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Conditional Expectations and Probabilities



Expectations

Recall: Let X € R be a random variable
> If X ~pand ) |z|p(x)is finite then EX ="« p(x)

> If X ~ fand [|z| f(z)dz is finite then EX = [z f(z) dx

Basic properties: Let X, Y be jointly distributed random variables
> [f X <Y thenEX <EY

> E(aX +b0Y) = aEX +bEY

> [EX| < E|X|
> If X L Ythen E(XY)=EXEY, provided all expectations well defined
> If X >0then EX = [“P(X >t)dt



Indicator Functions

Definition: If X' is a set and A C X the indicator function of A is given by

Ly(x) 1 fzeA
xr) =
4 0 ifzé¢ A

Sometimes 14 (z) is written I(z € A). Basic properties
> Iy = 1—14

» [ane = Ials

v

Taus = max(la,ls)

v

If X is a random variable E[I4(X)] = P(X € A)

> [ h(z)dz = [h(z)la(z)dx



Conditional Expectation

Let (X,Y) be jointly distributed with X € X and Y € R with E|Y| finite
> If Y is discrete with conditional pmf p(y|z) let p(z) = >° yp(yl|z)

> If Y is continuous with conditional pdf f(y|z) let o(z) = [yf(y|z)dy

Definition: The conditional expectation of Y given X is given by

E(Y]X) = p(X) and E(Y|X =) = o(a)

Note
» E(Y|X) is arandom variable, and is a function of X

> E(Z|X,Y) = ¢(X,Y) where ¢(z,y) =3, 2p(z|z,y)



Properties of Conditional Expectation

1. IfY > 0then E(Y|X) > 0 (positivity)

2. E(aZ +bY|X) = aE(Z|X) + bE(Y|X) (linearity)

3. E{E(Y|X)}=EY (law of total expectation)

4. P(Y € A|X) = E(I4(Y) | X)

5. E[f(X)g(Y)|X] = f(X)E(g(Y)|X) (functions of X act like constants)
6. E(h(Y)|X =2) = 3, h(y) p(y|z)

7. If g: R — Ris convex then g(E(Y|X)) <E(g(Y)|X) (Jensen)



Conditional Expectation and Prediction

Fact: Let (X,Y) be jointly distributed. Suppose we wish to predict Y be a
function of X. For any function h : & — R

E(Y — h(X))? > E(Y - E(Y]X))?

Upshot: Under MSE E(Y'| X) best predictor of Y among all functions of X

Turns out: Conditional expectation E(Y'|X) is the MSE projection of Y onto
the subspace of square integrable functions of X.



Maximum Likelihood Estimation



Distribution Family

Given: Family P = {fy : 6 € ©} of probability mass/density functions on X
> O C R called parameter space, 6 € © called parameters

> Parameter 0 € © fully specifies mass/density function fy

Examples
> Normal P = {N(p,0°) : p € R, 0% > 0}
» Exponential P = {Exp(\) : A > 0}
» Poisson P = {Poiss(\) : A > 0}

» Binomial P = {Bin(n,p) : p € [0, 1]}



Inference: Parameter Estimation from Data

Given

» Distribution family P = {fy : 0 € ©} of interest

» Datasetzi,...,zn, € X
» Assume: z1,...,z, drawn indep. from fy, € P with 6 unknown
Goal: Estimate 6, (and therefore fy,) from data =1, ..., z»

Idea: Select 0 € © that makes given 1, ..., x, most likely



Maximum Likelihood Estimation

Definition: The likelihood of § € © is joint density of z1, ..., z, under fo

Definition: The maximum likelihood estimator (MLE) of 6, is

OME(27) = argmax L(0)
0o

Note: As log(u) strictly increasing, MLE can be written in equivalent form

OME(27) = argmaxlog L(0) = argmaleogfg(xi)
oce veo



Maximum Likelihood Estimation

Fact: Under appropriate conditions the MLE is
> Consistent: 0" (X}) — 6, in probability

> Asymptotically Normal: n'/? (5(X7) — o) = N(0,1(65)" ")

Ex1. X1,..., X, iid~ f € P = {N(u,0?) : u € R} with 0> > 0 known



