STOR 565 Homework

- 1. Let X have a $\mathcal{N}(\mu, \sigma^2)$ distribution. Show that $\mathbb{E}X = \mu$.
- 2. Let $Z \sim \mathcal{N}(0, 1)$. Use the CDF method to find the density of X = aZ + b.
- 3. Let $X \in \mathbb{R}^k$ be a random vector and $A \in \mathbb{R}^{r \times k}$. Use the definition of expected value, variance, and linear algebra to establish the following.
 - a. $\mathbb{E}(AX) = A \mathbb{E}X$
 - b. Var(X) is symmetric and non-negative definite
 - c. $\operatorname{Var}(X)_{ij} = \operatorname{Cov}(X_i, X_j)$
 - d. $\operatorname{Var}(AX) = A \operatorname{Var}(X) A^t$

4. Let $(X, Y) \in \mathbb{R} \times \{0, 1\}$ be a random predictor-response pair. Suppose that Y has prior probabilities $\pi_1 = \mathbb{P}(Y = 1)$ and $\pi_0 = \mathbb{P}(Y = 0)$, and that X is continuous with marginal density f and class conditional densities f_0 and f_1 .

a. Derive an expression for the Bayes rule $\phi^*(x)$ in terms of the logarithm of the ratio $\pi_1 f_1(x)/\pi_0 f_0(x)$.

Suppose that f_1 is $\mathcal{N}(\mu_1, \sigma^2)$ and that f_0 is $\mathcal{N}(\mu_0, \sigma^2)$ where $\mu_1 > \mu_0$.

- b. Using the result of part (a), find an expression for the Bayes rule $\phi^*(x)$ in terms of the parameters π_0 , π_1 , μ_0 , μ_1 , and σ^2 .
- c. What is the form of the rule in part (b) when $\pi_1 = 1/2$? Explain why this makes intuitive sense.
- d. Suppose for simplicity that $\mu_1 = u$ and $\mu_0 = -u$ for some u > 0. What form does the Bayes rule take when u increases (tends to infinity), and in particular, how does the rule depend on π_1 versus π_0 ? A informal but clear answer is fine.
- 5. Let $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R} \times \{0, 1\}$ be a labeled set of real observations.
 - a. Give an estimate of the probability that Y = 0. What does the law of large numbers say about the limiting behavior of your estimate as n gets very large?

- b. Write the sample mean $\hat{\mu}_0$ of the zero-labeled observations using indicator functions.
- c. Write the sample variance $\hat{\sigma}_0^2$ of the zero-labeled observations using $\hat{\mu}_0$ and indicator functions.

6. Consider the setting of linear discriminant analysis in which the class-conditional densities f_0 and f_1 have the multivariate normal form $f_k = \mathcal{N}(\mu_k, \Sigma_k)$.

a. Using the expression for the multivariate normal density, show that the discriminant functions $\delta_k(x) = \log(\pi_k f_k(x))$ have the form

$$\delta_k(x) = -\frac{1}{2}x^t \Sigma_k^{-1} x + \langle x, \Sigma_k^{-1} \mu_k \rangle - \frac{1}{2} \left[\log(2\pi)^d \pi_k^{-2} \det(\Sigma_k) + \mu_k^t \Sigma_k^{-1} \mu_k \right]$$

b. Show that when $\Sigma_0 = \Sigma_1 = \Sigma$ the decision boundary $B = \{x : \delta_1(x) = \delta_0(x)\}$ has the form

$$B = \{x : x^t \Sigma^{-1}(\mu_1 - \mu_0) + (c_0 - c_1) = 0\}$$

where c_0, c_1 are real valued constants, and argue that this set is a hyperplane.

7. In a previous homework you showed that any symmetric matrix $A \in \mathbb{R}^{d \times d}$ can be written in the form $A = \Gamma D \Gamma^t$, where $\Gamma \in \mathbb{R}^{d \times d}$ is an orthogonal matrix and $D = \text{diag}(\lambda_1, \ldots, \lambda_d)$ is a diagonal matrix with D_{ii} equal to the *i*th eigenvalue of A and all other entries equal to zero. Suppose that A is non-negative definite, so that each $\lambda_i \geq 0$. Define $A^{1/2} = \Gamma D^{1/2} \Gamma^t$ where $D^{1/2} = \text{diag}(\lambda_1^{1/2}, \ldots, \lambda_d^{1/2})$. Show that $A^{1/2}$ is symmetric and satisfies $A^{1/2}A^{1/2} = A$.

- 8. Let $X \sim \mathcal{N}_d(\mu, \Sigma)$ and let $Y = \Sigma^{1/2} Z + \mu$ where $Z \sim \mathcal{N}_d(0, I)$.
 - (a) Show that $\mathbb{E}Y = \mathbb{E}X$ and that $\operatorname{Var}(Y) = \operatorname{Var}(X)$. Hint: Use the definition of $\mathcal{N}_d(\mu, \Sigma)$ and basic properties of multivariate means and variances.
 - (b) Fix $v \in \mathbb{R}^d$. Find the distributions of the random variable $v^t X$.