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Data: Definitions from the O.E.D.

General: Facts and statistics collected together for reference or analysis.

Philosophy: Things known or assumed as facts, making the basis of
reasoning or calculation.

Computing: The quantities, characters, or symbols on which operations are
performed by a computer, being stored and transmitted in the form of
electrical signals and recorded on magnetic, optical, or mechanical recording
media.



Big Data: Cover of The Economist, 2010

Obama the warrior

Th € 3 Misgoverning Argentina
E conomis t The ecartomic shift from West to East

Genetically modified crops blossom

EBRUARY 277 SUARCH 57 2010 i The right to eat cats and dogs

The data deluge

ANDHOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT




Big Data: Enron Email Graph

Figure: Graph of three million emails between 80,705 people. Vertices are individuals.
Edges are colored according to number of emails exchanged.



Datasets

Data: Obtained by measuring a common set of quantities, usually numerical
or categorical, across a set of related objects or individuals

» Objects under study are called samples
» Measured quantities referred to as features or variables
> In supervised problems samples accompanied by label or response

Example: Administer 75 question survey about eating and hygiene habits to
200 individuals, 75 with Type Il diabetes and 125 without

Example: Measure the expression of 20,000 genes in 350 breast tumors that
have been assigned to one of 3 disease subtypes.



Samples and Features: Different Regimes

Classical: Number of samples larger than number of variables (n > p)
> Low dimension high sample size

» Measurements made manually, e.g., field trials, drug testing

Modern: Number of features larger than number of features (p > n)
» High dimension low sample size

» Measurements from high-throughput technologies, e.g., genomics



Representing Data in Matrix Form

Data Matrix: A data set with
» n (labeled) samples
» p numerical features

is described by a matrix X € R"*? (and a response vector y € R™).

Note
» i’th row of X contains measurements from the i'th sample
> j’th column of X contains measurements of the j'th feature

» i'th entry of y is the response for the i'th sample



Example: Fisher’s Iris Data

» n = 150 samples consisting of 50 irises from each of three different
species: setosa, versicolor, and virginica

» p = 4 features: length and width of sepals and petals

Analyzed by R. A. Fisher "The use of multiple measurements in taxonomic
problems”, Annals of Eugenics, 1936



Iris Data

Data: Matrix with n = 150 rows and p = 4 columns; 150 dimensional feature
vector containing species designation

Species | Sepal Length | Sepal Width | Petal Length | Petal Width

Setosa 51 3.5 1.4 0.2
Setosa 4.6 3.4 1.4 0.3
Versicolor 5.0 2.0 3.5 1.0

Virginica 7.2 3.6 6.1 2.5




Fisher’s Iris Data: Scatterplots
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Figure: Pairwise scatterplot of Iris measurements based on four measured features.
Colors indicate species: Setosa, Virginica, Versicolor.



Fisher’s Iris Data: Principal Component Analysis

1234

A

Figure: Pairwise scatterplot of of Iris measurements based on four principal component
directions. Colors indicate species: Setosa, Virginica, Versicolor.



Finding Patterns in Data

| A CUMBERSTME. APPARATUS

Drawing by B. Kliban

SoME CICUMBERS AND ASPARAGUS



Exploratory Data Analysis

EDA: First look at a data set, typically in the form of a matrix of numbers
» Data visualization
» |dentifying patterns or regularities of interest

» Hypothesis generation



Exploratory Data Analysis: Preliminaries

v

Identifying and addressing outlying samples, variables, or entries

v

Imputing missing values

v

Transforming data values using logarithm or other functions

v

Normalization: removing systematic differences between samples

v

Checking distributional assumptions



Overview: Univariate Data Analysis

Univariate Sample: Sample x = z1, ..., 2, withz; € R
> Sample mean m(z) =z =n""Y"_ z;

-1 n

> Sample variance s*(z) = n " (x —T)?

> Sample standard deviation s(z)

Standardized sample: Replace z; with Z; = (z; — Z)/s(x)

» Standardization ensures m(z) = 0 and s(z) =1



Univariate Data, cont.

Rank based statistics
» Order statistics z(1) < x2) < -+ < 2y
» ath percentile = z(,.,, where r is the integer closest to n (a/100) + 1/2

» Special cases: first (25%), median (50%), and third (75%) quartiles



Visualizing Univariate Distributions

Histogram or density estimate based on {z1,...,z,}. Note: need to specify
bin size (for histogram) or bandwidth (for density)
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Figure: https://chemicalstatistician.wordpress.com



Visualizing Univariate Distributions

Empirical cumulative distribution function (CDF) of sample x. For each ¢t € R

_ #data points z; <t
n

Fu(t) = % iﬂ(mi <)

> “staircase shape” with jumps of size 1/n at each data point

> can recover dataset « from F,(t) apart from order



Normal QQ-plots

Recall: Normal QQ plot of dataset x = z1, ..., 2,
> x-axis is theoretical quantiles of standard normal CDF ®(x)
» Reference line y = z represents ideal (normal) data

> QQ plot shows x; versus y; = F; '(®(z;))

Interpretation

> If QQ plot steeper than reference line, then empirical distribution has
heavier tails (more dispersed) than normal

> If QQ plot shallower than reference line, then empirical distribution has
lighter tails (less dispersed) than normal



Histogram and QQ-plot, Gene Expression
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Each figure based on 2000 measurements in first row of data matrix



Histogram and QQ-plot, Gene Expression after Standardization
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Bivariate Data

Bivariate Sample: (z,3) = (z1,91),. .., (Tn, yn) With (z;,y;) € R?
» Univariate statistics m(z), s*(z) and m(y), s*(y).
» Sample covariance of z and y

swy) =n' Y (@ -BWi-7) =n > myi—7
=1 i=1

» Sample correlation of z and y

@Y = Gy sly)

Y



Visualizing Bivariate Data: Scatter Plots

Recall: The scatter plot of (z,y) = (z1,91), ..., (Zn,yn) is just the
two-dimensional plot of the points (z;, y;). Typical uses

» |dentifying outliers, looking for associations between = and y

» Identifying linear or nonlinear relationship between z and y

Utility of scatter plots derives from their flexibility, for example, one can
» Compare two samples or two features
» Compare (mean, median) or (mean, SD) across featuires

» Compare the SDs of features under two experimental conditions



The Regression Line

Given bivariate data (x, y) the sample regression line of y on z is the line
£*(x) minimizing

MSE(¢) = % > (i — ()’

1=1

over all linear functions ¢(z) = ax + b.

Fact: Sample regression line ¢* is given by

Moreover MSE(£*) = s*(y)[1 — r*(z,y)]. Thus r?(x, y) tells us how much
benefit there is in looking at « when predicting value of y.



High Dimensional Data: Empirical Covariance Matrices

Given: n x p data matrix X with

> rows/samples x;. = (zi1,...,%ip), ¢ = 1,...,n, with means X;.
> cols/features x.x = (Z1k,...,Tnk)’, k = 1,...,p, with means x.;,
Empirical covariance matrices
1 p
Samples (Xs)i; = s(xi.,x;.) = — TirZir — X3 X5. 1 <i,57<n
p
r=1

1 n
Features (Zf)kl = S(XAIWXAZ) = EZkale —Xepxg 1<EI<p
r=1

Note: Matrix X5 is n x n and X is p x p. Both are symmetric



Empirical Correlation Matrices

Definition: Empirical correlation matrices

S(Xi.,X]‘.)

Samples (Rs)i; =

Features (Ri)m =

s(x:.) s(x;5.)



