## STOR 565 Homework: Order and Convexity

- 1. Let  $\{a_1, \ldots, a_n\}$  and  $\{b_1, \ldots, b_n\}$  be two sequences of real numbers.
  - a. Show that  $\min\{a_i\} + \min\{b_i\} \le \min\{a_i + b_i\} \le \min\{a_i\} + \max\{b_i\}$ .

Hints: For the first inequality, note that the leftmost term is less than or equal to  $a_j + b_j$  for every j. For the second inequality, note that the middle term is less than or equal to  $a_j + b_j$  where  $a_j = \min\{a_i\}$ .

- b. As clearly as you can, provide an English language explanation of the inequalities above.
- c. Following the arguments from the lecture, show that  $\max\{-b_i\} = -\min\{b_i\}$ .
- d. Use the results above to show that

$$\min\{a_i\} - \max\{b_i\} \le \min\{a_i - b_i\} \le \min\{a_i\} - \min\{b_i\}.$$

- 2. In each case below find  $\min_{x \in \mathcal{X}} f(x)$ ,  $\operatorname{argmin}_{x \in \mathcal{X}} f(x)$ ,  $\max_{x \in \mathcal{X}} f(x)$ , and  $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$ . Indicate when the min or the max do not exist. It may help to sketch the functions.
  - a.  $f(x) = \sin x$  with  $\mathcal{X} = [0, 2\pi]$  and  $\mathcal{X} = [0, \pi]$
  - b.  $f(x) = x^2$  with  $\mathcal{X} = [-2, 2], \, \mathcal{X} = (-2, 2], \, \mathcal{X} = (-2, 2)$
  - c.  $f(x) = \min(x, 1)$  with  $\mathcal{X} = [0, 2]$  and  $\mathcal{X} = (-2, 2]$
- 3. Define what it means for a set  $C \subseteq \mathbb{R}^d$  to be convex. Let  $w \in \mathbb{R}^d$  be a vector and  $b \in \mathbb{R}$  a constant. Show that  $C = \{x : w^t x \ge b\}$  and  $D = \{x : w^t x = b\}$  are convex subsets of  $\mathbb{R}^d$ .
- 4. Let  $C_1, \ldots, C_n \subseteq \mathbb{R}^d$  be convex. Show that the intersection  $\bigcap_{i=1}^n C_i$  is convex.
- 5. (Operations on convex functions that produce new convex functions) Let  $C \subseteq \mathbb{R}^d$  be a convex set and let  $f_1, \ldots, f_n : C \to \mathbb{R}$  be convex functions. Use the definition of convexity to establish the following.
  - a. If  $a_1, \ldots, a_n$  are non-negative then  $g(x) = \sum_{i=1}^n a_i f_i(x)$  is convex on C.
  - b. The function  $g(x) = \max_{1 \le i \le n} f_i(x)$  is convex on C.

- c. If  $h : \mathbb{R} \to \mathbb{R}$  is convex and increasing then g(x) = h(f(x)) is convex on C. (Recall that h is increasing if  $u \le v$  implies  $h(u) \le h(v)$ ).
- 6. Define what it means for a function to be strictly convex. Define the notion of a global minima. Repeat the argument from class showing that the global minima of a strictly convex function is necessarily unique.
- 7. Let  $h_{\alpha}: \mathbb{R} \to [0, \infty)$  be defined by  $h_{\alpha}(x) = |x|^{\alpha}$  where  $\alpha > 0$  is fixed. Sketch  $h_{\alpha}(x)$  for  $\alpha = 1/2, 1, 2$ . For which values of  $\alpha$  is  $h_{\alpha}(x)$  convex? Justify your answer.
- 8. Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex function. For  $\gamma \in \mathbb{R}$  the  $\gamma$ -level set of f is defined to be the set of points x where f(x) is less than or equal to  $\gamma$ . Formally,

$$L_{\gamma}(f) = \{x : f(x) \le \gamma\}$$

- a. Draw some level sets for the convex functions  $f(x) = x^2$  and  $f(x) = e^{-x}$ . Note that  $L_{\gamma}(f)$  may be empty.
- b. Show that for each  $\gamma$  the level set  $L_{\gamma}(f)$  is convex. Hint: If  $L_{\gamma}(f)$  is empty then it is trivially convex. Otherwise, use the definition of a convex set.
- 9. Let  $U_1, \ldots, U_m$  be random variables. Find an inequality relating  $\mathbb{E}(\min_{1 \leq j \leq m} U_j)$  and  $\min_{1 \leq j \leq m} \mathbb{E}U_j$ . Hint: Begin by noting that  $\min_{1 \leq j \leq m} U_j \leq U_k$  for each k.
- 10. Let  $f_1, \ldots, f_k : \mathbb{R}^p \to \mathbb{R}$  be convex functions.
  - a. Show that for each number t the set  $L_t = \{x : \sum_{j=1}^k f_j(x) \le t\}$  is convex. Hint: Use results from the previous homework.
  - b. Show that for each t the sets  $\{\beta \in \mathbb{R}^p : \sum_{j=1}^p \beta_j^2 \le t\}$  and  $\{\beta \in \mathbb{R}^p : \sum_{j=1}^p |\beta_j| \le t\}$  are convex.
- 11. Show that the Lagrange dual function, defined by

$$\tilde{L}(\lambda) = \min_{w,b} L(w,b,\lambda)$$

is concave. Hint: Argue that the dual function is the minimum of linear (hence concave) functions, and is therefore concave. The SVM dual problem is given by the program

$$\max \tilde{L}(\lambda)$$
 s.t.  $\sum_{i=1}^{n} \lambda_i y_i = 0$  and  $\lambda_1, \dots, \lambda_n \ge 0$ 

Carefully define the constraint set for  $\lambda$  in this problem and argue that this set is convex. (Note that there are n+1 constraints.) Thus the dual problem seeks to maximize a concave function over a convex set.

12. Let  $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$  be any real valued function. Show that

$$\max_{x \in \mathcal{X}} \, \min_{y \in \mathcal{Y}} f(x,y) \, \, \leq \, \, \min_{y \in \mathcal{Y}} \, \max_{x \in \mathcal{X}} f(x,y)$$

This inequality shows that the value  $d^*$  of the SVM dual problem is less than or equal to the value  $p^*$  of the SVM primal problem.

13. Show that the following functions  $f, g, h : [0, 1] \to \mathbb{R}$  used to define impurity measures for growing trees are concave.

a. 
$$m(p) = \min(p, 1 - p)$$

b. 
$$g(p) = p(1-p)$$

c. 
$$h(p) = -p \log p - (1-p) \log (1-p)$$
, with the convention that  $0 \log 0 = 0$ 

Which of these functions is strictly concave?