
Computer Assignment 3 - Matrix Algebra and PCA
Machine Learning, Spring 2020

YOUR NAME

In this assignment, we will explore how to run a few simple (but incredibly useful) linear algebra commands
in R. Then, we will examine how one calculates principle components using built-in R functions.

Matrix algebra an functions in R

Transpose and Checking Equality

The following 5 vectors represent 5 different variables, on 4 observations.

x.1 = c(2, .5, 4, 2)
x.2 = c(1, 1, 1, 1)
x.3 = c(-1, 0, 2, 1)
x.4 = c(1, -.5, .25, 3)
x.5 = c(3, 6, 9, 12)

Exercise 1

1. Given the vectors x.1, x.2, x.3, x.4 and x.5, use the cbind and rbind functions to create the
matrices X and Y , where the rows of X are x.1-x.5 and the columns of Y are x.1-x.5.

Concatenate the vectors as rows
YOUR ANSWER HERE

Concatenate the vectors as columns
YOUR ANSWER HERE

2. We can calculate the transpose of a matrix by using the t() command. For example, try typing t(X)
and look at the output. Type Y as well. Compare the two obtained matrices.

YOUR ANSWER HERE

3. Based on our construction, t(X) = Y. We can check that this is true by using a logical equivalence
command ==. When checking the equality of two matrices, the == command will check the entry
by entry equality of the two matrices. To do this, the two matrices must be of the same dimensions.
Verify that t(X) = Y by using the command t(X) == Y. Verify that R will return an error if you type
t(x.1) == Y because x.1 and Y are not the same dimension.

1

YOUR ANSWER HERE

Matrix Multiplication

Matrix multiplication is performed in R using the %�% command. For example, to obtain the product AB
of two matrices A and B you can type A%�%B. Calculate the empirical covariance matrix of Y using the
following code:

#calculate the column means of Y
col.means = colMeans(Y)

#create a matrix of these column means repeated across the rows
Y.bar = matrix(rep(col.means,4),ncol = 5, byrow = TRUE)

#column center X
Y.col.centered = Y - Y.bar

#calculate the empirical covariance matrix of X
sigma = 1/5 * t(Y.col.centered) %*% Y.col.centered

It is important to distinguish the difference between the %�% command and the � command in R. The
� command is used for scalar multiplication and for entry-wise multiplication of matrices. Knowing this,
answer the following questions:

Exercise 2

1. Verify that sigma is symmetric using the t() and == commands.
2. Based on sigma, what is Cov(x.1, x.3)?
3. What is X * X? Note that this is different than what one obtains when typing t(X) \%*\% X.

YOUR ANSWER HERE

1. HERE.
2. HERE.
3. HERE.

Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of a matrix A can be calculated simply by typing the eigen(A) command.
The output of this command will contain two components: the eigenvectors and the eigenvalues of the matrix
A. Using the eigen() command, answer the following questions:

Exercise 3:

Use the outcomes of the following code chunk, and the equations studied in class to answer the following
questions.

1. What are the first and second eigenvectors of sigma? What are the first and second eigenvalues of
sigma?

2

2. Let eig.1 be the first eigenvector of sigma. What is the variance of the projections of the columns of
sigma onto eig.1?

3. What is the relationship between this variance and the first eigenvalue?
4. Without calculations, what do you expect the variance of the projections of the columns of sigma onto

the second eigenvector of sigma to be?

eig = eigen(sigma)

print("Eigenvalues:")
#YOUR ANSWER HERE
eig$values[1:2]

print("Eigenvectors:")
#YOUR ANSWER HERE
eig$vectors[, 1:2]

2. HERE.
3. HERE.
4. HERE.

Norms

The Euclidean norm || � || of a vector can be calculated in R using the norm() command. For example, to
calculate the norm of the a vector u, we can type norm(u). Note that ||x||2 is the sum of squared distance
of entries of x. For example,

norm(as.matrix(x.1))

The default in R is to use the Euclidean norm; however, one can specify other types of norms by using the
type argument in norm(u, type =). Use help(norm) for more information. Answer the following questions:

PCA Basics

Running a principal components analysis in R is fast and simple, and only makes use of one function which
is available to all versions of R. The below description is partially taken from the publicly available R
documentation. This documentation can be seen in full if you type ?prcomp or help(prcomp) in your R
console.

require('stats')
?prcomp

prcomp performs a principal components analysis on the given numeric data matrix x and returns the
following outputs:

Outputs:

• sdev: the standard deviations of the principal components.
• rotation: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
• x: the rotated data; i.e., a matrix whose columns are the principal components.
• center : the means that were subtracted.

3

• scale: the scalings applied to each variable.

Let’s now see PCA in action on a real dataset. We first consider the iris dataset available in R. Load the
data and separate the species names and quantitative data using the following commands:

data(iris)

#Separate the species names from the quantitative data
data = iris[,1:4]
species = iris$Species

Exercise 4

Obtain the summary of the principal components of the Iris dataset. Observe the scree plot associated with
the Iris data. Answer the following questions.

1. How many variables does this data set contain? What are their names?
2. Why might PCA be helpful for this data set?
3. Run a principal components analysis on the iris dataset. What proportion of the total variation in the

data is explained by each of the principal components?
4. Based on the variation explained for each of these components, would you be comfortable projecting

the iris data set down to only one dimension?

dim(data)
colnames(data)

#Run principal components analysis
pcs = prcomp(data)

#Summarize the pcs
summary(pcs)

Make scree plot
screeplot(pcs, type = "lines", main = "Variance explained by PC")

YOUR ANSWERS HERE

1. HERE.
2. HERE.
3. HERE.
4. HERE.

The PCs

Let’s first look at each of these PCs individually. One way to do this is to look at the distribution of the PC
scores for each PC. This is a good time to introduce the for() loop command. The for() loop allows one to
sequentially call a command over an index specified in (). For example, try

for(i in 1:4){
print(i)

}

4

We will plot the four pcs using a for loop:

#Partition the image space into a 2 x 2 grid
par(mfrow = c(2,2))

#Now run the for loop to plot each image separately
#For each plot, we will label the points according to species

for(i in 1:4){
plot(pcs$x[,i],

main = paste("PC", eval(i)),
xlab = "Sample Index",
ylab = paste("PC", eval(i), "score"),
col = species)

}

Note that the col = species command automatically colors the points by the flower species. Here’s a quick
trick for figuring out which colors correspond to which species.

barplot(table(species), col = unique(species))

Exercise 5

1. Comment on the four pc plots. Do any of the plots reveal any interesting structure?
2. Do you think that you could distinguish the species of plant if you projected the original data onto

PC4? How about PC1?

YOUR ANSWERS HERE

1. HERE.
2. HERE.

Biplots

Let’s see if we have any further evidence of clustering in the data by looking at a biplot of the PCs. That
is, we will plot the scores of the first PC against the scores of the second. In this way, we are illustrating a
2-dimensional view of this 4-dimensional data. Create a biplot with labeled points using the following code:

biplot(pcs)

Next, let’s plot a pairwise scatterplots, colored each species type, for each pair of pcs. Do this by using the
pairs() command as follows:

pairs(pcs$x, col = species)

Exercise 6

1. What features do you notice from the resulting biplot? Do the data appear to “cluster?"

5

2. Compare your pairwise plots to the plot of PC 1 alone. Does there appear to be any added benefit
in projecting the data into more than one direction? In conclusion, to how many dimensions can we
project this data and still capture the features of the species?

YOUR ANSWERS HERE

1. HERE.
2. HERE.

6

	Matrix algebra an functions in R
	Transpose and Checking Equality
	Exercise 1

	Matrix Multiplication
	Exercise 2

	Eigenvalues and Eigenvectors
	Exercise 3:

	Norms

	PCA Basics
	Exercise 4
	The PCs
	Exercise 5

	Biplots
	Exercise 6

