STOR 565 Homework

1. Show that the following functions $f, g, h : [0, 1] \to \mathbb{R}$ used to define impurity measures for growing trees are concave.

- a. $m(p) = \min(p, 1-p)$
- b. g(p) = p(1-p)
- c. $h(p) = -p \log p (1-p) \log(1-p)$, with the convention that $0 \log 0 = 0$

Which of these functions is strictly concave?

2. Let $D_n = (x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \{0, 1\}$ be a data set for classification. For each region $A \subseteq \mathcal{X}$ let |A| denote the number of points x_i in A and let $p(A) = |A|^{-1} \sum_{x_i \in A} y_i$ be the fraction of points $x_i \in A$ labeled 1. Suppose that the region A can be expressed as the disjoint union $A = A_1 \cup A_2$ of two other regions.

a. Show that

$$p(A) = \frac{|A_1|}{|A|}p(A_1) + \frac{|A_2|}{|A|}p(A_2)$$

b. Conclude from (a) that for any concave function $f:[0,1] \to \mathbb{R}$

$$f(p(A)) - \frac{|A_1|}{|A|} f(p(A_1)) - \frac{|A_2|}{|A|} f(p(A_2)) \ge 0$$

This establishes that the impurity differences defined in the lecture for the misclassification, Gini, and entropy impurity measures are non-negative.

- c. Let $m(p) = \min(p, 1-p)$. Show that |A|m(p(A)) is the number of misclassifications if every point in A is assigned to the majority class.
- d. Consider two partitions γ_1 and γ_2 of \mathcal{X} that are identical except that a cell A of γ_1 is split into two cells A_1 and A_2 in γ_2 . What can you say about the training error of the corresponding histogram classification rules (based on majority voting in cells)?

3. Let $D_n = (x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \{0, 1\}$ be a data set for classification and let $\gamma = \{A_1, \ldots, A_K\}$ be a partition of \mathcal{X} . Define the histogram classification rule $\hat{\phi}_{\gamma}$ based on γ . Show that $\hat{\phi}_{\gamma}$ minimizes the training error $R_n(\phi)$ over all classification rules ϕ that are constant on the cells of γ , meaning $\phi(u) = \phi(v)$ if u, v are in the same cell of γ .