STOR 565 Homework: Linear Algebra and Matrices

1. Let $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{t} \mathbf{v}=\sum_{i=1}^{d} u_{i} v_{i}$ be the usual inner product in \mathbb{R}^{d}. Recall that the norm of a vector $\mathbf{u} \in \mathbb{R}^{d}$ is defined by $\|\mathbf{u}\|=\langle\mathbf{u}, \mathbf{u}\rangle^{1 / 2}$. Use this definition, and the definition of vector sums and scalar multiplication to establish the following.
a. Show that $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$
b. Show that $\langle a \mathbf{u}, b \mathbf{v}\rangle=a b\langle\mathbf{u}, \mathbf{v}\rangle$
c. Show that $\langle\mathbf{u}+\mathbf{w}, \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{w}, \mathbf{v}\rangle$
d. Show that $\|\mathbf{u}\|=0$ if and only if $\mathbf{u}=0$.
e. Use the definition of the norm to show that $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+2\langle\mathbf{u}, \mathbf{v}\rangle+\|\mathbf{v}\|^{2}$.
f. Use this equation and the Cauchy Schwarz inequality to establish the triangle inequality for the vector norm, namely $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.
g. The standard Euclidean distance between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}$ is defined by $d(\mathbf{u}, \mathbf{v})=$ $\|\mathbf{u}-\mathbf{v}\|$. Use part (c) to establish that $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w})+d(\mathbf{w}, \mathbf{v})$ for any vectors $\mathbf{u}, \mathbf{v}, z \in \mathbb{R}^{d}$. Draw a picture illustrating this result.
2. Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be the data matrix associated with n samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ such that $\sum_{i=1}^{n} \mathbf{x}_{i}=0$. Answer the following. You may use arguments from class, but clearly explain your work.
a. Define the sample covariance matrix \mathbf{S} in terms of \mathbf{X}. What are the dimensions of \mathbf{S} ?
b. Show that $\mathbf{S}=n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{t}$
c. Show that \mathbf{S} is symmetric and non-negative definite
d. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$ be the eigenvalues of \mathbf{S}. Show that $\sum_{k=1}^{p} \lambda_{k}=n^{-1}\|\mathbf{X}\|^{2}$
e. Show that if $p>n$ then $\operatorname{rank}(\mathbf{S})<p$ and \mathbf{S} is not invertible. Hint: recall that $\operatorname{rank}(\mathbf{S})=\operatorname{rank}\left(\mathbf{X}^{t} \mathbf{X}\right)=\operatorname{rank}(\mathbf{X}) \leq \min (n, p)$.
f. For any vector $\mathbf{v} \in \mathbb{R}^{p}$ we have $n^{-1} \sum_{i=1}^{n}\left\langle\mathbf{x}_{i}, \mathbf{v}\right\rangle^{2}=\mathbf{v}^{t} \mathbf{S v}$.
3. Let $\mathbf{u}=\left(u_{1}, \ldots, u_{d}\right)^{t}$ be a vector in \mathbb{R}^{d}.
a. Show that $\|\mathbf{u}\| \leq\left|u_{1}\right|+\cdots+\left|u_{d}\right|$. Hint: use the fact that for $a, b \geq 0$ one has $a \leq b$ if and only if $a^{2} \leq b^{2}$. Give an examples with $d=2$ where the bound holds with equality, and where one has strict inequality.
b. Use the Cauchy-Schwarz inequality to get the upper bound $\left|u_{1}\right|+\cdots+\left|u_{d}\right| \leq\|\mathbf{u}\| d^{1 / 2}$. Find an example where the bound holds with equality.
4. (Norms of outer products) Let $\mathbf{u} \in \mathbb{R}^{k}$ and $\mathbf{v} \in \mathbb{R}^{l}$ be vectors. Find an expression relating the Frobenius norm of the outer product $\left\|\mathbf{u v}^{t}\right\|$ to the Euclidean norms of the vectors $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
5. Let $\mathbf{u}_{1}=(-1,2,0)^{t}$ and $\mathbf{u}_{2}=(2,4,3)^{t}$. Find the projections of \mathbf{u}_{1} and \mathbf{u}_{2} onto \mathbf{v} where:
a. $\mathbf{v}=(0,1,0)^{t}$
b. $\mathbf{v}=(1,1,1)^{t}$
c. $\mathbf{v}=(1,0,-1)^{t}$
6. Let $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{d}$ be orthonormal vectors with span $V=\left\{\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}: \alpha, \beta \in \mathbb{R}\right\}$. For $\mathbf{u} \in \mathbb{R}^{d}$ define the projection of \mathbf{u} onto V to be the vector $\mathbf{v} \in V$ that is closest to \mathbf{u},

$$
\operatorname{proj}_{V}(\mathbf{u})=\underset{\mathbf{v} \in V}{\operatorname{argmin}}\|\mathbf{u}-\mathbf{v}\| .
$$

Show that $\operatorname{proj}_{V}(\mathbf{u})=\left\langle\mathbf{u}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{u}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}$. Hint: Adapt the argument used in class for the projection onto a one-dimensional subspace.
7. Consider a data set consisting of four points in \mathbb{R}^{2}

$$
\mathbf{x}_{1}=(1,2)^{t}, \mathbf{x}_{2}=(-1,2)^{t}, \mathbf{x}_{3}=(2,-1)^{t}, \mathbf{x}_{4}=(2,1)^{t}
$$

a. Replace each observation \mathbf{x}_{i} by the centered observation $\tilde{\mathbf{x}}_{i}=\mathbf{x}_{i}-\frac{1}{4} \sum_{j=1}^{4} \mathbf{x}_{j}$. Draw a plot of the points $\tilde{\mathbf{x}}_{i}$. Form a data matrix \mathbf{X} from $\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathbf{x}}_{4}$.
b. Calculate the sample covariance matrix $\mathbf{S}=\frac{1}{4} \mathbf{X}^{T} \mathbf{X}$.
c. Calculate the eigenvalues of \mathbf{S}. Is \mathbf{S} invertible? If so, find \mathbf{S}^{-1}.
d. Find orthonormal eigenvectors of \mathbf{S}.
e. What is the best one-dimensional subspace (line) for approximating the centered observations $\tilde{\mathbf{x}}_{i}$? Draw this line on your plot.
8. Measuring the variability of a set of vectors. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ be a sample of $n p$-dimensional vectors. We can measure the extent to which a vector $\mathbf{u} \in \mathbb{R}^{p}$ acts as representative for the sample through the sum of squares

$$
S(\mathbf{u}):=\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}\right\|^{2} .
$$

a. Show that $S(\mathbf{u})$ is minimized when \mathbf{u} is equal to the centroid

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} .
$$

If the general case seems difficult, consider first the case when $p=1$.
Consider the two variance-type quantities

$$
V_{1}=\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\overline{\mathbf{x}}\right\|^{2} \quad \text { and } \quad V_{2}=\frac{1}{2 n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}
$$

Note that V_{1} and V_{2} are non-negative.
b. Carefully describe V_{1} and V_{2} in plain English.
c. Give necessary and sufficient conditions under which $V_{1}=0$.
d. Give necessary and sufficient conditions under which $V_{2}=0$.
e. Show that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i}^{t} \mathbf{x}_{j}=\left(\sum_{i=1}^{n} \mathbf{x}_{i}\right)^{t}\left(\sum_{j=1}^{n} \mathbf{x}_{j}\right)=n^{2}\|\overline{\mathbf{x}}\|^{2}
$$

f. Using the identity from part e., and some additional calculations, show that

$$
V_{1}=V_{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|^{2}-\|\overline{\mathbf{x}}\|^{2}
$$

9. Show that if $\mathbf{v}_{1}, \mathbf{v}_{2}$ are eigenvectors of a symmetric matrix \mathbf{A} with different eigenvalues, then $\mathbf{v}_{1}, \mathbf{v}_{2}$ are orthogonal. Hint: Begin by taking transposes to show that $\mathbf{v}_{1}^{t} \mathbf{A} \mathbf{v}_{2}$ and $\mathbf{v}_{2}^{t} \mathbf{A} \mathbf{v}_{1}$ are equal; then use the definition of an eigenvector and simplify.
10. Recall that the trace of an $n \times n$ matrix $\mathbf{A}=\left\{a_{i j}\right\}$ is the sum of its diagonal elements, that is $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}$.
a. Show that $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{t}\right)$.
b. Note that $(\mathbf{A B})_{i i}=\sum_{j=1}^{n} a_{i j} b_{j i}$ (Why?). Use this to show that $\operatorname{tr}(\mathbf{A} \mathbf{B})=\operatorname{tr}(\mathbf{B} \mathbf{A})$.
c. By applying the identity of part b. multiple times, show that

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{B C A})=\operatorname{tr}(\mathbf{C} \mathbf{A B})
$$

d. Suppose that $\mathbf{B}=\left\{b_{i j}\right\}$ is an $m \times n$ matrix. By considering $\left(\mathbf{B}^{t} \mathbf{B}\right)_{i i}$, show that

$$
\operatorname{tr}\left(\mathbf{B}^{t} \mathbf{B}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} b_{i j}^{2}
$$

11. Recall that the Frobenius norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by $\|A\|=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}$, the square root of the sum of the squares of the entries of the matrix. Establish the following properties of the Frobenius norm for matrices.
(a) $\|\mathbf{A}\|=0$ if and only if $\mathbf{A}=0$
(b) $\|b \mathbf{A}\|=|b|\|\mathbf{A}\|$
(c) $\|\mathbf{A}\|^{2}=\sum_{i=1}^{m}\left\|a_{i} \cdot\right\|^{2}=\sum_{j=1}^{n}\left\|a_{\cdot j}\right\|^{2}$. Here a_{i}. denotes the i th row of A, and $a_{\cdot j}$ denotes the j th column of A.
(d) $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$. Hint: Use Cauchy-Schwarz.
12. Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are orthogonal vectors in \mathbb{R}^{n}. Show that $\left\|\sum_{i=1}^{k} \mathbf{v}_{i}\right\|^{2}=$ $\sum_{i=1}^{k}\left\|\mathbf{v}_{i}\right\|^{2}$. Interpret this in terms of the Pythagorean formula relating the length of the hypotenuse of a right triangle to the lengths of the other edges.
13. Show that if $A \in \mathbb{R}^{n \times n}$ is non-negative definite then all its eigenvalues are non-negative. Hint: Apply the definition of non-negative definite to the eigenvectors of A.
14. Let \mathbf{A} and \mathbf{B} be invertible $n \times n$ matrices. Argue that $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
15. Let \mathbf{A} be an $n \times n$ matrix. Show that if \mathbf{A} has rank n then $\mathbf{A x}=0$ if and only if $\mathbf{x}=0$. Hint: If \mathbf{A} has rank n then its columns are linearly independent.
16. Let $A \in \mathbb{R}^{d \times d}$ be symmetric. The spectral theorem tells us that there is an orthonormal basis v_{1}, \ldots, v_{d} for \mathbb{R}^{d} such that each v_{i} is an eigenvector of A.
a. Show that the $d \times d$ matrix $\Gamma=\left[v_{1}, \ldots, v_{d}\right]$ is orthogonal, that is $\Gamma^{t} \Gamma=I$. Note that this implies $\Gamma \Gamma^{t}=I$, though you do not need to show this.
b. Let $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ be the $d \times d$ diagonal matrix with $D_{i i}$ equal to the i th eigenvalue of A and all other entries equal to zero. Show that $A \Gamma=\Gamma D$.
c. Conclude from the expression above that A can be written in the form $A=\Gamma D \Gamma^{t}$
17. In the previous homework problem you showed that any symmetric matrix $A \in \mathbb{R}^{d \times d}$ can be written in the form $A=\Gamma D \Gamma^{t}$, where $\Gamma \in \mathbb{R}^{d \times d}$ is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ is a diagonal matrix with $D_{i i}$ equal to the i th eigenvalue of A and all other entries equal to zero. Suppose that A is non-negative definite, so that each $\lambda_{i} \geq 0$. Define $A^{1 / 2}=\Gamma D^{1 / 2} \Gamma^{t}$ where $D^{1 / 2}=\operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{d}^{1 / 2}\right)$. Show that $A^{1 / 2}$ is symmetric and satisfies $A^{1 / 2} A^{1 / 2}=A$.
18. Let a_{1}, \ldots, a_{n} be positive numbers. Use the Cauchy-Schwartz inequality for inner products to show that $n^{2} \leq\left(\sum_{k=1}^{n} a_{k}\right)\left(\sum_{k=1}^{n} a_{k}^{-1}\right)$. Hint: Begin with the identity $1=$ $a_{k}^{1 / 2} a_{k}^{-1 / 2}$ which holds for $k=1, \ldots, n$.
19. Let $A, B \in \mathbb{R}^{m \times n}$ be a matrices.
a. Show that $A=B$ iff $A x=B x$ for all $x \in \mathbb{R}^{n}$.
b. Let v_{1}, \ldots, v_{n} be a basis for \mathbb{R}^{n}. Show that if $A v_{i}=B v_{i}$ for $1 \leq i \leq n$ then $A x=B x$ for all $x \in \mathbb{R}^{n}$.
20. (Non-negative definite matrices) Recall that a symmetric matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is nonnegative definite (written $\mathbf{A} \geq 0$) if $\mathbf{u}^{t} \mathbf{A u} \geq 0$ for every vector $\mathbf{u} \in \mathbb{R}^{d}$, and is positive definite (written $\mathbf{A}>0$) if $\mathbf{u}^{t} \mathbf{A} \mathbf{u}>0$ for every non-zero vector $\mathbf{u} \in \mathbb{R}^{d}$.
a. Show that if a matrix $\mathbf{A} \geq 0$ then its diagonal entries are non-negative. Hint: consider (basis) vectors \mathbf{u} having one component equal to 1 and all other components equal to 0 .
b. Show that if $\mathbf{A} \geq 0$ then all its eigenvalues are non-negative.
c. It is tempting to think that if $\mathbf{A} \geq 0$ then all its entries are non-negative, but this is
not the case. Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Show that A is non-negative definite, but not positive definite. What is the rank of A?
d. Modify the $(1,1)$ entry of \mathbf{A} to produce a positive definite matrix \mathbf{B}. What is the rank of \mathbf{B} ?

