STOR 565 Homework: Order and Convexity

1. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ be two sequences of real numbers.
a. Show that $\min \left\{a_{i}\right\}+\min \left\{b_{i}\right\} \leq \min \left\{a_{i}+b_{i}\right\} \leq \min \left\{a_{i}\right\}+\max \left\{b_{i}\right\}$.

Hints: For the first inequality, note that the leftmost term is less than or equal to $a_{j}+b_{j}$ for every j. For the second inequality, note that the middle term is less than or equal to $a_{j}+b_{j}$ where $a_{j}=\min \left\{a_{i}\right\}$.
b. As clearly as you can, provide an English language explanation of the inequalities above.
c. Following the arguments from the lecture, show that $\max \left\{-b_{i}\right\}=-\min \left\{b_{i}\right\}$.
d. Use the results above to show that

$$
\min \left\{a_{i}\right\}-\max \left\{b_{i}\right\} \leq \min \left\{a_{i}-b_{i}\right\} \leq \min \left\{a_{i}\right\}-\min \left\{b_{i}\right\} .
$$

2. In each case below find $\min _{x \in \mathcal{X}} f(x), \operatorname{argmin}_{x \in \mathcal{X}} f(x), \max _{x \in \mathcal{X}} f(x)$, and $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$. Indicate when the min or the max do not exist. It may help to sketch the functions.
a. $f(x)=\sin x$ with $\mathcal{X}=[0,2 \pi]$ and $\mathcal{X}=[0, \pi]$
b. $f(x)=x^{2}$ with $\mathcal{X}=[-2,2], \mathcal{X}=(-2,2], \mathcal{X}=(-2,2)$
c. $f(x)=\min (x, 1)$ with $\mathcal{X}=[0,2]$ and $\mathcal{X}=(-2,2]$
3. Define what it means for a set $C \subseteq \mathbb{R}^{d}$ to be convex. Let $w \in \mathbb{R}^{d}$ be a vector and $b \in \mathbb{R}$ a constant. Show that $C=\left\{x: w^{t} x \geq b\right\}$ and $D=\left\{x: w^{t} x=b\right\}$ are convex subsets of \mathbb{R}^{d}.
4. Let $C_{1}, \ldots, C_{n} \subseteq \mathbb{R}^{d}$ be convex. Show that the intersection $\cap_{i=1}^{n} C_{i}$ is convex.
5. (Operations on convex functions that produce new convex functions) Let $C \subseteq \mathbb{R}^{d}$ be a convex set and let $f_{1}, \ldots, f_{n}: C \rightarrow \mathbb{R}$ be convex functions. Use the definition of convexity to establish the following.
a. If a_{1}, \ldots, a_{n} are non-negative then $g(x)=\sum_{i=1}^{n} a_{i} f_{i}(x)$ is convex on C.
b. The function $g(x)=\max _{1 \leq i \leq n} f_{i}(x)$ is convex on C.
c. If $h: \mathbb{R} \rightarrow \mathbb{R}$ is convex and increasing then $g(x)=h(f(x))$ is convex on C. (Recall that h is increasing if $u \leq v$ implies $h(u) \leq h(v))$.
6. Define what it means for a function to be strictly convex. Define the notion of a global minima. Repeat the argument from class showing that the global minima of a strictly convex function is necessarily unique.
7. Let $h_{\alpha}: \mathbb{R} \rightarrow[0, \infty)$ be defined by $h_{\alpha}(x)=|x|^{\alpha}$ where $\alpha>0$ is fixed. Sketch $h_{\alpha}(x)$ for $\alpha=1 / 2,1,2$. For which values of α is $h_{\alpha}(x)$ convex? Justify your answer.
8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. For $\gamma \in \mathbb{R}$ the γ-level set of f is defined to be the set of points x where $f(x)$ is less than or equal to γ. Formally,

$$
L_{\gamma}(f)=\{x: f(x) \leq \gamma\}
$$

a. Draw some level sets for the convex functions $f(x)=x^{2}$ and $f(x)=e^{-x}$. Note that $L_{\gamma}(f)$ may be empty.
b. Show that for each γ the level set $L_{\gamma}(f)$ is convex. Hint: If $L_{\gamma}(f)$ is empty then it is trivially convex. Otherwise, use the definition of a convex set.
9. Let U_{1}, \ldots, U_{m} be random variables. Find an inequality relating $\mathbb{E}\left(\min _{1 \leq j \leq m} U_{j}\right)$ and $\min _{1 \leq j \leq m} \mathbb{E} U_{j}$. Hint: Begin by noting that $\min _{1 \leq j \leq m} U_{j} \leq U_{k}$ for each k.
10. Let $f_{1}, \ldots, f_{k}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be convex functions.
a. Show that for each number t the set $L_{t}=\left\{x: \sum_{j=1}^{k} f_{j}(x) \leq t\right\}$ is convex. Hint: Use results from the previous homework.
b. Show that for each t the sets $\left\{\beta \in \mathbb{R}^{p}: \sum_{j=1}^{p} \beta_{j}^{2} \leq t\right\}$ and $\left\{\beta \in \mathbb{R}^{p}: \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t\right\}$ are convex.
11. Show that the Lagrange dual function, defined by

$$
\tilde{L}(\lambda)=\min _{w, b} L(w, b, \lambda)
$$

is concave. Hint: Argue that the dual function is the minimum of linear (hence concave) functions, and is therefore concave. The SVM dual problem is given by the program

$$
\max \tilde{L}(\lambda) \quad \text { s.t. } \quad \sum_{i=1}^{n} \lambda_{i} y_{i}=0 \text { and } \lambda_{1}, \ldots, \lambda_{n} \geq 0
$$

Carefully define the constraint set for λ in this problem and argue that this set is convex. (Note that there are $n+1$ constraints.) Thus the dual problem seeks to maximize a concave function over a convex set.
12. Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be any real valued function. Show that

$$
\max _{x \in \mathcal{X}} \min _{y \in \mathcal{Y}} f(x, y) \leq \min _{y \in \mathcal{Y}} \max _{x \in \mathcal{X}} f(x, y)
$$

This inequality shows that the value d^{*} of the SVM dual problem is less than or equal to the value p^{*} of the SVM primal problem.
13. Show that the following functions $f, g, h:[0,1] \rightarrow \mathbb{R}$ used to define impurity measures for growing trees are concave.
a. $m(p)=\min (p, 1-p)$
b. $g(p)=p(1-p)$
c. $h(p)=-p \log p-(1-p) \log (1-p)$, with the convention that $0 \log 0=0$

Which of these functions is strictly concave?

