
STOR 565 Homework

1. Describe and discuss linear discriminant analysis.

2. Let X ∼ Nk(µ,Σ) and let Y = AX + b where A ∈ Rl×k and b ∈ Rl.

a. Find EY and Var(Y ).

b. Argue carefully that Y is multinormal and find its distribution.

c. Fix v ∈ Rl. Using the results above, find the distribution of U = 〈v, Y 〉.

3. Let P = {fθ : θ > 0} be the family of exponential pdfs fθ(x) = θe−θx for x ≥ 0. Suppose

that we draw n samples independently from a fixed distribution fθ0 ∈ P and obtain data

x1, . . . , xn ∈ R. The likelihood function for the family P is defined by L(θ) =
∏n
i=1 fθ(xi).

In words, L(θ) is just the joint density of the data x1, . . . , xn under fθ, viewed as a function

of the parameter θ. The log-likelihood is the log of the likelihood, `(θ) = logL(θ).

a. The maximum likelihood estimate of the true parameter θ0 is defined by θ̂MLE
n =

argmaxθ>0 `(θ). Use calculus to find θ̂MLE
n in terms of the data x1, . . . , xn.

4. Let (X,Y ) be a jointly distributed pair with X ∈ Rd and Y ∈ {0, 1}. Suppose that

we have added a zeroth component to the vector X that is always equal to 1, so that the

augmented vector X ∈ Rd+1. The logistic regression method for binary classification is

based on the assumption that

log
P(Y = 1 |X = x)

P(Y = 0 |X = x)
= log

η(x)

1− η(x)
= 〈β, x〉 (1)

for some vector β ∈ Rd+1 of coefficients. In words, equation (1) says that the conditional

log-odds ratio of Y = 1 vs. Y = 0 is linear in the feature vector x.

a. Show, by inverting the relation (1), that

η(x) = η(x : β) =
e〈β,x〉

1 + e〈β,x〉
=

1

1 + e−〈β,x〉

Here we write η(x : β) to remind ourselves that η depends on β.

b. Equation (1) is sometimes written in the form logit(η(x)) = 〈β, x〉, where logit(u) =

log[u/(1 − u)] for 0 < u < 1 is the logistic (or logit) function. Sketch the logistic

function.
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Given a data set Dn = (x1, y1), . . . , (xn, yn) ∈ Rd+1×{0, 1} logistic regression estimates the

coefficient vector β in (1) by maximizing the conditional log likelihood function

`(β) = log
n∏
i=1

Pβ(Y = yi |X = xi)

where Pβ(Y = 1 |X = x) = η(x : β) and Pβ(Y = 0 |X = x) = 1− η(x : β).

c. Use the expression for η(x : β) in (a) to show that the conditional log likelihood

function can be written in the form

`(β) =

n∑
i=1

[
yi〈β, xi〉 − log(1 + e〈β,x〉)

]

d. Show that ∇`(β) =
∑n

i=1 xi [yi − η(xi : β)]. Hint: Evaluate the partial derivative

∂`(β)/∂βj for a fixed index j between 1 and d.

5. Let X be a standard normal random variable and let Y = X2.

a. Using the cdf method, find the density of Y .

b. Are X and Y independent? Why or why not?

c. What is Cov(X,Y )? What do these results reveal about the relationship between

covariance and independence?

6. Let X ≥ 0 be a random variable with EX = 10 and EX2 = 140.

a. Find an upper bound on P(X > 14) involving EX using Markov’s inequality.

b. Modify the proof of Markov’s inequality to find an upper bound on P(X > 14) in-

volving EX2.

c. Compare the results in (a) and (b) above to what you find from Chebyshev’s inequality.

7. Let X be a random variable with Var(X) = 3. Use Chebyshev’s inequality to find upper

bounds on P(|X − EX| > 1) and P(|X − EX| > 2). Comment on the potential usefulness

of these bounds.
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8. Recall that the moment generating function of a random variable X is defined by

MX(s) = EesX for all s such that the expectation is finite. Find the moment generating

function (MGF) of the following distributions.

a. Poisson(λ)

b. N (0, 1)

9. Find the gradient and Hessian of the function f : R2 → R defined by

f(x) = x21x2 + 3x1 − 5x2 + 1

10. State and prove Markov’s probability inequality.

11. Let X and Y be random variables with moment generating functions MX(s) and MY (s),

respectively. Show that S = X+Y has moment generating function MS(s) = MX(s)MY (s).
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