STOR 565 Homework

1. Describe and discuss linear discriminant analysis.
2. Let $X \sim \mathcal{N}_{k}(\mu, \Sigma)$ and let $Y=A X+b$ where $A \in \mathbb{R}^{l \times k}$ and $b \in \mathbb{R}^{l}$.
a. Find $\mathbb{E} Y$ and $\operatorname{Var}(Y)$.
b. Argue carefully that Y is multinormal and find its distribution.
c. Fix $v \in \mathbb{R}^{l}$. Using the results above, find the distribution of $U=\langle v, Y\rangle$.
3. Let $\mathcal{P}=\left\{f_{\theta}: \theta>0\right\}$ be the family of exponential pdfs $f_{\theta}(x)=\theta e^{-\theta x}$ for $x \geq 0$. Suppose that we draw n samples independently from a fixed distribution $f_{\theta_{0}} \in \mathcal{P}$ and obtain data $x_{1}, \ldots, x_{n} \in \mathbb{R}$. The likelihood function for the family \mathcal{P} is defined by $L(\theta)=\prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)$. In words, $L(\theta)$ is just the joint density of the data x_{1}, \ldots, x_{n} under f_{θ}, viewed as a function of the parameter θ. The log-likelihood is the \log of the likelihood, $\ell(\theta)=\log L(\theta)$.
a. The maximum likelihood estimate of the true parameter θ_{0} is defined by $\hat{\theta}_{n}^{\text {MLE }}=$ $\operatorname{argmax}_{\theta>0} \ell(\theta)$. Use calculus to find $\hat{\theta}_{n}^{\mathrm{MLE}}$ in terms of the data x_{1}, \ldots, x_{n}.
4. Let (X, Y) be a jointly distributed pair with $X \in \mathbb{R}^{d}$ and $Y \in\{0,1\}$. Suppose that we have added a zeroth component to the vector X that is always equal to 1 , so that the augmented vector $X \in \mathbb{R}^{d+1}$. The logistic regression method for binary classification is based on the assumption that

$$
\begin{equation*}
\log \frac{\mathbb{P}(Y=1 \mid X=x)}{\mathbb{P}(Y=0 \mid X=x)}=\log \frac{\eta(x)}{1-\eta(x)}=\langle\beta, x\rangle \tag{1}
\end{equation*}
$$

for some vector $\beta \in \mathbb{R}^{d+1}$ of coefficients. In words, equation (1) says that the conditional log-odds ratio of $Y=1$ vs. $Y=0$ is linear in the feature vector x.
a. Show, by inverting the relation (1), that

$$
\eta(x)=\eta(x: \beta)=\frac{e^{\langle\beta, x\rangle}}{1+e^{\langle\beta, x\rangle}}=\frac{1}{1+e^{-\langle\beta, x\rangle}}
$$

Here we write $\eta(x: \beta)$ to remind ourselves that η depends on β.
b. Equation (1) is sometimes written in the form $\operatorname{logit}(\eta(x))=\langle\beta, x\rangle$, where $\operatorname{logit}(u)=$ $\log [u /(1-u)]$ for $0<u<1$ is the logistic (or logit) function. Sketch the logistic function.

Given a data set $D_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{d+1} \times\{0,1\}$ logistic regression estimates the coefficient vector β in (1) by maximizing the conditional log likelihood function

$$
\ell(\beta)=\log \prod_{i=1}^{n} \mathbb{P}_{\beta}\left(Y=y_{i} \mid X=x_{i}\right)
$$

where $\mathbb{P}_{\beta}(Y=1 \mid X=x)=\eta(x: \beta)$ and $\mathbb{P}_{\beta}(Y=0 \mid X=x)=1-\eta(x: \beta)$.
c. Use the expression for $\eta(x: \beta)$ in (a) to show that the conditional log likelihood function can be written in the form

$$
\ell(\beta)=\sum_{i=1}^{n}\left[y_{i}\left\langle\beta, x_{i}\right\rangle-\log \left(1+e^{\langle\beta, x\rangle}\right)\right]
$$

d. Show that $\nabla \ell(\beta)=\sum_{i=1}^{n} x_{i}\left[y_{i}-\eta\left(x_{i}: \beta\right)\right]$. Hint: Evaluate the partial derivative $\partial \ell(\beta) / \partial \beta_{j}$ for a fixed index j between 1 and d.
5. Let X be a standard normal random variable and let $Y=X^{2}$.
a. Using the cdf method, find the density of Y.
b. Are X and Y independent? Why or why not?
c. What is $\operatorname{Cov}(X, Y)$? What do these results reveal about the relationship between covariance and independence?
6. Let $X \geq 0$ be a random variable with $\mathbb{E} X=10$ and $\mathbb{E} X^{2}=140$.
a. Find an upper bound on $\mathbb{P}(X>14)$ involving $\mathbb{E} X$ using Markov's inequality.
b. Modify the proof of Markov's inequality to find an upper bound on $\mathbb{P}(X>14)$ involving $\mathbb{E} X^{2}$.
c. Compare the results in (a) and (b) above to what you find from Chebyshev's inequality.
7. Let X be a random variable with $\operatorname{Var}(X)=3$. Use Chebyshev's inequality to find upper bounds on $\mathbb{P}(|X-\mathbb{E} X|>1)$ and $\mathbb{P}(|X-\mathbb{E} X|>2)$. Comment on the potential usefulness of these bounds.
8. Recall that the moment generating function of a random variable X is defined by $M_{X}(s)=\mathbb{E} e^{s X}$ for all s such that the expectation is finite. Find the moment generating function (MGF) of the following distributions.
a. Poisson (λ)
b. $\mathcal{N}(0,1)$
9. Find the gradient and Hessian of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x)=x_{1}^{2} x_{2}+3 x_{1}-5 x_{2}+1
$$

10. State and prove Markov's probability inequality.
11. Let X and Y be random variables with moment generating functions $M_{X}(s)$ and $M_{Y}(s)$, respectively. Show that $S=X+Y$ has moment generating function $M_{S}(s)=M_{X}(s) M_{Y}(s)$.
