STOR 565 Homework

1. Let $(X, Y) \in \mathbb{R}^{p} \times \mathbb{R}$ be a jointly distributed pair following the signal plus noise model $Y=f(X)+\varepsilon$ where ε is independent of $X, \mathbb{E} \varepsilon=0$, and $\operatorname{Var}(\varepsilon)=\sigma^{2}$.
a. Find simple expressions for $\mathbb{E} Y$ and $\operatorname{Var}(Y)$.
b. Argue that $\mathbb{E}(Y \mid X)=f(X)$. Thus f is the regression function of Y based on X.
c. Show that $\varphi=f$ minimizes the risk $R(\varphi)=\mathbb{E}(\varphi(X)-Y)^{2}$ over prediction rules $\varphi: \mathbb{R}^{p} \rightarrow \mathbb{R}$. What is the minimum value of $R(\varphi)$?
2. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathcal{X} \times \mathbb{R}$ be iid observations from the signal plus noise model $Y=f(X)+\varepsilon$ you considered above.
a. Define the empirical risk $\hat{R}_{n}(\varphi)$ of a rule $\varphi: \mathbb{R}^{p} \rightarrow \mathbb{R}$.
b. Assuming that $\operatorname{Var}(\varphi(X))<\infty$, find the expectation and variance of $\hat{R}_{n}(\varphi)$.
c. What does Chebyshev's inequality tell you in this setting?
3. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p+1}$ be fixed vectors with initial component equal to one 1 . Suppose that we observe responses $y_{1}, \ldots, y_{n} \in \mathbb{R}$ generated from the linear model $y_{i}=\beta^{t} \mathbf{x}_{i}+\varepsilon_{i}$, where $\beta \in \mathbb{R}^{p+1}$ is an unknown coefficient vector and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are iid $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.
a. Argue that y_{1}, \ldots, y_{n} are independent and that $y_{i} \sim \mathcal{N}\left(\mathbf{x}_{i}^{t} \beta, \sigma^{2}\right)$.
b. Find the joint likelihood $L(\beta)$ of y_{1}, \ldots, y_{n}.
c. Find the \log likelihood $\ell(\beta)$ of y_{1}, \ldots, y_{n} and show that maximizing $\ell(\beta)$ over β is equivalent to minimizing the empirical risk $\hat{R}_{n}(\beta)=n^{-1} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{t} \beta\right)^{2}$ over β.
d. Define the response vector \mathbf{y} and design matrix \mathbf{X} associated with the data above, giving the dimensions of each. Show carefully that $\hat{R}_{n}(\beta)=n^{-1}\|y-X \beta\|^{2}$.
4. Let \mathbf{y} and \mathbf{X} be the response vector and design matrix, respectively, associated with observations $\left(\mathbf{x}_{i}, y_{i}\right)$ of the previous problem. Recall from class that the OLS coefficient $\hat{\beta}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y}$
a. Show that $\mathbf{y}=\mathbf{X} \beta+\varepsilon$ with $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$. Conclude that $\mathbf{y} \sim \mathcal{N}_{n}\left(\mathbf{X} \beta, \sigma^{2} I\right)$.
b. Show that $\hat{\beta}=\beta+\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \varepsilon$.
c. Find $\mathbb{E} \hat{\beta}$ and $\operatorname{Var}(\hat{\beta})$.
d. Argue that $\hat{\beta} \sim \mathcal{N}_{p}\left(\beta, \sigma^{2}\left(X^{t} X\right)^{-1}\right)$, and conclude that $\hat{\beta}_{j} \sim \mathcal{N}\left(\beta_{j}, \sigma^{2}\left(X^{t} X\right)_{j j}^{-1}\right)$.
e. Use the distribution of $\hat{\beta}_{j}$ to find a 95% confidence interval for β_{j}.
5. Chi-squared distribution. A random variable X has a chi-squared distribution with $k \geq 1$ degrees of freedom, written $X \sim \chi_{k}^{2}$, if X has the same distribution as $Z_{1}^{2}+\cdots+Z_{k}^{2}$ where Z_{1}, \ldots, Z_{k} are iid $\sim \mathcal{N}(0,1)$.
a. Find $\mathbb{E} X$ and $\operatorname{Var}(X)$ when $X \sim \chi_{k}^{2}$. You may use the fact that $\mathbb{E} Z^{4}=3$ if $Z \sim$ $\mathcal{N}(0,1)$.
b. If $X \sim \chi_{k}^{2}$ and $Y \sim \chi_{l}^{2}$ are independent, what is the distribution of $X+Y$?
6. Let $f_{1}, \ldots, f_{k}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be convex functions.
a. Show that for each number t the set $L_{r}=\left\{x: \sum_{j=1}^{k} f_{j}(x) \leq t\right\}$ is convex. Hint: Use results from the previous homework.
b. Show that for each t the sets $\left\{\beta \in \mathbb{R}^{p}: \sum_{j=1}^{p} \beta_{j}^{2} \leq t\right\}$ and $\left\{\beta \in \mathbb{R}^{p}: \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t\right\}$ are convex.
7. Let \mathbf{y} and \mathbf{X} be the response vector and design matrix, respectively, associated with observations $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{p} \times \mathbb{R}$.
a. Show that $\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}$ is symmetric and positive definite if $\lambda>0$. Conclude that $\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}$ is invertible if $\lambda>0$.
b. Find a simple relationship between the eigenvalues of $X^{t} X+\lambda I_{p}$ and those of $X^{t} X$.
8. Let $\hat{\beta}_{\lambda}$ be the minimizer of $\hat{R}_{n, \lambda}(\beta)=\|y-X \beta\|^{2}+\lambda\|\beta\|^{2}$.
a. Show that $\hat{\beta}_{0}$ is the usual OLS estimator (when the rank of X is equal to p).
b. Show that $\left\|y-X \hat{\beta}_{\lambda}\right\|^{2} \leq\|y-X \beta\|^{2}$ for every β such that $\|\beta\| \leq\left\|\hat{\beta}_{\lambda}\right\|$. Hint: Assume the stated inequality fails to hold and show that this implies that $\hat{\beta}_{\lambda}$ is not the minimizer of $\hat{R}_{n, \lambda}(\beta)$.
