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Data: Definitions from the O.E.D.

General: Facts and statistics collected together for reference or analysis.

Philosophy: Things known or assumed as facts, making the basis of
reasoning or calculation.

Computing: The quantities, characters, or symbols on which operations are
performed by a computer, being stored and transmitted in the form of
electrical signals and recorded on magnetic, optical, or mechanical recording
media.



Big Data: Cover of The Economist, 2010



Big Data: Enron Email Graph

Figure: Graph of three million emails between 80,705 people. Vertices are individuals.
Edges are colored according to number of emails exchanged.



Datasets

Data: Obtained by measuring a common set of quantities, usually numerical
or categorical, across a set of related objects or individuals

I Objects under study are called samples

I Measured quantities referred to as features or variables

I In supervised problems samples accompanied by label or response

Example: Administer 75 question survey about eating and hygiene habits to
200 individuals, 75 with Type II diabetes and 125 without

Example: Measure the expression of 20,000 genes in 350 breast tumors that
have been assigned to one of 3 disease subtypes.



Samples and Features: Different Regimes

Classical: Number of samples larger than number of variables (n > p)

I Low dimension high sample size

I Measurements made manually, e.g., field trials, drug testing

Modern: Number of features larger than number of features (p > n)

I High dimension low sample size

I Measurements from high-throughput technologies, e.g., genomics



Representing Data in Matrix Form

Data Matrix: A data set with

I n (labeled) samples

I p numerical features

is described by a matrix X ∈ Rn×p (and a response vector y ∈ Rn).

Note

I i’th row of X contains measurements from the i’th sample

I j’th column of X contains measurements of the j’th feature

I i’th entry of y is the response for the i’th sample



Example: Fisher’s Iris Data

I n = 150 samples consisting of 50 irises from each of three different
species: setosa, versicolor, and virginica

I p = 4 features: length and width of sepals and petals

Analyzed by R. A. Fisher ”The use of multiple measurements in taxonomic
problems”, Annals of Eugenics, 1936



Iris Data

Data: Matrix with n = 150 rows and p = 4 columns; 150 dimensional feature
vector containing species designation

Species Sepal Length Sepal Width Petal Length Petal Width

Setosa 5.1 3.5 1.4 0.2
Setosa 4.6 3.4 1.4 0.3

Versicolor 5.0 2.0 3.5 1.0
Virginica 7.2 3.6 6.1 2.5
· · · · · · · · · · · · · · ·



Fisher’s Iris Data: Scatterplots
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Figure: Pairwise scatterplot of Iris measurements based on four measured features.
Colors indicate species: Setosa, Virginica, Versicolor.



Fisher’s Iris Data: Principal Component Analysis
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Figure: Pairwise scatterplot of of Iris measurements based on four principal component
directions. Colors indicate species: Setosa, Virginica, Versicolor.



Finding Patterns in Data

Drawing by B. Kliban



Exploratory Data Analysis

EDA: First look at a data set, typically in the form of a matrix of numbers

I Data visualization

I Identifying patterns or regularities of interest

I Hypothesis generation



Exploratory Data Analysis: Preliminaries

I Identifying and addressing outlying samples, variables, or entries

I Imputing missing values

I Transforming data values using logarithm or other functions

I Normalization: removing systematic differences between samples

I Checking distributional assumptions



Overview: Univariate Data Analysis

Univariate Sample: Sample x = x1, . . . , xn with xi ∈ R

I Sample mean m(x) = x = n−1 ∑n
i=1 xi

I Sample variance s2(x) = n−1 ∑n
i=1(xi − x)2

I Sample standard deviation s(x)

Standardized sample: Replace xi with x̃i = (xi − x)/s(x)

I Standardization ensures m(x̃) = 0 and s(x̃) = 1



Univariate Data, cont.

Rank based statistics

I Order statistics x(1) ≤ x(2) ≤ · · · ≤ x(n)

I αth percentile = x(r), where r is the integer closest to n (α/100) + 1/2

I Special cases: first (25%), median (50%), and third (75%) quartiles



Visualizing Univariate Distributions

Histogram or density estimate based on {x1, . . . , xn}. Note: need to specify
bin size (for histogram) or bandwidth (for density)

Figure: https://chemicalstatistician.wordpress.com



Visualizing Univariate Distributions

Empirical cumulative distribution function (CDF) of sample x. For each t ∈ R

Fn(t) =
1

n

n∑
i=1

I(xi ≤ t) =
# data points xi ≤ t

n

I “staircase shape” with jumps of size 1/n at each data point

I can recover dataset x from Fn(t) apart from order



Normal QQ-plots

Recall: Normal QQ plot of dataset x = x1, . . . , xn

I x-axis is theoretical quantiles of standard normal CDF Φ(x)

I Reference line y = x represents ideal (normal) data

I QQ plot shows xi versus yi = F−1
n (Φ(xi))

Interpretation

I If QQ plot steeper than reference line, then empirical distribution has
heavier tails (more dispersed) than normal

I If QQ plot shallower than reference line, then empirical distribution has
lighter tails (less dispersed) than normal



Histogram and QQ-plot, Gene Expression

Gene Expression Across first Sample
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Note: Each figure based on 2000 measurements in first row of data matrix



Histogram and QQ-plot, Gene Expression after Standardization

Standardized Expression
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Bivariate Data

Bivariate Sample: (x, y) = (x1, y1), . . . , (xn, yn) with (xi, yi) ∈ R2

I Univariate statistics m(x), s2(x) and m(y), s2(y).

I Sample covariance of x and y

s(x, y) = n−1
n∑

i=1

(xi − x)(yi − y) = n−1
n∑

i=1

xi yi − x y

I Sample correlation of x and y

r(x, y) =
s(x, y)

s(x) s(y)
∈ [−1, 1]



Visualizing Bivariate Data: Scatter Plots

Recall: The scatter plot of (x, y) = (x1, y1), . . . , (xn, yn) is just the
two-dimensional plot of the points (xi, yi). Typical uses

I Identifying outliers, looking for associations between x and y

I Identifying linear or nonlinear relationship between x and y

Utility of scatter plots derives from their flexibility, for example, one can

I Compare two samples or two features

I Compare (mean, median) or (mean, SD) across featuires

I Compare the SDs of features under two experimental conditions



The Regression Line

Given bivariate data (x, y) the sample regression line of y on x is the line
`∗(x) minimizing

MSE(`) =
1

n

n∑
i=1

(yi − `(xi))2

over all linear functions `(x) = ax+ b.

Fact: Sample regression line `∗ is given by

`∗(x) = m(y) +
s(x, y)

s2(x)
[x−m(x)]

Moreover MSE(`∗) = s2(y)[1− r2(x, y)]. Thus r2(x, y) tells us how much
benefit there is in looking at x when predicting value of y.



High Dimensional Data: Empirical Covariance Matrices

Given: n× p data matrix X with

I rows/samples xi· = (xi1, . . . , xip), i = 1, . . . , n, with means xi·

I cols/features x·k = (x1k, . . . , xnk)t, k = 1, . . . , p, with means x·k

Empirical covariance matrices

Samples (Σs)ij = s(xi·,xj·) =
1

p

p∑
r=1

xirxjr − xi· xj· 1 ≤ i, j ≤ n

Features (Σf)kl = s(x·k,x·l) =
1

n

n∑
r=1

xrkxrl − x·k x·l 1 ≤ k, l ≤ p

Note: Matrix Σs is n× n and Σf is p× p. Both are symmetric



Empirical Correlation Matrices

Definition: Empirical correlation matrices

Samples (Rs)ij =
s(xi·,xj·)

s(xi·) s(xj·)
1 ≤ i, j ≤ n

Features (Rf)kl =
s(x·k,x·l)

s(x·k) s(x·l)
1 ≤ k, l ≤ p


