STOR 565 Homework

1. Let $(X, Y) \in \mathbb{R}^p \times \mathbb{R}$ be a jointly distributed pair following the signal plus noise model $Y = f(X) + \varepsilon$ where ε is independent of X, $\mathbb{E}\varepsilon = 0$, and $\operatorname{Var}(\varepsilon) = \sigma^2$.

- a. Find simple expressions for $\mathbb{E}Y$ and $\operatorname{Var}(Y)$.
- b. Argue that $\mathbb{E}(Y|X) = f(X)$. Thus f is the regression function of Y based on X.
- c. Show that $\varphi = f$ minimizes the risk $R(\varphi) = \mathbb{E}(\varphi(X) Y)^2$ over prediction rules $\varphi : \mathbb{R}^p \to \mathbb{R}$. What is the minimum value of $R(\varphi)$?

2. Let $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathbb{R}$ be iid observations from the signal plus noise model $Y = f(X) + \varepsilon$ you considered above.

- a. Define the empirical risk $\hat{R}_n(\varphi)$ of a rule $\varphi : \mathbb{R}^p \to \mathbb{R}$.
- b. Assuming that $\operatorname{Var}(\varphi(X)) < \infty$, find the expectation and variance of $R_n(\varphi)$.
- c. What does Chebyshev's inequality tell you in this setting?

3. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{p+1}$ be fixed vectors with initial component equal to one 1. Suppose that we observe responses $y_1, \ldots, y_n \in \mathbb{R}$ generated from the linear model $y_i = \beta^t \mathbf{x}_i + \varepsilon_i$, where $\beta \in \mathbb{R}^{p+1}$ is an unknown coefficient vector and $\varepsilon_1, \ldots, \varepsilon_n$ are iid $\sim \mathcal{N}(0, \sigma^2)$.

- a. Argue that y_1, \ldots, y_n are independent and that $y_i \sim \mathcal{N}(\mathbf{x}_i^t \beta, \sigma^2)$.
- b. Find the joint likelihood $L(\beta)$ of y_1, \ldots, y_n .
- c. Find the log likelihood $\ell(\beta)$ of y_1, \ldots, y_n and show that maximizing $\ell(\beta)$ over β is equivalent to minimizing the empirical risk $\hat{R}_n(\beta) = n^{-1} \sum_{i=1}^n (y_i \mathbf{x}_i^t \beta)^2$ over β .
- d. Define the response vector \mathbf{y} and design matrix \mathbf{X} associated with the data above, giving the dimensions of each. Show carefully that $\hat{R}_n(\beta) = n^{-1} ||y X\beta||^2$.

4. Let \mathbf{y} and \mathbf{X} be the response vector and design matrix, respectively, associated with observations (\mathbf{x}_i, y_i) of the previous problem. Recall from class that the OLS coefficient $\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}$

a. Show that $\mathbf{y} = \mathbf{X}\beta + \varepsilon$ with $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I)$. Conclude that $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\beta, \sigma^2 I)$.

- b. Show that $\hat{\beta} = \beta + (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \varepsilon$.
- c. Find $\mathbb{E}\hat{\beta}$ and $\operatorname{Var}(\hat{\beta})$.
- d. Argue that $\hat{\beta} \sim \mathcal{N}_p(\beta, \sigma^2(X^tX)^{-1})$, and conclude that $\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2(X^tX)^{-1}_{ij})$.
- e. Use the distribution of $\hat{\beta}_j$ to find a 95% confidence interval for β_j .

5. Chi-squared distribution. A random variable X has a chi-squared distribution with $k \ge 1$ degrees of freedom, written $X \sim \chi_k^2$, if X has the same distribution as $Z_1^2 + \cdots + Z_k^2$ where Z_1, \ldots, Z_k are iid $\sim \mathcal{N}(0, 1)$.

- a. Find $\mathbb{E}X$ and $\operatorname{Var}(X)$ when $X \sim \chi_k^2$. You may use the fact that $\mathbb{E}Z^4 = 3$ if $Z \sim \mathcal{N}(0, 1)$.
- b. If $X \sim \chi_k^2$ and $Y \sim \chi_l^2$ are independent, what is the distribution of X + Y?
- 6. Let $f_1, \ldots, f_k : \mathbb{R}^p \to \mathbb{R}$ be convex functions.
 - a. Show that for each number t the set $L_r = \{x : \sum_{j=1}^k f_j(x) \le t\}$ is convex. Hint: Use results from the previous homework.
 - b. Show that for each t the sets $\{\beta \in \mathbb{R}^p : \sum_{j=1}^p \beta_j^2 \leq t\}$ and $\{\beta \in \mathbb{R}^p : \sum_{j=1}^p |\beta_j| \leq t\}$ are convex.

7. Let **y** and **X** be the response vector and design matrix, respectively, associated with observations $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$.

- a. Show that $\mathbf{X}^t \mathbf{X} + \lambda I_p$ is symmetric and positive definite if $\lambda > 0$. Conclude that $\mathbf{X}^t \mathbf{X} + \lambda I_p$ is invertible if $\lambda > 0$.
- b. Find a simple relationship between the eigenvalues of $X^{t}X + \lambda I_{p}$ and those of $X^{t}X$.

- 8. Let $\hat{\beta}_{\lambda}$ be the minimizer of $\hat{R}_{n,\lambda}(\beta) = ||y X\beta||^2 + \lambda ||\beta||^2$.
 - a. Show that $\hat{\beta}_0$ is the usual OLS estimator (when the rank of X is equal to p).
 - b. Show that $||y X\hat{\beta}_{\lambda}||^2 \leq ||y X\beta||^2$ for every β such that $||\beta|| \leq ||\hat{\beta}_{\lambda}||$. Hint: Assume the stated inequality fails to hold and show that this implies that $\hat{\beta}_{\lambda}$ is not the minimizer of $\hat{R}_{n,\lambda}(\beta)$.