STOR 565 Homework: Linear Algebra and Matrices

1. Let $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^t \mathbf{v} = \sum_{i=1}^d u_i v_i$ be the usual inner product in \mathbb{R}^d . Recall that the norm of a vector $\mathbf{u} \in \mathbb{R}^d$ is defined by $||\mathbf{u}|| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2}$. Use this definition, and the definition of vector sums and scalar multiplication to establish the following.

- a. Show that $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- b. Show that $\langle a\mathbf{u}, b\mathbf{v} \rangle = ab \langle \mathbf{u}, \mathbf{v} \rangle$
- c. Show that $\langle \mathbf{u} + \mathbf{w}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle$
- d. Show that $||\mathbf{u}|| = 0$ if and only if $\mathbf{u} = 0$.
- e. Use the definition of the norm to show that $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + ||\mathbf{v}||^2$.
- f. Use this equation and the Cauchy Schwarz inequality to establish the triangle inequality for the vector norm, namely $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$.
- g. The standard Euclidean distance between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$ is defined by $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$. Use part (c) to establish that $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ for any vectors $\mathbf{u}, \mathbf{v}, z \in \mathbb{R}^d$. Draw a picture illustrating this result.

2. Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be the data matrix associated with *n* samples $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ such that $\sum_{i=1}^{n} \mathbf{x}_i = 0$. Answer the following. You may use arguments from class, but clearly explain your work.

- a. Define the sample covariance matrix \mathbf{S} in terms of \mathbf{X} . What are the dimensions of \mathbf{S} ?
- b. Show that $\mathbf{S} = n^{-1} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^t$
- c. Show that \mathbf{S} is symmetric and non-negative definite
- d. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$ be the eigenvalues of **S**. Show that $\sum_{k=1}^p \lambda_k = n^{-1} ||\mathbf{X}||^2$
- e. Show that if p > n then rank $(\mathbf{S}) < p$ and \mathbf{S} is not invertible. Hint: recall that rank $(\mathbf{S}) = \operatorname{rank}(\mathbf{X}^t \mathbf{X}) = \operatorname{rank}(\mathbf{X}) \le \min(n, p).$
- f. For any vector $\mathbf{v} \in \mathbb{R}^p$ we have $n^{-1} \sum_{i=1}^n \langle \mathbf{x}_i, \mathbf{v} \rangle^2 = \mathbf{v}^t \mathbf{S} \mathbf{v}$.
- 3. Let $\mathbf{u} = (u_1, \ldots, u_d)^t$ be a vector in \mathbb{R}^d .

- a. Show that $||\mathbf{u}|| \leq |u_1| + \cdots + |u_d|$. Hint: use the fact that for $a, b \geq 0$ one has $a \leq b$ if and only if $a^2 \leq b^2$. Give an examples with d = 2 where the bound holds with equality, and where one has strict inequality.
- b. Use the Cauchy-Schwarz inequality to get the upper bound $|u_1| + \cdots + |u_d| \le ||\mathbf{u}|| d^{1/2}$. Find an example where the bound holds with equality.

4. (Norms of outer products) Let $\mathbf{u} \in \mathbb{R}^k$ and $\mathbf{v} \in \mathbb{R}^l$ be vectors. Find an expression relating the Frobenius norm of the outer product $||\mathbf{u}\mathbf{v}^t||$ to the Euclidean norms of the vectors $||\mathbf{u}||$ and $||\mathbf{v}||$.

- 5. Let $\mathbf{u}_1 = (-1, 2, 0)^t$ and $\mathbf{u}_2 = (2, 4, 3)^t$. Find the projections of \mathbf{u}_1 and \mathbf{u}_2 onto \mathbf{v} where:
 - a. $\mathbf{v} = (0, 1, 0)^t$ b. $\mathbf{v} = (1, 1, 1)^t$ c. $\mathbf{v} = (1, 0, -1)^t$

6. Let $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^d$ be orthonormal vectors with span $V = \{\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 : \alpha, \beta \in \mathbb{R}\}$. For $\mathbf{u} \in \mathbb{R}^d$ define the projection of \mathbf{u} onto V to be the vector $\mathbf{v} \in V$ that is closest to \mathbf{u} ,

$$\operatorname{proj}_{V}(\mathbf{u}) = \operatorname*{argmin}_{\mathbf{v} \in V} ||\mathbf{u} - \mathbf{v}||.$$

Show that $\operatorname{proj}_V(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2$. Hint: Adapt the argument used in class for the projection onto a one-dimensional subspace.

7. Consider a data set consisting of four points in \mathbb{R}^2

$$\mathbf{x}_1 = (1,2)^t, \ \mathbf{x}_2 = (-1,2)^t, \ \mathbf{x}_3 = (2,-1)^t, \ \mathbf{x}_4 = (2,1)^t$$

- a. Replace each observation \mathbf{x}_i by the centered observation $\tilde{\mathbf{x}}_i = \mathbf{x}_i \frac{1}{4} \sum_{j=1}^4 \mathbf{x}_j$. Draw a plot of the points $\tilde{\mathbf{x}}_i$. Form a data matrix \mathbf{X} from $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_4$.
- b. Calculate the sample covariance matrix $\mathbf{S} = \frac{1}{4} \mathbf{X}^T \mathbf{X}$.
- c. Calculate the eigenvalues of **S**. Is **S** invertible? If so, find \mathbf{S}^{-1} .
- d. Find orthonormal eigenvectors of **S**.

e. What is the best one-dimensional subspace (line) for approximating the centered observations $\tilde{\mathbf{x}}_i$? Draw this line on your plot.

8. Measuring the variability of a set of vectors. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ be a sample of *n p*-dimensional vectors. We can measure the extent to which a vector $\mathbf{u} \in \mathbb{R}^p$ acts as representative for the sample through the sum of squares

$$S(\mathbf{u}) := \sum_{i=1}^{n} ||\mathbf{x}_i - \mathbf{u}||^2.$$

a. Show that $S(\mathbf{u})$ is minimized when \mathbf{u} is equal to the centroid

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i.$$

If the general case seems difficult, consider first the case when p = 1.

Consider the two variance-type quantities

$$V_1 = \frac{1}{n} \sum_{i=1}^n ||\mathbf{x}_i - \overline{\mathbf{x}}||^2$$
 and $V_2 = \frac{1}{2n^2} \sum_{i=1}^n \sum_{j=1}^n ||\mathbf{x}_i - \mathbf{x}_j||^2$.

Note that V_1 and V_2 are non-negative.

- b. Carefully describe V_1 and V_2 in plain English.
- c. Give necessary and sufficient conditions under which $V_1 = 0$.
- d. Give necessary and sufficient conditions under which $V_2 = 0$.
- e. Show that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i}^{t} \mathbf{x}_{j} = (\sum_{i=1}^{n} \mathbf{x}_{i})^{t} (\sum_{j=1}^{n} \mathbf{x}_{j}) = n^{2} ||\overline{\mathbf{x}}||^{2}$$

f. Using the identity from part e., and some additional calculations, show that

$$V_1 = V_2 = \frac{1}{n} \sum_{i=1}^n ||\mathbf{x}_i||^2 - ||\overline{\mathbf{x}}||^2$$

9. Show that if $\mathbf{v}_1, \mathbf{v}_2$ are eigenvectors of a symmetric matrix \mathbf{A} with different eigenvalues, then $\mathbf{v}_1, \mathbf{v}_2$ are orthogonal. Hint: Begin by taking transposes to show that $\mathbf{v}_1^t \mathbf{A} \mathbf{v}_2$ and $\mathbf{v}_2^t \mathbf{A} \mathbf{v}_1$ are equal; then use the definition of an eigenvector and simplify.

10. Recall that the trace of an $n \times n$ matrix $\mathbf{A} = \{a_{ij}\}$ is the sum of its diagonal elements, that is $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$.

- a. Show that $tr(\mathbf{A}) = tr(\mathbf{A}^t)$.
- b. Note that $(\mathbf{A} \mathbf{B})_{ii} = \sum_{j=1}^{n} a_{ij} b_{ji}$ (Why?). Use this to show that $tr(\mathbf{A} \mathbf{B}) = tr(\mathbf{B} \mathbf{A})$.

c. By applying the identity of part b. multiple times, show that

$$\operatorname{tr}(\mathbf{A} \mathbf{B} \mathbf{C}) = \operatorname{tr}(\mathbf{B} \mathbf{C} \mathbf{A}) = \operatorname{tr}(\mathbf{C} \mathbf{A} \mathbf{B})$$

d. Suppose that $\mathbf{B} = \{b_{ij}\}$ is an $m \times n$ matrix. By considering $(\mathbf{B}^t \mathbf{B})_{ii}$, show that

$$\operatorname{tr}(\mathbf{B}^t \mathbf{B}) = \sum_{i=1}^m \sum_{j=1}^n b_{ij}^2$$

11. Recall that the Frobenius norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by $||A|| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$, the square root of the sum of the squares of the entries of the matrix. Establish the following properties of the Frobenius norm for matrices.

- (a) $||\mathbf{A}|| = 0$ if and only if $\mathbf{A} = 0$
- (b) $||b\mathbf{A}|| = |b|||\mathbf{A}||$
- (c) $||\mathbf{A}||^2 = \sum_{i=1}^m ||a_i||^2 = \sum_{j=1}^n ||a_{j}||^2$. Here a_i denotes the *i*th row of A, and a_{j} denotes the *j*th column of A.
- (d) $||\mathbf{AB}|| \leq ||\mathbf{A}|| ||\mathbf{B}||$. Hint: Use Cauchy-Schwarz.

12. Suppose that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are orthogonal vectors in \mathbb{R}^n . Show that $||\sum_{i=1}^k \mathbf{v}_i||^2 = \sum_{i=1}^k ||\mathbf{v}_i||^2$. Interpret this in terms of the Pythagorean formula relating the length of the hypotenuse of a right triangle to the lengths of the other edges.

13. Show that if $A \in \mathbb{R}^{n \times n}$ is non-negative definite then all its eigenvalues are non-negative. Hint: Apply the definition of non-negative definite to the eigenvectors of A.

14. Let **A** and **B** be invertible $n \times n$ matrices. Argue that $(\mathbf{A} \mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$.

15. Let **A** be an $n \times n$ matrix. Show that if **A** has rank n then $\mathbf{A}\mathbf{x} = 0$ if and only if $\mathbf{x} = 0$. Hint: If **A** has rank n then its columns are linearly independent.

16. Let $A \in \mathbb{R}^{d \times d}$ be symmetric. The spectral theorem tells us that there is an orthonormal basis v_1, \ldots, v_d for \mathbb{R}^d such that each v_i is an eigenvector of A.

- a. Show that the $d \times d$ matrix $\Gamma = [v_1, \ldots, v_d]$ is orthogonal, that is $\Gamma^t \Gamma = I$. Note that this implies $\Gamma \Gamma^t = I$, though you do not need to show this.
- b. Let $D = \text{diag}(\lambda_1, \dots, \lambda_d)$ be the $d \times d$ diagonal matrix with D_{ii} equal to the *i*th eigenvalue of A and all other entries equal to zero. Show that $A\Gamma = \Gamma D$.
- c. Conclude from the expression above that A can be written in the form $A = \Gamma D \Gamma^t$

17. In the previous homework problem you showed that any symmetric matrix $A \in \mathbb{R}^{d \times d}$ can be written in the form $A = \Gamma D \Gamma^t$, where $\Gamma \in \mathbb{R}^{d \times d}$ is an orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_d)$ is a diagonal matrix with D_{ii} equal to the *i*th eigenvalue of A and all other entries equal to zero. Suppose that A is non-negative definite, so that each $\lambda_i \geq 0$. Define $A^{1/2} = \Gamma D^{1/2} \Gamma^t$ where $D^{1/2} = \operatorname{diag}(\lambda_1^{1/2}, \ldots, \lambda_d^{1/2})$. Show that $A^{1/2}$ is symmetric and satisfies $A^{1/2}A^{1/2} = A$.

18. Let a_1, \ldots, a_n be positive numbers. Use the Cauchy-Schwartz inequality for inner products to show that $n^2 \leq (\sum_{k=1}^n a_k)(\sum_{k=1}^n a_k^{-1})$. Hint: Begin with the identity $1 = a_k^{1/2} a_k^{-1/2}$ which holds for $k = 1, \ldots, n$.

- 19. Let $A, B \in \mathbb{R}^{m \times n}$ be a matrices.
 - a. Show that A = B iff Ax = Bx for all $x \in \mathbb{R}^n$.
 - b. Let v_1, \ldots, v_n be a basis for \mathbb{R}^n . Show that if $Av_i = Bv_i$ for $1 \le i \le n$ then Ax = Bx for all $x \in \mathbb{R}^n$.

20. (Non-negative definite matrices) Recall that a symmetric matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is non-negative definite (written $\mathbf{A} \ge 0$) if $\mathbf{u}^t \mathbf{A} \mathbf{u} \ge 0$ for every vector $\mathbf{u} \in \mathbb{R}^d$, and is positive definite (written $\mathbf{A} > 0$) if $\mathbf{u}^t \mathbf{A} \mathbf{u} > 0$ for every non-zero vector $\mathbf{u} \in \mathbb{R}^d$.

- a. Show that if a matrix $\mathbf{A} \ge 0$ then its diagonal entries are non-negative. Hint: consider (basis) vectors \mathbf{u} having one component equal to 1 and all other components equal to 0.
- b. Show that if $\mathbf{A} \ge 0$ then all its eigenvalues are non-negative.
- c. It is tempting to think that if $\mathbf{A} \ge 0$ then all its entries are non-negative, but this is

not the case. Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Show that \mathbf{A} is non-negative definite, but not positive definite. What is the rank of \mathbf{A} ?

d. Modify the (1,1) entry of **A** to produce a positive definite matrix **B**. What is the rank of **B**?