# Exploratory Data Analysis STOR 565

Andrew Nobel

August, 2021

General: Facts and statistics collected together for reference or analysis.

**Philosophy:** Things known or assumed as facts, making the basis of reasoning or calculation.

**Computing:** The quantities, characters, or symbols on which operations are performed by a computer, being stored and transmitted in the form of electrical signals and recorded on magnetic, optical, or mechanical recording media.

# Big Data: Cover of The Economist, 2010



# Big Data: Enron Email Graph

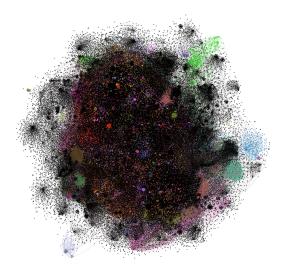


Figure: Graph of three million emails between 80,705 people. Vertices are individuals. Edges are colored according to number of emails exchanged.

#### Datasets

**Data:** Obtained by measuring a common set of quantities, usually numerical or categorical, across a set of related objects or individuals

- Objects under study are called samples
- Measured quantities referred to as features or variables
- In supervised problems samples accompanied by label or response

**Example:** Administer 75 question survey about eating and hygiene habits to 200 individuals, 75 with Type II diabetes and 125 without

**Example:** Measure the expression of 20,000 genes in 350 breast tumors that have been assigned to one of 3 disease subtypes.

# Samples and Features: Different Regimes

**Classical:** Number of samples larger than number of variables (n > p)

- Low dimension high sample size
- Measurements made manually, e.g., field trials, drug testing

**Modern:** Number of features larger than number of features (p > n)

- High dimension low sample size
- Measurements from high-throughput technologies, e.g., genomics

# Representing Data in Matrix Form

Data Matrix: A data set with

- ▶ n (labeled) samples
- p numerical features

is described by a matrix  $\mathbf{X} \in \mathbb{R}^{n \times p}$  (and a response vector  $\mathbf{y} \in \mathbb{R}^{n}$ ).

#### Note

- i'th row of X contains measurements from the i'th sample
- ▶ j'th column of X contains measurements of the j'th feature
- i'th entry of y is the response for the i'th sample

## Example: Fisher's Iris Data



- ▶ n = 150 samples consisting of 50 irises from each of three different species: setosa, versicolor, and virginica
- $\blacktriangleright$  p = 4 features: length and width of sepals and petals

Analyzed by R. A. Fisher "The use of multiple measurements in taxonomic problems", *Annals of Eugenics*, 1936

## Iris Data

**Data:** Matrix with n = 150 rows and p = 4 columns; 150 dimensional feature vector containing species designation

| Species    | Sepal Length | Sepal Width | Petal Length | Petal Width |
|------------|--------------|-------------|--------------|-------------|
| Setosa     | 5.1          | 3.5         | 1.4          | 0.2         |
| Setosa     | 4.6          | 3.4         | 1.4          | 0.3         |
| Versicolor | 5.0          | 2.0         | 3.5          | 1.0         |
| Virginica  | 7.2          | 3.6         | 6.1          | 2.5         |
| •••        |              |             |              |             |

#### Fisher's Iris Data: Scatterplots

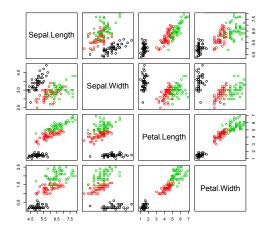


Figure: Pairwise scatterplot of Iris measurements based on four measured features. Colors indicate species: *Setosa, Virginica, Versicolor.* 

## Fisher's Iris Data: Principal Component Analysis

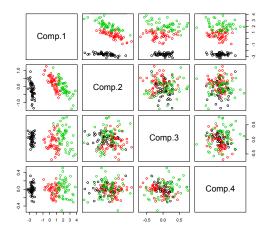
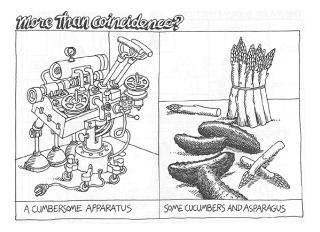


Figure: Pairwise scatterplot of of Iris measurements based on four principal component directions. Colors indicate species: *Setosa, Virginica, Versicolor*.

Finding Patterns in Data



Drawing by B. Kliban

EDA: First look at a data set, typically in the form of a matrix of numbers

- Data visualization
- Identifying patterns or regularities of interest
- Hypothesis generation

# Exploratory Data Analysis: Preliminaries

Identifying and addressing outlying samples, variables, or entries

- Imputing missing values
- Transforming data values using logarithm or other functions
- Normalization: removing systematic differences between samples
- Checking distributional assumptions

## Overview: Univariate Data Analysis

**Univariate Sample:** Sample  $x = x_1, \ldots, x_n$  with  $x_i \in \mathbb{R}$ 

• Sample mean 
$$m(x) = \overline{x} = n^{-1} \sum_{i=1}^{n} x_i$$

• Sample variance 
$$s^2(x) = n^{-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

**Standardized sample:** Replace  $x_i$  with  $\tilde{x}_i = (x_i - \overline{x})/s(x)$ 

Standardization ensures 
$$m(\tilde{x}) = 0$$
 and  $s(\tilde{x}) = 1$ 

Univariate Data, cont.

#### **Rank based statistics**

- Order statistics  $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$
- $\alpha$ th percentile =  $x_{(r)}$ , where r is the integer closest to  $n(\alpha/100) + 1/2$

Special cases: first (25%), median (50%), and third (75%) quartiles

## Visualizing Univariate Distributions

Histogram or density estimate based on  $\{x_1, \ldots, x_n\}$ . Note: need to specify bin size (for histogram) or bandwidth (for density)

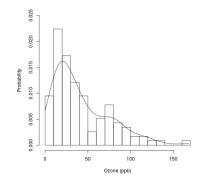


Figure: https://chemicalstatistician.wordpress.com

Empirical cumulative distribution function (CDF) of sample x. For each  $t \in \mathbb{R}$ 

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i \le t) = \frac{\# \text{ data points } x_i \le t}{n}$$

• "staircase shape" with jumps of size 1/n at each data point

• can recover dataset x from  $F_n(t)$  apart from order

# Normal QQ-plots

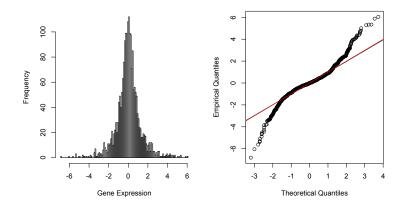
**Recall:** Normal QQ plot of dataset  $x = x_1, \ldots, x_n$ 

- x-axis is theoretical quantiles of standard normal CDF  $\Phi(x)$
- Reference line y = x represents ideal (normal) data
- QQ plot shows  $x_i$  versus  $y_i = F_n^{-1}(\Phi(x_i))$

#### Interpretation

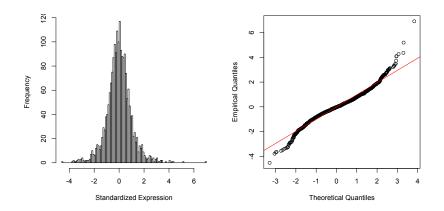
- If QQ plot steeper than reference line, then empirical distribution has heavier tails (more dispersed) than normal
- If QQ plot shallower than reference line, then empirical distribution has lighter tails (less dispersed) than normal

## Histogram and QQ-plot, Gene Expression



Note: Each figure based on 2000 measurements in first row of data matrix

# Histogram and QQ-plot, Gene Expression after Standardization



#### **Bivariate Data**

**Bivariate Sample:**  $(x, y) = (x_1, y_1), \dots, (x_n, y_n)$  with  $(x_i, y_i) \in \mathbb{R}^2$ 

• Univariate statistics m(x),  $s^2(x)$  and m(y),  $s^2(y)$ .

Sample covariance of x and y

$$s(x,y) = n^{-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = n^{-1} \sum_{i=1}^{n} x_i y_i - \overline{x} \overline{y}$$

Sample correlation of x and y

$$r(x,y) = \frac{s(x,y)}{s(x) s(y)} \in [-1,1]$$

# Visualizing Bivariate Data: Scatter Plots

**Recall:** The *scatter plot* of  $(x, y) = (x_1, y_1), \ldots, (x_n, y_n)$  is just the two-dimensional plot of the points  $(x_i, y_i)$ . Typical uses

- ldentifying outliers, looking for associations between x and y
- ldentifying linear or nonlinear relationship between x and y

Utility of scatter plots derives from their flexibility, for example, one can

- Compare two samples or two features
- Compare (mean, median) or (mean, SD) across featuires
- Compare the SDs of features under two experimental conditions

#### The Regression Line

Given bivariate data (x, y) the sample regression line of y on x is the line  $\ell^*(x)$  minimizing

$$\mathsf{MSE}(\ell) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \ell(x_i))^2$$

over all linear functions  $\ell(x) = ax + b$ .

**Fact:** Sample regression line  $\ell^*$  is given by

$$\ell^*(x) = m(y) + \frac{s(x,y)}{s^2(x)} [x - m(x)]$$

Moreover  $MSE(\ell^*) = s^2(y)[1 - r^2(x, y)]$ . Thus  $r^2(x, y)$  tells us how much benefit there is in looking at x when predicting value of y.

#### High Dimensional Data: Empirical Covariance Matrices

**Given:**  $n \times p$  data matrix **X** with

• rows/samples  $\mathbf{x}_{i} = (x_{i1}, \dots, x_{ip}), i = 1, \dots, n$ , with means  $\overline{\mathbf{x}}_{i}$ .

• cols/features  $\mathbf{x}_{k} = (x_{1k}, \dots, x_{nk})^t$ ,  $k = 1, \dots, p$ , with means  $\overline{\mathbf{x}}_{k}$ 

Empirical covariance matrices

Samples 
$$(\Sigma_{\mathfrak{s}})_{ij} = s(\mathbf{x}_{i\cdot}, \mathbf{x}_{j\cdot}) = \frac{1}{p} \sum_{r=1}^{p} x_{ir} x_{jr} - \overline{\mathbf{x}}_{i\cdot} \overline{\mathbf{x}}_{j\cdot} \quad 1 \le i, j \le n$$
  
Features  $(\Sigma_{\mathfrak{f}})_{kl} = s(\mathbf{x}_{\cdot k}, \mathbf{x}_{\cdot l}) = \frac{1}{n} \sum_{r=1}^{n} x_{rk} x_{rl} - \overline{\mathbf{x}}_{\cdot k} \overline{\mathbf{x}}_{\cdot l} \quad 1 \le k, l \le p$ 

**Note:** Matrix  $\Sigma_s$  is  $n \times n$  and  $\Sigma_f$  is  $p \times p$ . Both are symmetric

Definition: Empirical correlation matrices

Samples 
$$(R_s)_{ij} = \frac{s(\mathbf{x}_{i\cdot}, \mathbf{x}_{j\cdot})}{s(\mathbf{x}_{i\cdot}) s(\mathbf{x}_{j\cdot})} \quad 1 \le i, j \le n$$

Features 
$$(R_{\rm f})_{kl} = \frac{s(\mathbf{x}_{\cdot k}, \mathbf{x}_{\cdot l})}{s(\mathbf{x}_{\cdot k}) s(\mathbf{x}_{\cdot l})} \quad 1 \le k, l \le p$$