\prime \prime}(\tilde{x}) / 2
$$

where \tilde{x} lies between x and $x+h$. As a consequence, if h is small

$$
g(x+h) \approx g(x)+h g^{\prime}(x)+h^{2} g^{\prime \prime}(x) / 2
$$

Idea: Quadratic approximation of g in a neighborhood of the point x

Taylor's Theorem, General Version

Fact: If $g: \mathbb{R} \rightarrow \mathbb{R}$ has derivatives $g^{(1)}, \ldots, g^{(k)}$ then for each $x, h \in \mathbb{R}$

$$
g(x+h)=\sum_{j=0}^{k-1} \frac{g^{(j)}(x)}{j!} h^{j}+\frac{g^{(k)}(\tilde{x})}{k!} h^{k}
$$

where $g^{(0)}=g$ and \tilde{x} lies between x and $x+h$. If $g^{(k)}$ is continuous then the final "remainder" term is of smaller order than h^{k}

- Theorem extends to functions g defined on an interval in \mathbb{R}
- Result is a consequence of mean value theorem from calculus

Inequalities from Calculus

Increasing and Decreasing Functions

Recall: Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions

- f is increasing if $x \leq y$ implies that $f(x) \leq f(y)$
- f is decreasing if $x \leq y$ implies that $f(x) \geq f(y)$
- $f \leq g$ if $g(x)-f(x) \geq 0$ for every x

Fact: Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is differentiable

- f is increasing if $f^{\prime}(x) \geq 0$ for every x
- f is decreasing if $f^{\prime}(x) \leq 0$ for every x
- f is constant if $f^{\prime}(x)=0$ for every x

Inequalities Using Derivatives

Common Problem

- Differentiable functions $f, g: I \rightarrow \mathbb{R}$ defined on interval $I \subseteq \mathbb{R}$
- Wish to show that $f(x) \geq g(x)$ for each $x \in I$

Method 1: Define difference $h(x):=f(x)-g(x)$ Find $c \in I$, possibly an endpoint of I, such that $h(c) \geq 0$. Then show

$$
h^{\prime}(x) \text { is } \begin{cases}\geq 0 & \text { if } x \geq c \\ \leq 0 & \text { if } x \leq c\end{cases}
$$

Method 2: Expand h in a k th order Taylor series around $c \in I$, usually where $h^{(0)}(c)=\cdots=h^{(k-1)}(c)=0$, and then examine the remainder term

Inequalities from Calculus: Examples

Ex 1. Show that $h(x)=x /(1+x)$ is increasing for $x \geq 0$

Ex 2. For all $x, 1+x \leq e^{x}$

Ex 3. For $0 \leq x<1, \log (1-x) \leq-x-x^{2} / 2$

Ex 4 . For any $a_{1}, \ldots, a_{n} \in \mathbb{R}$ we have the inequality

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{a_{i} a_{j}}{i+j}\right) \geq 0
$$

Example: Birthday Problem

Qu: How likely is it that m unrelated people have different birthdays?

- Let $X_{i} \in\{1, \ldots, 365\}$ be birthday of i th person

Fact: If X_{1}, \ldots, X_{m} are independent and uniformly distributed then

$$
\mathbb{P}\left(X_{1}, \ldots, X_{m} \text { distinct }\right) \leq \exp \left\{-\frac{(m-1) m}{730}\right\}
$$

Cor: If $m \geq 24$ then probability two people have the same birthday $\geq 1 / 2$

Gradients and Hessians

Gradients and Hessians

Definition: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have well defined first and second order partial derivatives. The gradient of f is the vector of first partial derivatives

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{x}), \ldots, \frac{\partial f}{\partial x_{d}}(\mathbf{x})\right)^{t} \in \mathbb{R}^{d}
$$

The Hessian of f is the matrix of second partial derivatives

$$
H(\mathbf{x})=\nabla^{2} f(\mathbf{x})=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}): 1 \leq i, j, \leq d\right] \in \mathbb{R}^{d \times d}
$$

Note: If the second partials $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ are continuous then $\nabla^{2} f$ is symmetric

Examples

Ex 1: Linear $f(\mathbf{x})=\langle\mathbf{u}, \mathbf{x}\rangle+b$.

- $\nabla f(\mathbf{x})=\mathbf{u}$
- $\nabla^{2} f(\mathrm{x})=\mathbf{0}$

Ex 2: Quadratic $f(\mathbf{x})=\mathbf{x}^{t} \mathbf{A} \mathbf{x}$ with $\mathbf{A} \in \mathbb{R}^{d \times d}$ symmetric

- $\nabla f(\mathbf{x})=2 \mathbf{A x}$
- $\nabla^{2} f(\mathbf{x})=2 \mathbf{A}$

Multivariate Taylor's Theorem

Fact: If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ has continuous second partial derivatives $\partial^{2} f / \partial x_{i} \partial x_{j}$ at each point in \mathbb{R}^{d} then for every $x, h \in \mathbb{R}^{d}$

$$
f(x+h)=f(x)+\langle\nabla f(x), h\rangle+\frac{1}{2} h^{t} \nabla^{2} f(\tilde{x}) h
$$

where $\tilde{x}=x+\alpha h$ for some $\alpha \in[0,1]$. In particular, we have

$$
f(x+h)=f(x)+\langle\nabla f(x), h\rangle+\frac{1}{2} h^{t} \nabla^{2} f(x) h+o\left(\|h\|^{2}\right)
$$

Stirling's Approximation

The Gamma Function and Stirling's Approximation

Gamma function: Defined by $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$ for $\alpha>0$
(1) $\Gamma(1)=1$ and $\Gamma(1 / 2)=\sqrt{\pi}$
(2) $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$
(3) $\Gamma(n)=(n-1)$!
(4) $\log \Gamma(\alpha)$ is convex.
*Stirling's Approximation
(1) $\Gamma(\alpha+1) \sim \sqrt{2 \pi \alpha}\left(\frac{\alpha}{e}\right)^{\alpha}$
(2) $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \delta_{n}$ where $e^{1 /(12 n+1)} \leq \delta_{n} \leq e^{1 /(12 n)}$

