STOR 565 Homework

1. Let D_{n} and D_{m} be independent training and test sets, respectively. Suppose that the rule $\hat{\phi}_{n}(x)=\phi_{n}\left(x: D_{n}\right)$ is derived from the training set.
a. Define the test set error $\hat{R}_{m}\left(\hat{\phi}_{n}\right)$.
b. Show that $\mathbb{E}\left[\hat{R}_{m}\left(\hat{\phi}_{n}\right) \mid D_{n}\right]=R\left(\hat{\phi}_{n}\right)$
c. What is $\mathbb{E} \hat{R}_{m}\left(\hat{\phi}_{n}\right)$? Compare this to your answer above.
2. Use calculus to show that for $u \in(0,1)$

$$
\frac{u^{2}}{2(1-u)} \geq-\log (1-u)-u
$$

3. Define what it means for a function to be strictly convex. Define the notion of a global minima. Repeat the argument from class showing that the global minima of a strictly convex function is necessarily unique.
4. Let U_{1}, U_{2} be uncorrelated random variables with mean zero and variance one. Define $U=\left(U_{1}, U_{2}\right)^{t}$. Let $X=\left(X_{1}, X_{2}\right)^{t}$ be a random vector with components

$$
X_{1}=a U_{1}+b U_{2} \text { and } X_{2}=c U_{1}+d U_{2}
$$

a. Find $\mathbb{E}[U]$.
b. What is $\operatorname{Var}(U)$?
c. Find $\mathbb{E} X$.
d. Find the matrix $\operatorname{Var}(X)$ by directly calculating each entry using the definitions of X_{1} and X_{2}.
e. Find \mathbf{A} such that $X=\mathbf{A} U$.
f. Find $\operatorname{Var}(X)$ using the formula for $\operatorname{Var}(\mathbf{A} U)$.
g. In terms of a, b, c and d, when is \mathbf{A} invertible?
5. Let $h_{\alpha}: \mathbb{R} \rightarrow[0, \infty)$ be defined by $h_{\alpha}(x)=|x|^{\alpha}$ where $\alpha>0$ is fixed. Sketch $h_{\alpha}(x)$ for $\alpha=1 / 2,1,2$. For which values of α is $h_{\alpha}(x)$ convex? Justify your answer.
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. For $\gamma \in \mathbb{R}$ the γ-level set of f is defined to be the set of points x where $f(x)$ is less than or equal to γ. Formally,

$$
L_{\gamma}(f)=\{x: f(x) \leq \gamma\}
$$

a. Draw some level sets for the convex functions $f(x)=x^{2}$ and $f(x)=e^{-x}$. Note that $L_{\gamma}(f)$ may be empty.
b. Show that for each γ the level set $L_{\gamma}(f)$ is convex. Hint: If $L_{\gamma}(f)$ is empty then it is trivially convex. Otherwise, use the definition of a convex set.
7. Let $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}$ be a fixed predictor-response pair, and define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(\beta)=\left(y-x^{t} \beta\right)^{2}$.
a. Show that f is convex.
b. Now let $D_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be n predictor-response pairs. What can you say about the convexity of the sum of squares $g(\beta)=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{t} \beta\right)^{2}$?
c. Fix $\lambda \geq 0$ and define the penalized performance criterion

$$
h_{\alpha}(\beta)=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{t} \beta\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|^{\alpha}
$$

Argue that h_{α} is convex if $\alpha \geq 1$. Hint: Recall that a sum of convex functions is convex.
8. Consider a data set with design matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ and response vector $\mathbf{y} \in \mathbb{R}^{n}$. Fix $\lambda>0$ and define the penalized loss $\hat{R}_{n, \lambda}(\beta)=\|\mathbf{y}-\mathbf{X} \beta\|^{2}+\lambda\|\beta\|^{2}$. Following the calculus based arguments for OLS, show that $\hat{R}_{n, \lambda}(\beta)$ has unique minimizer $\hat{\beta}_{\lambda}=\left(\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}\right)^{-1} \mathbf{X}^{t} y$.
9. Let U_{1}, \ldots, U_{m} be random variables. Find an inequality relating $\mathbb{E}\left(\min _{1 \leq j \leq m} U_{j}\right)$ and $\min _{1 \leq j \leq m} \mathbb{E} U_{j}$. Hint: Begin by noting that $\min _{1 \leq j \leq m} U_{j} \leq U_{k}$ for each k.

